Supporting information

Figure S1: (**A**) Quantification of binding of ScMC1 to liposomes without and with Vps21, high packing defects (DO), charged lipids (PIP), and different combinations (n=3-8). The graph summarizes data presented in Figures 2. (**B**) Liposome sedimentation assays with prenylated Ypt7 bound to REP (Rab escort protein) after incubation with GTP in the presence of liposomes of varying composition for 30 min.

Figure S2: Role of a charged patch on Mon1 in MC1 complex function. (**A**) Surface potential representation of the putative membrane binding interface of the CtMC1 complex. The locations of key basic residues of Mon1 involved in PIP binding are indicated. (**B**) Fluorescence microscopy images of *mon1* Δ yeast expressing mCherry-Atg8 and complemented with GFP-ScMon1^{WT} or different GFP-ScMon1^{CIM} variants. Vacuoles are stained with CMAC.

Figure S3: Characterization of the Ccz1 amphipathic helix. (**A**) Sedimentation assays of CtMC1 Δ (CtMon1 141-665/CtCcz1 1-360,461-796) with liposomes form DO (di-oleoyl) lipid mix with or without PIP (**B**) Quantification of A (n=4). (**C**) Reduced binding of CtCcz1 point mutants in the amphipathic helix to DO liposomes. (**D**) Binding of GFP-CtCcz1^{Loop} to di-oleoyl phosphatidylcholine (PC) with or without 20% di-oleoyl phosphatidylinositol (PI) or di-oleoyl phosphatidylethanolamine (PE). (**E**) Quantification of D (n=3). Quantification data are

presented as mean ±SD. (**F**) Phospholipid composition of yeast endosomes (endo) and autophagosomes (auto). DB: double bond; PI: phosphatidylinositol; PS: phosphatidylserine; PC: phosphatidylcholine; PE: phosphatidylethanolamine. (**G**) Ape1 processing assay of fed (F) and starved (S) *ccz1* Δ yeast complemented with GFP-ScCcz1^{WT} or different GFP-ScCcz1 variants.

Lipid mix	Composition		
PO	82 mol% 1-palmitoyl-2-oleoyl phosphatidylcholine		
	18 mol% 1-palmitoyl-2-oleoyl phosphatidylethanolamine		
PO+PIP	79 mol% 1-palmitoyl-2-oleoyl phosphatidylcholine		
	18 mol% 1-palmitoyl-2-oleoyl phosphatidylethanolamine		
	2 mol% dipalmitoylphosphatidylinositol-3-phosphate		
	1 mol% dipalmitoylphosphatidylinositol-3,5-bisphosphate		
DO	82 mol% dioleoyl phosphatidylcholine		
	18 mol% dioleoyl phosphatidylethanolamine		
DO+PIP	79 mol% dioleoyl phosphatidylcholine		
	18 mol% dioleoyl phosphatidylethanolamine		
	2 mol% dipalmitoylphosphatidylinositol-3-phosphate		
	1 mol% dipalmitoylphosphatidylinositol-3,5-bisphosphate		
PC	100 mol% 1-palmitoyl-2-oleoyl phosphatidylcholine		
PC/PI	80 mol% 1-palmitoyl-2-oleoyl phosphatidylcholine		
	20 mol% 1-palmitoyl-2-oleoyl phosphatidylinositol		
PC/PE	80 mol% 1-palmitoyl-2-oleoyl phosphatidylcholine		
	20 mol% 1-palmitoyl-2-oleoyl phosphatidylethanolamine		
Endo	40 mol% dioleoyl phosphatidylcholine		
	12 mol% dipalmitoyl phosphatidylcholine		
	22 mol% 1-palmitoyl-2-oleoyl phosphatidylethanolamine		
	22 mol% 1-palmitoyl-2-oleoyl phosphatidylinositol		
	4 mol% dioleoyl phosphatidylserine		
Auto	38 mol% dioleoyl phosphatidylcholine		
	2 mol% dipalmitoyl phosphatidylcholine		
	20 mol% dioleoyl phosphatidylethanolamine		
	38 mol% 1-palmitoyl-2-oleoyl phosphatidylinositol		
	2 mol% dioleoyl phosphatidylserine		
Endo+PIP	40 mol% dioleoyl phosphatidylcholine		
	2 mol% 1-palmitoyl-2-oleoyl phosphatidylcholine		
	10 mol% dipalmitoyl phosphatidylcholine		
	22 mol% 1-palmitoyl-2-oleoyl phosphatidylethanolamine		
	20 mol% 1-palmitoyl-2-oleoyl phosphatidylinositol		
	4 mol% dioleoyl phosphatidylserine		
	2 mol% dipalmitoylphosphatidylinositol-3-phosphate		
Auto+PIP	38 mol% dioleoyl phosphatidylcholine		
	2 mol% 1-palmitoyl-2-oleoyl phosphatidylcholine		
	20 mol% dioleoyl phosphatidylethanolamine		
	36 mol% 1-palmitoyl-2-oleoyl phosphatidylinositol		
	2 mol% dioleoyl phosphatidylserine		
	2 mol% dipalmitoylphosphatidylinositol-3-phosphate		

 Table S1: Composition of lipid mixes used in this study

Plasmid	Construct
DK65	pCDF6P-CtMon1 ^{FL}
	(GST-PreScission site CtMon1 1-665)
DK44	pCDF6P-CtMon1 ^{∆N}
	(GST-PreScission site CtMon1 141-665)
DK123	pCDF6P-CtMon1 ^{LD1}
	(GST-PreScission site CtMon1 141-355)
DK1534	pCDF6P-CtMon1 ^{LD2CIM}
	(GST-PreScission site CtMon1 141-665; R402E, R404E, R551E)
DK1535	pCDF6P-CtMon1 ^{LD3CIM}
	(GST-PreScission site CtMon1 141-665; R636E, R645E, R652E)
CU3481	pRS406-GFP-ScMon1 ^{w1}
	(NOP1pr GFP-ScMon1 1-644)
DK1585	pRS406-GFP-ScMon1 ^{LD20IM}
	(NOP1pr GFP-ScMon1 1-644; R3/4E, R3/6E)
DK1514	
	(NOP1pr GFP-ScMon1 1-644; K620E, K624E, K631E)
DK1585	
	(NOP 1pr GFP-Scivion1 1-644; R374E, R376E, R620E, R624E, R631E)
DK40	$p = 128 \square S - O(O(21)^{-1})$
DR40	(6xHig-SUMO CtCoz1 1-240)
DK857	$pET28HS(tCcz1^{\Delta Loop})$
DROOT	(6xHis-SUMO CtCcz1 1-360 461-796)
DK1052	nET28HS CtCcz1 ^{ΔAH}
DITIOUZ	(6xHis-SUMO CtCcz1 1-407 441-796)
DK1149	pET28HS CtCcz1 ^{L423E}
	(6xHis-SUMO CtCcz1 1-796; L423E)
DK134	pET28GFP
	, (6xHis-Thrombin site-GFP
DK1287	pET28GFP-CtCcz1 ^{Loop}
	(6xHis-Thrombin site-GFP CtCcz1 360-460)
DK1677	pET28GFP-CtCcz1 ^{Loop∆AH}
	(6xHis-Thrombin site-GFP CtCcz1 360-407,441-460)
CU5525	pRS406-ScCcz1 ^{WT} -mNEON
	(CCZ1pr-ScCcz1 1-704 mNEON)
CU5528	pRS406-ScCcz1 ^{∆Loop} -mNEON
	(CCZ1pr-ScCcz1 1-269,404-704 mNEON)
CU5527	pRS406-ScCcz1 ^{I341E} -mNEON
	(CCZ1pr-ScCcz1 1-704; I341E mNEON)
CU2452	pET24d-GST-TEV-Vps21
CU4527	pET24d GST-TEV-Ypt10
CU5326	pET-DUET-1-HIS-TEV-Atg8 (Gift from Sascha Martens)

Table S2:	Plasmids	used in	this	study
-----------	----------	---------	------	-------

Short name	Construct	Molecular weight (kDa)
CtMon1	GST-CtMon1 1-665	98.6
CtCcz1	HisSumo-CtCcz1 1-796	99.5
CtMon1-LD1	CtMon1 141-355	23.0
	GST- CtMon1 141-355	49.9
CtCcz1-LD1	CtCcz1 1-249	33.2
CtMon1ΔN	CtMon1 141-665	57.5
	GST-CtMon1 141-665	74.4
CtMon1ΔN LD2CIM	GST-CtMon1 141-665 R402E, R404E, R551E	74.4
CtMon1AN LD3CIM	GST-CtMon1 141-665 R363E, R645E, R652E	74.4
Ccz1 Δloop	HisSumo-CtCcz1 1-796 Δ361-460	89.3
Ccz1 ΔAH	HisSumo-CtCcz1 1-796 Δ408-440	96.0
CtCcz1 L423E	HisSumo-CtCcz1 1-796 L423E	99.5
GFP	eGFP	27.9
GFP-CtCcz1 Loop	eGFP-CtCcz1 360-460	38.7
GFP-CtCcz1 Loop∆AH	eGFP-CtCcz1 360-460 Δ408-440	35.2
ScMon1	ScMon1 1-644	73.5
ScCcz1	CaM-ScCcz1 1-704	97.7
Vps21	ScVps21 1-210	23.0
Ypt10	ScYpt10 1-199	21.8
Atg8	ScAtg8 1-117	13.6

 Table S3: Recombinant proteins construct names and molecular weights.