Electronic Supplementary Information

Controlling Amyloid Beta (A β) Peptide Aggregation and Toxicity by Protease Stable Ligands

Rathnam Mallesh,^{1,2,3} Juhee Khan,^{1,2} Prabir Kumar Gharai,^{1,2} Varsha Gupta,^{1,2} Rajsekhar Roy,¹ and Surajit Ghosh^{1,2,3}*

- Department of Bioscience & Bioengineering, Indian Institute of Technology, Jodhpur, NH 65, Surpura Bypass Road, Karwar, Rajasthan 342037, India, Phone: +91-291-280-1212
- Organic and Medicinal Chemistry and Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata-700 032, WB, India. Fax: +91-33-2473-5197/0284; Tel: +91-33-2499-5872
- National Institute of Pharmaceutical Education and Research, Kolkata, Chunilal Bhawan 168, Maniktala Main Road, Kolkata – 700054, India

Corresponding Author

Dr. Surajit Ghosh

Department of Bioscience & Bioengineering,

Indian Institute of Technology Jodhpur, Karwar 342037, Rajasthan, India;

orcid.org/0000-0002-8203-8613;

Phone: +91-291-280-1212 (Office);

E-mail: <u>sghosh@iitj.ac.in</u>

Table of Contents

1. Figure

1.1. Figure S1. Cellular viability of NT peptides by MTT assay.

1.2. Figure S2. Cellular viability in PC-12 derived neurons after treatment with $A\beta 42$ peptide alone and $A\beta 42$ peptide with NT peptides.

1.3. Figure S3. Cellular viability in PC-12-derived neurons after treatment with $A\beta 42$ aggregates alone and $A\beta 42$ aggregates with NT peptides.

1.4. Figure S4. Effects of NT peptides on A β 42 aggregation measured by ThT assay.

1.5. Figure S5. BBB crossing of NT peptides, analysis by mass spectrometry.

1.6. Figure S6. Microscopic images of PC12 derived neurons.

2. Appendixes: HPLC and MALDI mass

2.1. Figure S7. HPLC chromatograph of NT-01.

2.2. Figure S8. HPLC chromatograph of NT-02.

2.3. Figure S9. HPLC chromatograph of NT-03.

2.4. Figure S10. HPLC chromatograph of NT-04.

2.5. Figure S11. HPLC chromatograph of NT-05.

2.6. Figure S12. HPLC chromatograph of NT-06.

2.7. Figure S13. HPLC chromatograph of NT-07.

2.8. Figure S14. HPLC chromatograph of NT-08.

2.9. Figure S15. HPLC chromatograph of NT-09.

2.10. Figure S16. HPLC chromatograph of NT-10.

2.11. Figure S17. HPLC chromatograph of NT-11.

2.12. Figure S18. HPLC chromatograph of NT-12.

2.13. Figure S19. HPLC chromatograph of NT-13.

2.14. Figure S20. HPLC chromatograph of NT-14.

2.15. Figure S21. HPLC chromatograph of KLVFF.

2.16. Figure S22. MALDI mass spectrum of NT-01.

2.17. Figure S23. MALDI mass spectrum of NT-02.

2.18. Figure S24. MALDI mass spectrum of NT-03.

2.19. Figure S25. MALDI mass spectrum of NT-04.

2.20. Figure S26. MALDI mass spectrum of NT-05.

2.21. Figure S27. MALDI mass spectrum of NT-06.

- 2.22. Figure S28. MALDI mass spectrum of NT-07.
- 2.23. Figure S29. MALDI mass spectrum of NT-08.
- **2.24. Figure S30.** MALDI mass spectrum of NT-09.
- **2.25. Figure S31.** MALDI mass spectrum of NT-10.
- 2.26. Figure S32. MALDI mass spectrum of NT-11.
- **2.27. Figure S33.** MALDI mass spectrum of NT-12.
- **2.28. Figure S34.** MALDI mass spectrum of NT-13.
- 2.29. Figure S35. MALDI mass spectrum of NT-14.
- 2.30. Figure S36. MALDI mass spectrum of KLVFF.
- **2.31. Figure S37.** MALDI mass spectrum of FITC attached NT-02.
- **2.32. Figure S38.** MALDI mass spectrum of FITC attached NT-03.
- **2.33. Figure S39.** MALDI mass spectrum of FITC attached NT-13.
- 2.34. Figure S40. HRMS mass spectrum of NT-02.
- **2.35. Figure S41.** HRMS mass spectrum of NT-03.
- 2.36. Figure S42. HRMS mass spectrum of NT-13.
- 2.37. Figure S43. HRMS mass spectrum of KLVFF.

			MA	SS	tR Purity (%) 5.196 100 5.275 100 5.298 100 5.303 100 5.301 100 5.280 100 5.232 100 5.232 100 5.247 99.12 5.156 100	
No.	Peptide sequence	Molecular formula	Calculated	Obtained (M+H)		Purity (%)
1	$\underset{NH_2}{\overset{\overset{\overset{\overset{\overset{\overset{\overset{\overset{\overset{\overset{\overset{\overset{\overset{\overset{\overset{\overset{\overset{\overset$	C ₄₄ H ₆₇ N ₉ O ₉	865.5062	865.6390	5.196	100
2	$H_{2N} \xrightarrow{O}_{H_{2}} H_{2} \xrightarrow{V}_{H_{2}} H \xrightarrow{O}_{H_{2}} H \xrightarrow{V}_{H_{2}} H \xrightarrow{V}_{H_$	C ₃₉ H ₆₀ N ₈ O ₆	736.4636	737.7675	5.275	100
3	$H_2N \begin{pmatrix} 0 & & \\ H_2N $	C ₃₆ H ₅₅ N ₇ O ₅	665.4265	666.7092	5.298	100
4	$H_2N \xrightarrow{O}_{H_1} H_1 \xrightarrow{H_1}_{O} \xrightarrow{H_2}_{H_2} NH_2$	C ₂₇ H ₄₆ N ₆ O ₄	518.3581	519.3088	5.303	100
5		C ₃₈ H ₅₅ N ₇ O ₈	737.4112	738.5652	5.301	100
6	$\begin{array}{c} \begin{array}{c} & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & $	C ₃₃ H ₄₈ N ₆ O ₅	608.3686	609.4024	5.280	100
7	$H_2N = 0$	$C_{30}H_{43}N_5O_4$	537.3315	538.5833	5.232	100
8	$H_2 N + H + H + H + H + H + H + H + H + H +$	C ₃₂ H ₄₄ N ₆ O ₇	624.3271	625.3097	5.247	99.12
9	$H_2N \xrightarrow{V} H \xrightarrow{V} O \xrightarrow{V} H \xrightarrow{V} O \xrightarrow{V} H \xrightarrow{V} O $	$C_{27}H_{37}N_5O_4$	495.2846	496.2403	5.156	100

Table S1. Characterization and HPLC data of synthesized peptides.

10	$\underset{H_{2}N^{11}}{}_{}\overset{}{\underset{}}{\underset{}{\underset{}{\underset{}{\underset{}{\underset{}{\underset{}}{\underset{}{\underset{}{\underset{}{}}{\underset{}{\underset{}{\underset{}{\underset{}{\underset{}{\underset{}{\underset{}}{\underset{}{\underset{}{\underset{}}{\underset{}{\underset{}{}}{\underset{}}{\underset{}{\underset{}{}}{\underset{}{}}}{\underset{}{\underset{}}{\underset{}{}}}}}}}}$	C ₄₃ H ₆₃ N ₉ O ₉	849.4749	850.7135	5.201	100	
11		C ₃₈ H ₅₆ N ₈ O ₆	720.4323	720.6613	5.190	98.93	
12	$H_2N^{*} \xrightarrow{NH_2} H_2N^{*} \xrightarrow{NH_2} H_1 \xrightarrow{NH_2} H_2N^{*} $	C ₃₅ H ₅₁ N ₇ O ₅	649.3952	650.2834	5.251	100	
13	$H_{2N} \xrightarrow{N} (N, N, $	C ₃₇ H ₅₁ N ₇ O ₈	721.3799	721.1677	5.203	100	
14	$H_2N \underbrace{\downarrow}_{P} O \\ \overbrace{\downarrow}^{N} O \\ O \\ \overbrace{\downarrow}^{N} O \\ O$	C ₃₂ H ₄₄ N ₆ O ₅	592.3373	593.5271	5.178	99.58	
15	$H_2N \begin{pmatrix} 0 \\ H \\$	C ₃₅ H ₅₃ N ₇ O ₅	651.4108	652.3820	5.222	98.98	
16	$Aeta_{42}$	NH ₂ - ¹ DAEFRHDSGYEVHHQKLVFFAEDVGSNKGAIIGLMVGG VVIA ⁴² -COOH					

				% Cell	l viability						
S. No.	Peptide sequence		Peptides concentration range (µM)								
		5	10	20	40	80	160				
1	H ₂ N-KLLFFAE-NH ₂	100.05	100.01	100.02	99.56	98.99	98.04				
2	H ₂ N-KLLFFA-NH ₂	99.79	98.72	97.25	95.57	92.14	91.01				
3	H ₂ N-KLLFF-NH ₂	100.03	99.85	99.05	99.56	98.99	98.95				
4	H ₂ N-KLLF-NH ₂	100	99.95	98.71	98.57	96.52	92.19				
5	H ₂ N-LLFFAE-NH ₂	100.02	99.91	98.26	97.23	95.62	91.28				
6	H ₂ N-LLFFA-NH ₂	98.85	92.54	86.00	80.87	75.78	71.68				
7	H ₂ N-LLFF-NH ₂	65.35	60.98	57.38	52.98	46.87	42.54				
8	H ₂ N-LFFAE-NH ₂	88.98	81.56	75.61	65.26	56.83	50.07				
9	H ₂ N-LFFA-NH ₂	100.05	98.01	96.53	90.24	85.62	78.29				
10	H ₂ N-KLPFFAE-NH ₂	100	98.12	95.98	91.47	85.12	79.31				
11	H ₂ N-KLPFFA-NH ₂	100	99.10	97.05	95.84	91.80	89.24				
12	H ₂ N-KLPFF-NH ₂	100	100.05	100	100	99.98	99.96				
13	H ₂ N-LPFFAE-NH ₂	100	99.52	99.01	97.34	95.71	91.67				
14	H ₂ N-LPFFA-NH ₂	100	100	100	100	99.91	99.50				
15	H ₂ N-KLVFF-NH ₂	100	100	100	100	100	100				
16	Control	100									

Table S 2. Cell viability of NT peptides in PC-12 derived neurons.

*Each experiment was done in triplicates (n= 3). ODs (absorbance) of samples with untreated cells were set to 100. Taking the cell viability of untreated cells as 100, percentage cell viabilities were calculated for the samples treated with A β 42 alone or plus the NT peptides. Subsequently, the percentage inhibition of A β toxicity by each test peptide was calculated by using the formula: Cell viability (%) = {[A570 (treated cells) - A570 (blank)]/ [A570 (control cells) - A570 (blank)]} *100. Blank ODs were subtracted from each sample OD and the triplicate ODs were averaged. In a subset of triplicate wells, OD readings did not deviate much from the mean and SD ranged between 1.12-6.4.

		% Cell viability after treated with peptide and $A\beta_{42}$ (5 μ M)							
S.	Peptide sequence			ре	eptide				
110.		Peptides concentration range (µM)							
		5	10	20	40	80	160		
1	H ₂ N-KLLFFAE-NH ₂	43.20	48.98	51.01	55.41	58.35	60.15		
2	H ₂ N-KLLFFA-NH ₂	75.13	79.69	80.72	85.87	86.08	90.18		
3	H ₂ N-KLLFF-NH ₂	76.64	76.73	75.30	82.14	85.81	88.24		
4	H ₂ N-KLLF-NH ₂	73.46	68.15	60.01	56.78	51.26	48.20		
5	H ₂ N-LLFFAE-NH ₂	74.38	69.91	66.34	61.12	58.84	56.42		
6	H ₂ N-LLFFA-NH ₂	62.61	58.25	54.21	48.07	42.19	38.24		
7	H ₂ N-LLFF-NH ₂	35.54	32.19	29.51	23.78	19.98	19.26		
8	H ₂ N-LFFAE-NH ₂	44.35	43.15	38.02	25.91	20.75	15.67		
9	H ₂ N-LFFA-NH ₂	40.33	41.05	45.08	47.50	49.35	48.32		
10	H ₂ N-KLPFFAE-NH ₂	50.19	55.06	56.53	58.73	60.24	62.63		
11	H ₂ N-KLPFFA-NH ₂	60.08	58.67	55.54	50.15	50.86	49.13		
12	H ₂ N-KLPFF-NH ₂	63.10	64.98	66.31	68.01	69.08	71.06		
13	H ₂ N-LPFFAE-NH ₂	76.08	84.16	82.27	84.62	83.02	85.58		
14	H ₂ N-LPFFA-NH ₂	60.58	63.24	64.15	66.20	67.68	67.52		
15	H ₂ N-KLVFF-NH ₂	72.08	73.60	77.06	80.36	83.13	83.79		
16	Control	100							
17	$A\beta_{42}$	38.05							

Table S 3. Cell viability and neuroprotection effect of NT peptides against $A\beta_{42}$ induced toxicity in PC-12 derived neurons.

*Each experiment was done in triplicates (n= 3). ODs (absorbance) of samples with untreated cells were set to 100. Taking the cell viability of untreated cells as 100, percentage cell viabilities were calculated for the samples treated with A β 42 alone or plus the NT peptides. Subsequently, the percentage inhibition of A β toxicity by each test peptide was calculated by using the formula: Cell viability (%) = {[A570 (treated cells) - A570 (blank)]/ [A570 (control cells) - A570 (blank)]} *100. Blank ODs were subtracted from each sample OD and the triplicate ODs were averaged. In a subset of triplicate wells, OD readings did not deviate much from the mean and SD ranged between 1.09-6.2.

		% Cell viability after treated with peptides and Aβ ₄₂ (5 μM) aggregates Peptides concentration range (μM)							
S.	Peptide sequence			agg	regates				
No.			Cell viability after treated with peptides and Aβ ₄₂ (5 μM) aggregates Peptides concentration range (μM) 10 20 40 80 160 64.19 65.60 68.49 72.57 75.27 85.91 88.07 90.10 93.24 94.30 84.73 85.30 87.56 90.81 92.41 78.08 80.20 81.58 82.36 84.23 69.52 70.34 72.10 75.18 76.14 48.69 44.81 42.02 42.09 40.80 53.21 50.83 44.61 39.12 31.75						
		5	10	20	40	80	160		
1		(2.20)	(4.10	(5.(0)	(0.40	70.57	75.27		
1	H ₂ N-KLLFFAE-NH ₂	62.30	64.19	65.60	68.49	/2.5/	/5.27		
2	H ₂ N-KLLFFA-NH ₂	84.36	85.91	88.07	90.10	93.24	94.30		
3	H ₂ N-KLLFF-NH ₂	82.64	84.73	85.30	87.56	90.81	92.41		
4	H ₂ N-KLLF-NH ₂	76.24	78.08	80.20	81.58	82.36	84.23		
5	H ₂ N-LLFFAE-NH ₂	68.82	69.52	70.34	72.10	75.18	76.14		
6	H ₂ N-LLFFA-NH ₂	52.23	48.69	44.81	42.02	42.09	40.80		
7	H ₂ N-LLFF-NH ₂	55.15	53.21	50.83	44.61	39.12	31.75		
8	H ₂ N-LFFAE-NH ₂	53.08	50.06	48.69	42.09	38.38	35.16		
9	H ₂ N-LFFA-NH ₂	68.62	65.05	63.28	62.23	59.15	56.09		
10	H ₂ N-KLPFFAE-NH ₂	65.24	63.98	62.15	60.98	59.23	58.14		
11	H ₂ N-KLPFFA-NH ₂	72.35	65.98	60.17	57.06	56.15	55.54		
12	H ₂ N-KLPFF-NH ₂	73.10	75.57	76.96	77.41	81.22	83.06		
13	H ₂ N-LPFFAE-NH ₂	82.35	85.52	87.16	89.32	90.14	92.16		
14	H ₂ N-LPFFA-NH ₂	72.18	73.02	73.77	74.02	75.56	76.05		
15	H ₂ N-KLVFF-NH ₂	78.01	81.02	84.16	86.12	87.35	89.23		
16	Control				100	1			
17	$A\beta_{42}$	43.27							

Table S 4. Cell viability and neuroprotection effect of NT peptides against $A\beta_{42}$ induced toxicity in PC-12 derived neurons.

*Each experiment was done in triplicates (n=3). ODs (absorbance) of samples with untreated cells were set to 100. Taking the cell viability of untreated cells as 100, percentage cell viabilities were calculated for the samples treated with A β 42 alone or plus the NT peptides. Subsequently, the percentage inhibition of A β toxicity by each test peptide was calculated by using the formula: Cell viability (%) = {[A570 (treated cells) - A570 (blank)]/ [A570 (control cells) - A570 (blank)]} *100. Blank ODs were subtracted from each sample OD and the triplicate ODs were averaged. In a subset of triplicate wells, OD readings did not deviate much from the mean and SD ranged between 1.9-6.7.

	%	Of A β_{42} aggreg	ations after ti	reated with N	T peptides	oeptides					
Peptides		NT Peptid	ptides concentration range (µM)								
	5	10	20	40	80	160					
NT-01	72.71	68.16	65.52	63.95	60.15	61.04					
NT-02	42.39	36.33	29.77	25.57	22.14	21.04					
NT-03	45.74	35.71	25.34	21.56	20.63	19.37					
NT-04	52.86	50.57	49.80	48.52	45.67	40.10					
NT-05	55.36	50.14	48.64	44.52	40.65	41.29					
NT-06	56.64	53.41	53.63	51.36	43.14	40.64					
NT-07	90.32	86.31	75.03	65.98	64.87	62.50					
NT-08	56.17	54.47	52.57	50.10	48.44	45.70					
NT-09	51.75	48.40	46.50	42.24	40.20	38.59					
NT-10	72.44	66.96	54.04	47.48	45.25	43.14					
NT-11	58.94	55.67	53.37	52.80	50.25	48.46					
NT-12	60.38	57.62	55.24	52.10	20.21	50.10					
NT-13	51.59	35.61	24.49	23.15	22.25	20.12					
NT-14	75.15	70.80	68.02	51.78	45.82	41.05					
NT-15	58.13	55.02	48.04	39.18	35.98	30.29					
$A\beta_{42}$ Alone	100										

Table S5. *ThT assay and inhibition of* $A\beta_{42}$ *aggregation.*

*Each experiment was done in triplicates (n= 3). ThT fluorescence intensity of samples A β 42 alone was set to 100. Taking the aggregation A β 42 alone as 100, % of aggregation was calculated for the samples A β 42 treated with the NT peptides. Subsequently, the % aggregation of each peptide was calculated by using the formula: Aggregation (%) = {[Fl482 (treated cells)]/ [Fl482 (A β 42 alone control)]} *100. The triplicate fluorescence intensity (FI) was averaged. In a subset of triplicate test samples, FIs readings did not deviate much from the mean and SD ranged between 2.16-5.2.

Table S6. Molecular docking studies of NT peptides with $A\beta 42$ (PDB ID: 1Z0Q) and the binding modes with affinity.

No. of modes	o. of modes affinity of NT-02 towards Aβ42 (kcal/mol)		The binding affinity of NT-13 towards Aβ42 (kcal/mol)	
1	1 -5.2		-4.5	
2	2 -5.1		-4.3	
3	-5.1	-4.7	-4.3	
4	4 -5.1		-4.3	
5	5 -5.1		-4.3	
6	6 -5.1		-4.2	
7	-5.0	-4.6	-4.1	
8	-5.0	-4.6	-4.1	
9	-5.0	-4.5	-4.0	
10	-4.9	-4.5	-4.0	
11	-4.8	-4.4	-4.0	
12	-4.8	-4.4	-3.9	
13	-4.7	-4.4	-3.9	
14	-4.7	-4.3	-3.9	
15	-4.7	-4.3	-3.9	
16	-4.6	-4.2	-3.9	
17	-4.6	-4.2	-3.8	
18	-4.6	-4.2	-3.8	
19	-4.6	-4.2	-3.8	
20 -4.6		-4.1	-3.7	

Group	Sample	Sex	Age (weeks)	Weight (gram)	Dose (5mg/kg) 0.1 mL			
		Female	8-10	54.38	0.27 mg			
1	Sucrose	Female	8-10	53.71	0.26 mg			
		Female	8-10	57.08	0.28 mg			
		Female	8-10	58.68	0.29 mg			
2	NT-02	Female	8-10	51.96	0.25 mg			
		Female	8-10	59.55	0.29 mg			
		Female	8-10	52.17	0.26 mg			
3	NT-03	Female	8-10	53.67	0.26 mg			
		Female	8-10	56.92	0.28 mg			
		Female	8-10	56.66	0.26 mg			
4	NT-13	Female	8-10	55.16	0.27 mg			
		Female	8-10	54.63	0.27 mg			
Source	CSIR-IICB, Kolkata							
Species	Mice							
Strain			C57E	BL/6J				
Route	Intra Peritoneal							

Table S7. Animal studies information. (Sex, source, species, number of animals, strains, route, dose

Figure S1. Cellular viability of NT peptides with various concentrations 5, 10, 20, 40, 80, and 160 μ M in PC-12 derived neurons by using MTT assay.

Figure S2. Cellular viability. After treatment with A β 42 peptide alone and A β 42 peptide with NT peptides with various concentrations 5, 10, 20, 40, 80, and 160 μ M and in PC-12 derived neurons by using MTT assay.

Figure S3. Cellular viability. After treatment with A β 42 aggregates alone and A β 42 aggregates with NT peptides with various concentrations 5, 10, 20, 40, 80, and 160 μ M and in PC-12 derived neurons by using MTT assay.

Figure S4. Effects of NT peptides on A β 42 aggregation measured by ThT fluorescence intensity.

Figure S5. BBB crossing by NT peptides and analysed with HRMS mass spectrometry A) NT-02 peptide was identified by the major mass peak at M+H = 737.4700 B) NT-03 peptide was identified by the major mass peak at M+H = 666.4314. C) NT-13 peptide was identified by the major mass peak at M+H = 722.3871. D) Control experiment of BBB crossing by sucrose and there is no mass peak at 342.2965.

Figure S6. Microscopic images of PC12 derived neurons (a) DIC mode (b) TRITC channel (c) DAPI channel and (d) merged channel. Scale bar corresponding to 50 μ m.

2. Appendixes: HPLC spectra and MALDI mass spectra.

Figure S7. HPLC chromatogram of NT-01 peptide.

Figure S8. HPLC chromatogram of NT-02 peptide.

Figure S9. HPLC chromatogram of NT-03 peptide.

Figure S10. HPLC chromatogram of NT-04 peptide.

Figure S11. HPLC chromatogram of NT-05 peptide.

Figure S12. HPLC chromatogram of NT-06 peptide.

Figure S13. HPLC chromatogram of NT-07 peptide.

Figure S14. HPLC chromatogram of NT-08 peptide.

Figure S16. HPLC chromatogram of NT-10 peptide.

Figure S17. HPLC chromatogram of NT-11 peptide.

Figure S18. HPLC chromatogram of NT-12 peptide.

Figure S19. HPLC chromatogram of NT-13 peptide.

Figure S20. HPLC chromatogram of NT-14 peptide.

Figure S21. HPLC chromatogram of KLVFF peptide.

Figure S22. MALDI-mass spectrum of NT-01 (KLLFFAE) expected m/z = 865.5062 and observed m/z = 865.6390.

Figure S23. MALDI-mass spectrum of NT-02 (KLLFFA) expected m/z = 736.4636 and observed m+H = 737.7675.

Figure S24. MALDI-mass spectrum of NT-03 (KLLFF) expected m/z = 665.4265 and observed m+H = 666.7092.

Figure S25. MALDI-mass spectrum of NT-04 (KLLF) expected m/z = 581.3581 and observed m+H = 519.3088.

Figure S26. MALDI-mass spectrum of NT-05 (LLFFAE) expected m/z = 737.4112 and observed m+H = 738.5652.

Figure S27. MALDI-mass spectrum of NT-06 (LLFFA) expected m/z = 608.3686 and observed m+H = 609.4024.

Figure S28. MALDI-mass spectrum of NT-07 (LLFF) expected m/z = 537.3315 and observed m+H = 538.5833.

Figure S29. MALDI-mass spectrum of NT-08 (LFFAE) expected m/z = 624.3271 and observed m+H = 625.3097.

Figure S30. MALDI-mass spectrum of NT-09 (LFFA) expected m/z = 495.2846 and observed m+H = 496.2403.

Figure S31. MALDI-mass spectrum of NT-10 (KLPFFAE) expected m/z = 849.4749 and observed m+H = 850.7135.

Figure S32. MALDI-mass spectrum of NT-11 KLPFFA expected m/z = 720.4323 and observed m/z = 720.6613.

Figure S33. MALDI-mass spectrum of NT-12 KLPFF expected m/z = 649.3952 and observed m+H = 650.2834.

Figure S34. MALDI-mass spectrum of NT-13 LPFFAE expected m/z = 721.3799 and observed m/z = 721.1677

Figure S35. MALDI-mass spectrum of NT-14 KLLFFA expected m/z = 592.3373 and observed m+H = 593.5271.

Figure S36. MALDI-mass spectrum of KLVFF expected m/z = 651.4108 and observed m+H = 652.3820.

Figure S37. MALDI-mass spectrum of FITC attached NT-02 peptide expected m/z = 1095.4953 and observed m+H = 1096.7231.

Figure S38. MALDI-mass spectrum of FITC attached NT-03 expected m/z = 1023.4742 and observed m/z = 1022.3461.

Figure S39. MALDI-mass spectrum of FITC attached NT-13 expected m/z = 1065.4120 and observed m+H = 1066.5930 and m+Na = 1090.1576.

Figure S40. HRMS mass spectrum of NT-02 (KLLFFA) expected m/z = 736.4636 and observed m+H = 737.4729 and m+Na = 759.4545.

Figure S41. HRMS mass spectrum of NT-03 (KLLFF) expected m/z = 665.2465 and observed m+H = 666.4346 and m+Na = 688.4160.

Figure S42. The HRMS mass spectrum of NT-13 (LPFFAE) expected m/z = 721.3799 and observed m+H = 722.3882.

Figure S43. HRMS mass spectrum of KLVFF expected m/z = 651.4108 and observed m+H = 652.4199.