Supporting Information for

Characterization of LipS1 and LipS2 from *Theromococcus kodakarensis*: Proteins Annotated as Biotin Synthases, which Together Catalyze Formation of the Lipoyl Cofactor

Syam Sundar Neti[‡], Debangsu Sil[‡], Douglas M. Warui[‡], Olga A. Esakova[‡], Amy E. Solinski[‡], Dante A. Serrano[§], Carsten Krebs^{*,‡§}, and Squire J. Booker^{*,‡,§,#}

[‡]Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, USA.

[§]Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA.

[#]Howard Hughes Medical Institute, The Pennsylvania State University, University Park, Pennsylvania 16802, USA.

*To whom correspondence should be addressed: Squire J. Booker (<u>sjb14@psu.edu</u>); Carsten Krebs (ckrebs@psu.edu)

Table of Contents

1)	LipS1 codon optimized gene sequence and protein sequence	. S3
2)	LipS2 codon optimized gene sequence and protein sequence	. S4
3)	LipS1 auxiliary cysteine mutagenic primers (5' – 3')	S5
4)	LipS2 auxiliary cysteine mutagenic primers (5' – 3')	S6
5)	LipS1 & LipS2 RS cysteine mutagenic primers (5' – 3')	S7
6)	LC-MS gradient and MRM conditions for product analysis	S8
7)	Non-lipoyl RS enzymes involved in sulfur insertion reactions	S9
8)	EPR spectra of LipS1	.S10
9)	Mössbauer spectra of reconstituted and as-isolated LipS1 $_{\Delta RS}$	S11
10) Mössbauer spectra of reconstituted LipS2 _{WT}	S12
11)) Mössbauer spectra of reconstituted LipS2 $_{\Delta RS}$	S13
12) Parameters used to simulate Mossbauer spectra	S14
13) Activity plots of $LipS1_{WT}$ and $LipS2_{WT}$ using Ferredoxin	S15
14) ³⁴ S-labeled LipS1 and LipS2 reactions	S16
15) Activity plots of LipS1 _{ΔRS} and LipS2 _{ΔRS} variants	S17
16) UV-vis spectra of LipS1 and LipS2 auxiliary ligand mutants	S18
17) Reactions of T28A, S113A, S115A LipS2 with octanoyllysyl peptide	S19
18) Genome analysis of LipS1 and LipS2S20 –	S23
19) UV-vis spectral comparison of LipS1 _{WT} , LipS1 _{ARS}	S24
20) Confidence scores of LipS1 and LipS2 models based on AlphaFold server	S25

LipS1 (TK2109) codon-optimized gene sequence (Uniprot # Q5JEV3)

 $\frac{CATATG}{CTCGAG} - NdeI \text{ restriction site}$ $\frac{CTCGAG}{TAA} - Stop \text{ codon}$

LipS1 (TK2109) protein sequence

MGSSHHHHHHSSGLVPRGSHMAEPKKKLKIYIPGIKFPSVSLTGNACALNCAHCGKHYL EGMRKPERGELLSYCLRLAEEGYNGCLLSGGMDGRLKVPLDFYANEIKEIKKRTNLKLN AHVGFIDESDLEWVKYVDVVSLDFVGDNDVIRRVYKIDKTVDDYLRVLDILTEAGVRV APHITIGLDFGKIHWEYKAIDMLVKYPIDVLVLDVLIPTKGTEMENVPKPSVEESLEVVK YAREMFDGELSIGCMRPLGRWRLEFDRGAILTGVDRLTNPPRKVIEWAKGIRDVEIIYEC CVM

LipS2 (TK2248) codon-optimized gene sequence (Uniprot # Q5JHS9)

CATATGCCGGAAATGGTTCGTGTTAGCTATGGCACCGCAATTGCAATGGGTCTGATT CGTGCAAAACTGCTGGCACGTCCGACCACCGCATATCTGATGACCTATTGGCCTGGT CGTTGTAGCAATGATTGTGCATTTTGTGCACAGGCACGTAGCAGCCGTGCAGATCTG GAAAAACTGAGCCGTGTTGTTTGGCCGAGCTTTATGCTGGAAGATGTTCTGGAAGGT CTGAAAAAAGGTAACTTTGCACGTATTTGCCTGCAGACCATTGATTATCCTGGTATG GTTGAAGATGTGTTCGATCTGCTGGAAGCATTTAGCGATCTGAATCTGCCGATTAGC GTTAGCATTACACCGGTTGATAGCGAAACCCTGGAACGTTTTAAAGAACGTGGTGTG GATTATATTGGTGTTGGTCTGGATGTTGCAAGCGAACGTCTGTTTCGTGAAATTAAA CCGGATCTGAGCTGGGAAGAAGTTTGGGGATTTTGCAGGTCGTGTTATTGATGTTTTT GGTCGTGGTAAAGCACTGCTGCATGTTATTGTTGGCCTGGGTGAAACCGATGGTGAA CTGGTTAATACCTTTATTCGTGCACGTGAAATTGGTGCCGATGTTAGCATTTTGCAT TTACCCCGATTAAAGGCACCCGTCTGGAAAATCGTGAACCGCCTAGCCTGGAACATT ATCGTAAAATTCAGCTGGCCAAATATCTGGTGAGCATTGGTAAAGAAGATGCCATTG TTTTTGATGGCGATAGCATTAAAGGTTTCGCACTGAGCAAAGATGAAGTTGCAAAAA TTCCGACCACAGTGTTTATGACCCATGGTTGTCCGGGTTGTAATCGTCCGTATTATAA CGAACGTCCGGGTAAAGAACCGTATAACTATCCGCTGGCACCGAAACGTGAAGATT TTGAACGTACCCTGCGTCTGATTCTGTAACTCGAG

CATATG – *NdeI* restriction site CTCGAG – *XhoI* restriction site TAA – Stop codon

LipS2 (TK2248) protein sequence

MGSSHHHHHHSSGLVPRGSHMPEMVRVSYGTAIAMGLIRAKLLARPTTAYLMTYWPG RCSNDCAFCAQARSSRADLEKLSRVVWPSFMLEDVLEGLKKGNFARICLQTIDYPGMV EDVFDLLEAFSDLNLPISVSITPVDSETLERFKERGVDYIGVGLDVASERLFREIKPDLSW EEVWDFAGRVIDVFGRGKALLHVIVGLGETDGELVNTFIRAREIGADVSIFAFTPIKGTRL ENREPPSLEHYRKIQLAKYLVSIGKEDAIVFDGDSIKGFALSKDEVAKIPTTVFMTHGCPG CNRPYYNERPGKEPYNYPLAPKREDFERTLRLIL

Mutant	Forward primer	Reverse primer
C54A LipS1	5'-GAACTGCTGAGCTAT <u>GCG</u> C	5'-CTTCGGCCAGACGCAG <u>CG</u>
	TGCGTCTGGCCGAA-3'	CATAGCTCAGCAGTTC-3'
C65A LipS1	5'-GAAGAAGGTTATAACGGT <u>GC</u>	5'-CATACCACCGCTCAGCAGCG
	<u>G</u> CTGCTGAGCGGTGGTATG-3'	CACCGTTATAACCTTCTTC-3'
C230A LipS1	5'-GGCGAACTGAGCATTGGT <u>GC</u>	5'-CGACCTAACGGACGCAT <u>CGC</u>
	<u>G</u> ATGCGTCCGTTAGGTCG-3'	ACCAATGCTCAGTTCGCC-3'
C276A LipS1	5'-GTCGAGATTATCTATGAAGC	5'-CTCGAGTTACATCACGCA <u>CG</u>
	<u>G</u> TGCGTGATGTAACTCGAG-3'	CTTCATAGATAATCTCGAC-3'
C277A LipS1	5'-GTCGAGATTATCTATGAATG	5'-CTCGAGTTACATCAC <u>CGC</u> GC
	C <u>GCG</u> GTGATGTAACTCGAG-3'	ATTCATAGATAATCTCGAC-3'
H159A LipS1	5'- GGTGTTCGTGTTGCACCG	5'-CAGACCAATGGTGAT <u>CGC</u> CG
	GCGATCACCATTGGTCTG -3'	GTGCAACACGAACACC-3'

Table S1: Primers for constructing LipS1 auxiliary cysteine and other ligand variants

Mutant	Forward primer	Reverse primer
C85A LipS2	5'-GGTAACTTTGCACGTATT <u>GCG</u>	5'-CAGGATAATCAATGGTCTGCA
	CTGCAGACCATTGATTATCCTG-3'	G <u>CGC</u> AATACGTGCAAAGTTACC-3'
C276A LipS2	5'-GTGTTTATGACCCATGGT <u>GCG</u>	5'-CGGACGATTACAACCCGG <u>C</u>
	CCGGGTTGTAATCGTCCG-3'	GCACCATGGGTCATAAACAC-3'
C279A LipS2	5'-GACCCATGGTTGTCCGGGT	5'-CGTTATAATACGGACGATT <u>C</u>
	GCGAATCGTCCGTATTATAACG-3'	GCACCCGGACAACCATGGGTC-3'
T28A LipS2	5'-GCTGGCACGTCCGACC <u>GCG</u>	5'-CAATAGGTCATCAGATATGC
	GCATATCTGATGACCTATTG-3'	CGCGGTCGGACGTGCCAGC-3'
S113A LiPS2	5'-GATCTGAATCTGCCGATT	5'-CGGTGTAATGCTAAC <u>CGC</u> AA
	GCGGTTAGCATTACACCG-3'	TCGGCAGATTCAGATC-3'
S115A LipS2	5'-GAATCTGCCGATTAGCGTT	5'-CTATCAACCGGTGTAATCG
	GCGATTACACCGGTTGATAG-3'	CAA <u>CGC</u> TAATCGGCAGATTC-3'
H178A LipS2	5'-GTCGTGGTAAAGCACTGCTG	5' -CCCAGGCCAACAATAA <u>CGC</u>
	GCGGTTATTGTTGGCCTGGG-3'	CAGCAGTGCTTTACCACGAC-3'

Table S2: Primers for constructing LipS2 auxiliary cysteine and other ligand variants

Mutant	Forward primer	Reverse primer
LipS1	5'-GCCTGACCGGTAATGCAG	5'-CAGATAATGTTTACC <u>CGC</u> ATG
C27A/C31A/	<u>CG</u> GCACTGAAT <u>GCG</u> GCACAT	TGC <u>CGC</u> ATTCAGTGC <u>CGC</u> TGCAT
C34A	GCGGGTAAACATTATCTG-3'	TACCGGTCAGGC-3'
LipS2	5'-GACCTATTGGCCTGGTCGT	5'-CTGCTACGTGCCTGTGC <u>CGC</u> A
C39A/C43A/	<u>GCG</u> AGCAATGAT <u>GCG</u> GCATTT	AATGC <u>CGC</u> ATCATTGCT <u>CGC</u> ACG
C46A	GCGGCACAGGCACGTAGC	ACCAGGCCAATAGGTC-3'
	AG-3'	

Table S3: Primers for constructing LipS1 $_{\Delta RS}$ and LipS2 $_{\Delta RS}$ cysteine variants

Time (min)	0.1% Formic acid in H ₂ O	Acetonitrile	Flow (mL/min)
0	95%	5%	0.3
0.5	95%	5%	0.3
3	50%	50%	0.3
4.5	50%	50%	0.3
5.5	95%	5%	0.3
7	95%	5%	0.3

Table S4: LC-MS gradient conditions for the analysis of substrates/products in LipS1 and LipS2 reactions

Table S5: MRM fragmentation products monitored by LC-MS.

Compound	Parent ion*	Product Ion 1 [§]	Product 1on 2 [§]
AtsA peptide	474.4 (112)	229.1 (18)	153 (26)
5'-dAH	252.1 (90)	136 (13)	119 (50)
Trp	188 (114)	145.9 (13)	117.9 (25)
Methionine	150.1 (65)	104 (8)	56 (16)
Lipoyl peptide	996.5 (208)	776.3 (30)	274.1 (46)
Monothiolated peptide	964.5 (222)	584.3 (32)	242.1 (48)
Octanoyl peptide	932.5 (188)	712.4 (29)	210.1 (53)
Monothiolated ³⁴ S	966.5 (222)	586.3 (32)	244.1 (48)
peptide			
Lipoyl ^{34/32} S peptide	998.5 (208)	778.3 (30)	276.1 (46)

*Respective fragmentor voltage in parenthesis

[§]Respective collision energies in parenthesis

Figure S1: Other RS enzymes involved in sulfur insertion reactions A) BioB B) MiaB C) MtaBD) RimO

Figure S2. EPR spectra of 200 μ M LipS1_{WT} (blue), 200 μ M LipS1_{WT} + 2 mM dithionite (cyan), and 200 μ M LipS1_{WT} + 2 mM dithionite + 1 mM SAM (red). Spectra were recorded at 10 K.

Figure S3. Comparison of the 4.2-K Mössbauer spectrum of reconstituted LipS1_{ΔRS} collected without an externally applied magnetic field (vertical bars) to the 4.2-K Mössbauer spectrum of reconstituted LipS1_{ΔRS} collected with a 53-mT magnetic field oriented parallel to the γ beam (solid line, **A**); the fact that these spectra are virtually identical reveals the absence of [Fe₃S₄]⁰-like clusters. Comparison of the 4.2-K Mössbauer spectrum of reconstituted LipS1_{ΔRS} collected without an externally applied magnetic field (vertical bars) to the 4.2-K Mössbauer spectrum of non-reconstituted LipS1_{ΔRS} collected without an externally applied magnetic field (vertical bars) to the 4.2-K Mössbauer spectrum of non-reconstituted LipS1_{ΔRS} collected without an externally applied magnetic field (vertical bars) to the 4.2-K Mössbauer spectrum of non-reconstituted LipS1_{ΔRS} collected without an externally applied magnetic field (solid line, **B**). The fact that the major contribution to the spectra is the quadrupole doublet associated with [Fe₄S₄]²⁺ clusters suggests that the auxiliary cluster as is an [Fe₄S₄] cluster.

Figure S4. Mössbauer spectra of reconstituted LipS2_{WT} collected at 4.2 K with an external applied magnetic field of (A) 0 mT or (B) 53 mT oriented parallel to the γ beam (vertical bars).

Figure S5. Mössbauer spectra of reconstituted LipS2_{ΔRS} collected at 4.2 K with an external applied magnetic field of (A) 0 mT or (B) 53 mT oriented parallel to the γ beam (vertical bars).

Protein	Fe species		δ (mm/s)	$\Delta E_{\rm Q}$ (mm/s)	% ⁵⁷ Fe	Total	⁵⁷ Fe/protom er	# cluster(s)/ protomer	of
LipS1 _{WT}	$[Fe_4S_4]^{2+}$		0.46	1.12	47		3.29	0.8	
	[3Fe-	$Fe_{2}^{2.5}$	0.45	1.00	20		2.10	0.7	
	$4S]^{0}$	Fe ^{III}	0.31	0.50	10				
	$[Fe_2S_2]^{2+}$		0.25	0.67	12		0.84	0.4	
	N/O-coord	dinated	1.12	2.67	11		0.77	-	
	high-spin Fe ^{II}								
$LipS1_{\Delta RS}$	$[Fe_4S_4]^{2+}$		0.46	1.12	69		2.83	0.7	
	N/O-coordinated		0.85	2.25	17		0.70	0.3	
	unique Fe site of [Fe ₄ S ₄] ²⁺								
	$[Fe_2S_2]^{2+}$		0.25	0.67	9		0.37	0.2	
	N/O-coordinated high-spin Fe ^{II}		1.20	2.9	5		0.2	-	
LipS2 _{WT}	$[Fe_4S_4]^{2+}$		0.47	1.12	90		6.12	1.5	
	$[Fe_2S_2]^{2+}$		0.25	0.67	5		0.34	0.2	
	N/O-coordinated high-spin Fe ^{II}		1.28	2.71	5		0.34	-	
$LipS2_{\Delta RS}$	$[Fe_4S_4]^{2+}$		0.47	1.12	90		3.48	0.9	
	$[Fe_2S_2]^{2+}$		0.25	0.67	2		0.08	0.04	
	N/O-coordinated high-spin Fe ^{II}		1.28	2.71	8		0.31	-	

Table S6: Parameters used to simulate Mössbauer spectra

Figure S6. Reactions of A) LipS1_{WT} with 8-mercaptooctanoyl peptide substrate B) LipS2_{WT} with octanoyl peptide substrate. The reactions contained 10 μ M LipS1 or 10 μ M LipS2, 300 μ M peptide substrate, 10 μ M ferredoxin, 4 μ M ferredoxin reductase, 1 mM NADPH and 0.5 mM SAM. Reactions were conducted at 40 °C in triplicate. Error bars represent one standard deviation from the mean.

Figure S7. A) and **B)** ³⁴S-labeled LipS1 and ³⁴S-labeled LipS2 reactions with 8mercaptooctanoyllysyl peptide or with octanoyllysyl peptide, respectively, using the ferredoxin/ferredoxin reductase/NADPH reducing system. **C)** and **D)** ³⁴S-labeled LipS1 and ³⁴Slabeled LipS2 reactions with 8-mercaptooctanoyllysyl peptide and octanoyllysyl peptide, respectively, using dithionite as a reductant. The reactions contained 10 μ M LipS1 or 10 μ M LipS2, 10 μ M ferredoxin, 4 μ M ferredoxin reductase, and 1.5 mM NADPH, 300 μ M substrate, and 0.5 mM SAM. When dithionite replaced the ferredoxin/ferredoxin reductase/NADPH

reducing system it was used at a concentration of 1.5 mM. Reactions were conducted at 40 °C in triplicate. Error bars represent one standard deviation from the mean.

Figure S8. Reactions of **A**) LipS1_{Δ RS} with 8-mercaptooctanoyl peptide substrate **B**) LipS2_{Δ RS} with octanoyl peptide substrate **C**) LipS1_{Δ RS} and LipS2_{Δ RS} with octanoyl peptide. The reactions contained 10 μ M LipS1 and/or 10 μ M LipS2, 300 μ M octanoyl peptide substrate, 0.5 mM dithionite and 0.5 mM SAM. Reactions were conducted at 45 °C in triplicate. Error bars represent one standard deviation from the mean.

Figure S9: UV-Vis spectra of 8.4 µM LipS1 auxiliary cluster ligand variants (normalized to the absorption at 280 nm).

Figure S10: UV-Vis spectra of 9 μ M LipS2 auxiliary cluster ligand variants (normalized to the absorption at 280 nm).

Figure S11. Reactions of A) T28A LipS2 B) S113A LipS2 C) S115A LipS2 with octanoyllysyl peptide. The reactions contained 10 μ M LipS2 variant, 300 μ M substrate, 1.5 mM dithionite and 0.5 mM SAM. Reactions were conducted at 45 °C in triplicate. Error bars represent one standard deviation from the mean.

Figure S12. Genome neighborhood analysis of Megacluster 4_7 (LipS1) in bacteria and archaea obtained from radicalSAM.org.

GCV_H = H-protein of the glycine cleavage system (Pfam01597)

Radical_SAM = Radical-SAM domain containing protein (Pfam04055)

CCG = cysteine-rich domain/heterodisulfide reductase subunit B (Pfam02754)

BPL_LpIA_LipB = Biotin/lipoate A/B protein ligase family (Pfam03099)

Pyr_redox_2 = Heterodisulfide reductase subunit A/pyridine nucleotide-disulphide oxidoreductase (Pfam07992)

DrsE = Putative peroxiredoxin/sulfur reduction protein (Pfam02635)

None = Neighbor not associated with a Pfam family (20% of protein in UniProt are not assigned to a Pfam family). 'None' assigned to the 'no Pfam' family.

Figure S13. Genome analysis of Megacluster 4_8 (LipS2) in bacteria and archaea obtained from radicalSAM.org.

GCV_H = H-protein of the glycine cleavage system (Pfam01597)

Radical_SAM = Radical-SAM domain containing protein (Pfam04055)

CCG = cysteine-rich domain/heterodisulfide reductase subunit B (Pfam02754)

BPL_LpIA_LipB = Biotin/lipoate A/B protein ligase family (Pfam03099)

Pyr_redox_2 = Heterodisulfide reductase subunit A/pyridine nucleotide-disulphide oxidoreductase (Pfam07992)

None = Neighbor not associated with a Pfam family (20% of protein in UniProt are not assigned to a Pfam family). 'None' assigned to the 'no Pfam' family.

Figure S14. Comparison of the UV-vis spectra of reconstituted LipS1_{WT} (red), reconstituted LipS1_{Δ RS} (blue), and as-isolated LipS1_{Δ RS} (black) proteins (normalized to the absorption at 280 nm).

Figure S15. Confidence scores of LipS1 and LipS2 models based on AlphFold server. AlphaFold server predicts per-residue confidence score (pLDDT) in the range of 0 to 100.