Identification and Characterization of New Proteins Crucial for Bacterial Spore Resistance and Germination

Benjamin Yu¹, Julia Kanaan¹, Hannah Shames¹, James Wicander¹, Makunda Aryal², Yunfeng Li¹, George Korza¹, Stanley Brul³, Gertjan Kramer⁴, Yong-qing, Li², Frank C. Nichols⁵, Bing Hao¹ and Peter Setlow^{*1}

¹Department of Molecular Biology and Biophysics, and ⁵Division of Periodontology, UConn Health, Farmington, CT 06030-3305, USA; ²Department of Physics, East Carolina University, Greenville, NC 27858-4353, USA; ⁴Molecular Biology & Microbial Food Safety and Laboratory for Mass Spectrometry of Biomolecules, Swammerdam Institute for Life Science, University of Amsterdam, 1098XH Amsterdam, The Netherlands

Supplementary Information List

- 1. Supplementary Table S1
- 2. Supplementary Table S2
- 3. Supplementary Table S3
- 4. Supplementary Table S4
- 5. Supplementary Figure S1
- 6. Supplementary Figure S2
- 7. Supplementary Figure S3
- 8. Supplementary Figure S4
- 9. Supplementary Figure S5
- 10. Supplementary Figure S6
- 11. Supplementary Figure S7

Supplementary Table S1 Average parameters of the germination of multiple individual wt and *yetF* spores

Spores	PS	332	PS4488		
spores	Valine	AGFK	Valine	AGFK	
T_{lag}	20.3 ± 8.9	36.5 ± 16.6	44.6 ± 23.1	49.0 ± 20.5	
Trelease	24.0 ± 9.4	40.3 ± 16.9	48.2 ± 23.0	53.8 ± 20.9	
T _{lys}	34.7 ± 9.2	52.0 ± 16.7	63.6 ± 17.6	74.5 ± 11.5	
$\Delta T_{release}$	3.7 ± 1.4	3.8 ± 1.1	3.6 ± 1.2	4.8 ± 1.6	
ΔT_{lys}	10.7 ± 2.8	11.7 ± 4.7	15.4 ± 8.0	20.7 ± 11.5	
\mathbf{I}_{lag}	0.88 ± 0.07	0.83 ± 0.06	0.77 ± 0.07	0.76 ± 0.09	
I _{release}	0.21 ± 0.05	0.29 ± 0.07	0.29 ± 0.07	0.23 ± 0.07	
ger/num†	97/139	80/104	44/133	14/40	

Spores were germinated and individual germination parameters were measured as described in Methods. †Number of spores that germinated/number of spores examined.

Sun	plementary	v Table S2 F	Iomologs of B	subtilis	vet F or $2Di$	<i>if</i> in com	nleted	genomes	of B	Racilli
Sup	prementary		iomologs of D	· subillis	yen of 2Di	ij m com	picicu j	genomes	D	actiti.

Dacilli opono formina opocios	Number of homologs to		A apore concue D a silli aposias	Number of	
Bacilli spore forming species			Asporogenous <i>Bacun</i> species	homol	ogs to
	yetF	2duf		yetF	2duf
Aeribacillus pallidus	1	1	Aerococcaceae bacterium	1	0
Alicyclobacillus acidocaldaruis	0	1	Auricoccus indicus	1	0
Amphibacillus xylanus	2	0	Brochothrix thermosphacta	1	0
Aneurinibacillus soli	0	1	Carnobacterium maltaromaticum	1	0
Anoxyacillus flavithermus	2	1	Enterococcus faecalis	1	0
Bacillus amyloliquefaciens	1	0	Gemella haemolysans	1	0
Bacillus anthracis	3	1	Jeotgalibaca dankookensis	2	0
Bacillus atrophaeus	1	0	Lactobacillus acidophilus	1	0
Bacillus cereus	5	1	Lactobacillus plantarum	1	0
Bacillus firmus	1	0	Lactobacillus reuteri_	1	0
Bacillus halodurans	8	2	Lactobacillus rhamnosus	1	0
Bacillus licheniformis	6	0	Lactococcus lactis	1	0
Bacillus megaterium	1	0	Leuconostoc kimchii	1	0
Bacillus pumilus	1	0	Marinilactibacillus 15R	1	0
Bacillus subtilis	5	0	Melissococcus plutonius	1	0
Bacillus thuringiensis	5	1	Planococcus antarcticus	1	0
Bacillus weihenstephanensis	1	0	Salimicrobium jeotgali	1	0
Brevibacillus brevis	4	1	Salinicoccus halodurans	2	0
Cohnella candidum	5	1	Streptococcus mutans GS-5	1	0
Fictibacillus phosphorivorans	6	0	Streptococcus pneumoniae	1	0
Geobacillus kaustophilus	0	1	Vagococcus penaei	1	0
Geobacillus stearothermophilus	1	0			
Halobacillus halophilus	6	1			
Kyrpidia tusciae	0	2			
Laceyella sacchari	1	1			
Lentibacillus amyloliquefaciens	3	1			
Lysinibacillus sphaericus	4	0			
Novibacillus thermophilus	3	0			
Oceanobacillus iheyensis	2	1			
Paenibacillus polymyxa	2	1			
Paenisporosarcina cavernae	3	0			
Parageobacillus					
thermoglucosidasius	1	1			
Paraliobacillus zengyii	8	0			
Solibacillus silvestris	4	0			
Sporolactobacillus terrae	5	0			
Sporosarcina psychrophila	3	0			
Terribacillus goriensis	4	0		1	
Thermobacillus composti	2	0		1	
Virgibacillus halodenitrificans	3	2		1	
Average number in ones with > 1	3.2	1	Average number per species	1.1	0

Supplementary Table S3 Homologs of *B. subtilis yetF/2Duf* in *Clostridia* genomes.

	Number of		Likely Clostridia spore formers	Number of		
<i>Clostridia</i> spore formers	homologs to		(hove any spoke formers	homologs to		
	yetF	2duf	(nave gpr, spovrA, spovrB)	yetF	2duf	
Alkaliphilus metalliredigens	3	1	Acetohalobium arabaticum	5	0	
Ammonifex degensii	2	0	Anoxybacter fermentans	2	0	
Caldanaerobacter subterraneus	1	0	Caldicellulosiruptor saccharolyticus	1	0	
Candidatus Arthromitus sp. SFB-						
mouse	1	0	Carboxydocella thermautotrophica	2	0	
Candidatus Desulforudis						
audaxviator	1	0	Ethanoligenens harbinense	4	0	
Caproiciproducens sp. NJN-50	2	0	Faecalibacterium prausnitzii	1	0	
Cellulosilyticum lentocellum	1	0	Flavonifractor plautii	1	0	
Clostridioides difficile_	1	0	Halobacteroides halobius	6	0	
Clostridium acetobutylicum	5	0	Halocella sp. SP3-1	5	0	
Clostridium botulinum	2	0	Halothermothrix orenii	6	0	
Clostridium perfringens	1	0	Herbinix luporum	2	0	
Clostridium tetani	2	0	Natranaerobius thermophilus	2	0	
Dehalobacterium formicoaceticum	1	1	Pelotomaculum thermopropionicum	2	0	
Desulfallas gibsoniae	2	1	Ruminococcus albus	1	0	
Desulfitobacterium hafniense	3	0	Syntrophomonas wolfei	3	0	
Desulfofarcimen acetoxidans	3	0	Syntrophothermus lipocalidus	2	0	
Desulfofundulus kuznetsovii	2	0	Thermincola potens	3	0	
Desulfosporosinus orientis	2	1	Average number in ones with ≥1	2.8	0	
Desulfotomaculum ruminis	3	1				
Hungateiclostridium thermocellum	1	0	Asporogenous Clostridia species			
Intestinimonas butyriciproducens	1	0	Aminipila sp. JN-39	1	0	
Lachnoanaerobaculum umeaense	2	0	Carboxydothermus hydrogenoformans	1	0	
Lachnoclostridium phytofermentans	1	0	Dehalobacter sp. CF	1	0	
Mahella australiensis	1	0	Thermosediminibacter oceani	1	0	
Moorella thermoacetica	1	0	Average number per species	1	0	
Paeniclostridium sordellii	2	0				
Pseudoclostridium						
thermosuccinogenes	1	1				
Ruminiclostridium cellulolyticum	3	0				
Symbiobacterium thermophilum	2	0				
Syntrophobotulus glycolicus	1	0				
Tepidanaerobacter acetatoxydans	1	0				
Thermacetogenium phaeum	2	0				
Thermoanaerobacter italicus	1	0				
Thermoclostridium stercorarium	1	0				
Average number in ones with ≥1	1.6	1				

Supplementary Table S4 Sequence identity between 2Duf homologs in *Bacilli* and *Clostridia* and 2Duf encoded in $spoVA^{2mob}$.

Bacilli	NCBI ID	Identity to 2Duf (%)
Group 1		
Aeribacillus pallidus	WP_066246610.1	55.2
Aneurinibacillus soli	WP_096463052.1	50.9
Anoxyacillus flavithermus	WP_012575624.	55.1
Bacillus anthracis	WP_000018934	59.1
Bacillus cereus	WP_000018922.1	60.5
Bacillus halodurans	WP_010897735.1	30.5
Bacillus thuringiensis	WP_000018924.1	60.8
Brevibacillus brevis	WP_015892354.1	52.4
Cohnella candidum	WP_123042938.1	53.1
Geobacillus kaustophilus	WP_011230358	54.5
Halobacillus halophilus	WP_014642772.1	57.3
Lentibacillus amyloliquefaciens	WP_068440573.1	55.1
Oceanobacillus iheyensis	WP_011065783.1	50.9
Parageobacillus thermoglucosidasius	WP_003252282.1	55.6
Virgibacillus halodenitrificans	WP_019376107.1	59.6
Group 2		
Alicyclobacillus acidocaldaruis	WP_041694969	48.6
Kyrpidia tusciae	WP_013075904.1	38.1
Laceyella sacchari	WP_102991708.1	47.9
Group 3		
Paenibacillus polymyxa	WP_013370894.1	39.9
Clostridia		
Alkaliphilus metalliredigens	WP_012065254.1	42.0
Dehalobacterium formicoaceticum	WP_089611718.1	54.0
Desulfallas gibsoniae	WP_006522674.1	46.5
Desulfosporosinus orientis	WP_014185970.1	38.6
Desulfotomaculum ruminis	WP_013842559.1	44.8
Pseudoclostridium thermosuccinogenes	WP_103081847.1	39.9

Groups 1, 2 and 3 have the genomic arrangements around 2*duf* in *B. cereus*, *A. acidocaldarius* and *D. gibsoniae*, respectively, in Figure 11A.

Supplementary Figure S1

Germination, outgrowth, and vegetative growth from dormant spores of various strains inoculated at ~ 10^{8} /ml in LB medium, incubated at 37°C and the culture's OD₆₀₀ measured. The symbols used are: $\bigcirc -PS832$; $\bullet -PS4487$; and $\bigtriangleup -PS4488$. A duplicate experiment found that all three strains again gave similar results.

Supplementary Figure S2

¹⁴C-Methylamine uptake by (**A**) intact and (**B**) decoated spores of PS832 (wt), PS4487 (*ydfS*) and PS4488 (*yetF*) spores. ¹⁴C-Methylamine uptake by spores of various strains, either intact or decoated, was as described in Methods. Symbols used are: $\bigcirc -PS832$; $\bigcirc -PS4487$; and $\bigtriangleup -PS4488$. These results were from single measurements in one experiment.

Supplementary Figure S3

Germination of multiple individual (**A**,**B**) PS832 (wt) and (**C**,**D**) PS4488 (*yetF*) spores germinating with (**A**,**C**) L-valine or (**B**,**D**) AGFK. Spores were heat-activated and germinated with L-valine or AGFK and the germination of 16 individual spores of each strain and with each germinant were followed as described in Methods. Arrows on one trace in panels (**A**) and (**C**) denote the times of T_{lag} , $T_{release}$ and T_{lys} and I_{lag} and I_{lys} were measured at T_{lag} and T_{lys} , respectively.

sspA σ^G-10 -35 CAATTTTCAGCTCCTGTATACAATTACCAAAGTTTTTCT**GAATG**AAGCCATGTGTTTTGACA**CATTCTA**TACTC RBS TSC ACAAGGAGGTGAGACACATGGCTAACA ykjA -35 $\sigma^{\rm F}$ -10 TGTTCAGGCGATATGCACGTTCGCCTAGACACTGAT**GCATA**GAGGGCCTGCCACG**GG**G**CACAATA**GGCTC RBS TSC AATATGACCAGCGG**ATGGAGGTA**AAGATCG**GTG**TTATGGA yrbG -35 σ^{G-10} $\mathsf{GACGTAAAAGCTTTGT} \mathbf{GAAAT} \mathsf{GCAATCGGTTTTTCTTA} \mathbf{CATAAAT} \mathsf{TGATCATTTTGTTGCAACCTATAAT}$ RBS TSC GAG**TTGGAGGTG**CATA**ATG**GAAGAGC

Supplementary Figure S4

Likely promoter sequences for the *ykjA* and *yrbG* genes and comparison with the very strong σ^{G} dependent promoter sequence of *sspA*. The *sspA*, *ykjA* and *yrbG* upstream sequences include: -35 and -10 promoter sequences; a GG sequence just upstream of the putative -10 promoter sequence for *ykjA* indicative of a σ^{F} promoter; the ribosome binding sites (RBS) that were identified based on the optimal *B. subtilis* RBS sequence (AAGGAGGTG) and the translation start codon (TSC). The *sspA* promoter sequences were experimentally determined, and the promoter sequences for *ykjA* and *yrbG* were chosen to give the best matches to consensus σ^{F} and σ^{G} promoter sequences, respectively (Wang et al., 2006).

() H3 -MGNYLSVAVELVCGLGILFIILKLLGKTQFSQITPFDFISALILGELVGNAVYDHEIKIKEII 63 -----MEFVAIATELVFGFFALFLLTKILGKTQITQITTFDFISALVLGELVGNAVYDVKMGVEKIL 62 ----MGYNYSSVFFETVFGYFALFVIAKILGKTQIRQLTAFDFISALLLGELVGNALYDENVGIPHVA 64 -----MNEFGQIAVELIVGYIALFIMAKILGRTQITQITPJFDFISALVLGELVGNGLYDANVGLAQVL 63 -----MGHLFTVAWELVCGLGILFVILKLLGKTQFSQITPFDFISALILGELVGNAVYDKGVRIVEII 63 -----MNHLGOITIELFVGFFVLLIATKILGKTOISOLTPFDFISAIVIGELVGNTVYDPEVRVWSIL 63 ----MEHYLAVAVELICGLGILFLILKCLGKTQFSQITPFDFISALILGELVGNAVYDHEVRIKEII 63 ----MDDLTMVLLRTLFSYFFLLILVRLMGKRELGKLSVFDVVISIMLAEMAALAIEDVDKPALRFY 63 ----MNHIGQITIELLVGFFVLLIATKILGKTQISQLTPFDFISAIVLGELVGNSIYDPKIKVWSIL ----MKYLHILSVLVIGYIFLFIMAKLLGKTQITQITPFDFISAIVLGELVGNALYDQETGILEIF 62 -----MEYPTIILRTILIYFIILLVLRIMGKREIGQLSVLDFVVSIMIAELAVISIENIQVSMMNTI 62 -----MSEHIEVILRSILAFGILLVGSRLLGKQTISQMNIFDFIASITLGAITANLAFNTSLKIHHMV 63 -MYKDIAIELICGFLALFIMLKLLGKTQFAQITPPDFITTLVLGNIVGDAALEKGVELTEIL 61
 -MPFISILLELFIGFFALFFITKLLGKTQFAQITPFDFISALILGEMVGNAIFDPEVKIQHIL 62 -----MNHIGQITIELLIGFFVLLIATKILGKTQISQLTPFDFISAIVLGELVGNSIYDPKIKVWSIL 63 -----MNHLGQITIELFFGFFVLLIATKILGKTQISQLTPFDFISAIVLGELVGNTIYDPEIKVWSIL 63 -----MTTILLRTLLMYVLVFALLRLMGKREIGKLSVFDLVISIMIAEIAVIIIEDTDKPILYAI 60
---MDIHVGQLTTELIVGFIALFLLTKVLGKTQISQITPFDFISSIFLGELVGNAMYDDETSIFVIL 64 ____ -MKWLHLTIELVTGFILLFAVVKIAGKKLISQMSPFTFISAIVLGELLGNALYDDHIHLWYII 62 -MDVIELLLRLALAFTVLLVLTRIMGRKEISQLTFFNFVSAISIGTIGGSLAIDASLSVRNGL 62 ----MRE-YLLMLADAIFGFIALFALVKILGKTQISSLTPFDFISAVILGELVGNALYDEEAGIPKIA 63 ------MGSILLRTVFIYVFLLVIMRVMGKREIGKLSIFDLVVSFMIADISSMAIENKEEPLITWI 60 ---MKDVSYLOIAIETVVTFFVLLALTRFLGKKOLSOLTFFNYVTGITIGSIAANMIVLSTKDYMKDL 65 -MELMTITLRTIFIYFFVLLIMRLMGKREIGKLSVFDLVVSFMIAELAAISIEDTNVTFLRGM 62 ----MSG-YFSMFFEMVIGFVALFLVTKILGKTOISOITPFDFIAALLLGELVGNALFDONAGIIDIL 63 --MSISTLSIRLVIAFATLLILTRMTGRKEISQMTFFNFVSGIAIGTIGASLAIDQTLSIRNGV 62 -----MIFMEMILRTTATFFVLLLLARLMGKEOVSOLTFFNYITGITIGSIAAEMAGOSETPFWNGM 62 ----MEVFVTIGVKLIISFFGLWLITFITGRKTLSQLTPLDFLTSLVLSEIVGNTLYDDKVTIWHLL -----MKWLHLTVELVTGFILLFLVVKVAGKKLIHOISPFTFISALVLGELLGNALYDNHIHLWYIV 62 -----MMLTITLKVTLGFIALMLVIRLMGKKELSEVTPFDIVFLLMLGGILEETLYDNKVQVWHFL 61 MDDFFEVDFWEMIMRVTVTFFVLLILARFMGKKQISQLTFFHYVTGITIGSIAGEIAGVSKTPLLDGL 68 -----MLEHFEIILRSFTSFGLLLVGTRILGKQTISQMTMFDFVATISLGAISANLAFNTSLKVSHTI 63 -----MHFVQVAVELIVGFVSLFLMTKILGKATLAQVTAFDFISAIVLGELVGNALYDKEIGIGSIV 62 -----MHLDTFYRPLAAFVALLVLSRLLGKKQIRQITAFNYISSIAFGASAAMVAFNPLIFFLHAL 61 -----MSHYLHITVDLLFGFAGLFVFNQVLGKAHFSKLTPFEFVAILVLGDLVGNAVYQPDVTAAQIV 63 63 -MPELIHDNVIVLARIITIIPLMLAVTLFMGKRTIGEMPVFDFLIIVILGALVGADIADPEIEHLPTA -----MAIPELILRICLSFALLFTLTRIMGRKEISQMTFFNFVSAIAIGSITAILATNQNFSMLNGI 62

70 80 90 100 110 120 130 FASLLWGVLIYIIEFITQKMKSSRKFLEGEPNIVIRKGELQYKVMKKNKIDINQLQSLLR-QAGSFSI 130 FTVVIWGMLIYLLEFITQKWRRTRGILEGAPSMVIHKGKIIRDQLKKNKLDMNQLQHLLR-AKGAFSI 129 FAIATWGTLMYVTEFITQRFKGSRSLLEGRPAIIVRKGKIDREAMKKNKLDINQFQHLLR-LKDVFSL 131 FAIALWGLLIYATEMITQKKKELRELLEGKPVIVISKGKILYDALKKTKLDLNQLQHLLR-ARNVFSI 130 FASLLWGILIYFIELITQKVKSSRKLLEGEPNIVIHKGKLKYDVLKKNKLDINQLQSLLR-QANCFSI 130 YAVFVWVILIYAIEVITQKFRRTRKFFEGYPSIIIRNGHIDREQLKSNHLDINQLQQMLRQQKDIFSI 131 FASLLWGLLIYIIEFITQKLKGTRKFLEGEPNIVIQKGILKYEVLKKNKLDINQLQSLLR-QQGCFSI 130 LPMLLIALLEVAFAYLSLKSKKFRDTVDGSADLIIENGQIREQAMRRNRLNMDDLMVHLR-QKDVKNI 130 YSVFVWVILIYTIEVITQKVRGTRRFFEGYPSIIIRNCKIDREQLSVNHLDINQLQQMLRQQKDIFSI 131 FAVTVWGTLIYATETLTQKFKRARKLLEGEPSIVIKKGKIIFEELKKNHLDLNQLQHLLR-SKDVFSI 129 IPIVVLSLIQIVFAYVSLKSKTMRRLVDGKPTVLISQGKIDEREMRKQRYNFDDLLIQLR-QSNVRDI 129 LAFFIFVFVILATAYISLWSQKGRKFFAGDPTVVIQNGKVLEHNMRKMRYTIDYLNQQLR-EKNVFKI YSVLIWGLLIYAVTKLSOTFTGFRGILEGKPSMIIYKGKILYKELKKNNLDLNOLOHLMR-OOGYFSL 128 FAVAVWGILIYTVEWFSQRFKGIRAFLEGRPTLVIDQGKIHYNRLKKNMLDLNQLQTLIR-AKGHFAL 129 YSVFVWVILIYTIEVITOKVRGTRRFFEGYPSIIIRNGKIDREOLSVNHLDINOLOOMLROOKDIFSI 131 YAVLVWVVLIYTIEVITQKFRGTRSFFEGSPSIIIRNGYIDREQLSSNHLDINQLQQMLRQQKDIFSI 131 APIALLVVIQIVFAFLTIRSRKFRLWIDGTPSVLIRGGKLNRSEMRKORYNLDDLMAQLR-EHEMINV 127 YAIVVWGSMVYIVEIISQKFKGTRKFLEGAPTIVIRNGLIDRDMLKKSKLDINQLQNLVR-QKGFFGL 131 YSITLWGAMLMTVEYASQKWLSFRLWSEGKPTVLIQNGVIDYEALKKSRLTLNQLQSLLR-KHETFSI 129 IALVSWAVFTVFLGYLDIKSKDVRSFIDGQPLIVVKQGKVLEDELRKARLDLDSLNVLLR-KKNAFSL 129 FLIALWGLLIYITEIITQKFKGSRYLLEGQPSMVIHKGHLVYDVLKQNRLDIDELQHMLR-SKDVFSI 130 SPIILLASLQILLSFILIKSERIRNWVDGSPVPLIENGKIVDKNMAKLRYNLDDLLTQLR-EKNIPDV 127 VSLIIWCSLTTLIGYISLKSGKIRMLLDGQPTIVIKHGKIDRKALKRTGVNIDDLTMMIR-QYQVFSI 132 VPVIVLMLLQVSMSFLSLKSSKIRKVIEGTPSYLIKNGEIQEQEMAKHRYNIADLLLQLR-EKNVEKV 129 FVITIYAIIMYISEIITQKYKHTRHMIEGFPSIVIYNGKLIRDTMKKNKLDINQLQHLLR-TKDTFSI 130 YALAVWSAITIVIGIIDLKSTKFRYAVAGQPRVVIKEGKIMEEELRKVRLDIDALNVLLR-KKNIFAI 129 TSLVWWTVLSVGVSLISLKSLKLKKWVDDEPSIVIKRGKIQENVLKKKRLPVEDLLMLLR-LQGVFSF 129 FALALWCALAYFFEKATTHFVKFGYMAEGRTVLLVDKGQVNQELLEKYDIEFTQLLSMLR-QQNIFSL 130 YSISLWGALLLLVEYMSQKYLSFRRFSEGEPTVLIRNGIIDDKALKKSRMTLNQLQSLLR-QNETFSL 129 YAIILWTVLSLITNLVVRKYDKLRPFIKGEPSILINKGVLDIKELKKNKMETEQLLSLLR-QQGIFSI 128 IAMVWWAFLTILMSYIAFKSKKARILLDDQPTIVVYEGKIVEASLKKLRHLNDLGMMLR-EQSIFSV 135 LAFVIYVFIIFMIALISLKSKKGRKFLAGDPTIVIENGKILEKNMNKMRYTLDYLNOOLR-EKDVFNI 130 FAVALWGLMIYAVEWSTQKFRGTRQLFEGKPTIVIRNGHMDREAMKKEKLDINMLQNLLR-HKNVFSI 129 VSMVIWGGLSYVTEMLAQKSRKIRLLLEGEPTVVIKEGKILEKSLRKEKMNVEELIMLLR-QERIFSL 128 YGILIWGLIIYAIGRLTLKSKKMRTLFEGEPSIVIRRGHLQYDVMRRNMLDLDQLLSMLR-QQGYFSL 130 IAIIAIGLFOKAIVKWKISNRKIGKLLTLGPTIVIODGTLLYENMRKIOYSIDNILFMLR-OKDVFDI 134 IALTGWAGFTLIMGYIDIKSQKARKFTTGIPEIVIKDGKIMEEALRRTRLDNDSLQALLR-QKNVFSM 129

Conservation 30% -100%

Bsubtilis YetF Aeribac_WP_063387519 Amphibac_WP_015010493 Anoxyibac_WP_012575618 Bamylo_WP_013351317 Banthracis_NP_844257 Batrophaeus_WP_003328379 Bbrevis_WP_012685590 Bcereus_WP_001015543 Bfirmus_WP_174752055 Bhalodurans_WP_010897400 Blicheniformis WP 003185310 Bmegaterium_WP_013057585 Bpumilus_WP_041815618 Bthuringiensis_WP_001015535 Bweihenstephanensis_WP 002126773 Ccandidums_WP_123043699 Fphosphorivorans_WP_066393213 Gstearothermophilus_WP_053414763 Hhalophilus_WP_014641757 Lamyloliquefaciens_WP_068444514 Lsaccgaru_WP_102992088 Lsphaericus_WP_024363643 Nthermophilus_WP_077719037 Oiheyensis_WP_011065627 Paraliobacillus_WP_112180199 Pcavernae_WP_119884294 Ppolymyxa_WP_013371121 Pthermoglucosidasius WP 003250158 Rstabekisii_WP_066786518 Spsychrophila_WP_067207038 Ssilvestris_WP_014824326 Sterrae WP 028976672 Tavium_WP_087458819 Tcomposti_WP_015255871 Tgoriensis_WP_038563309 Vhalodenitrificans WP 121616112

Bsubtilis_YetF Aeribac_WP_063387519 Amphibac_WP_015010493 Anoxyibac_WP_012575618 Bamylo_WP_013351317 Banthracis_NP_844257 Batrophaeus_WP_003328379 Bbrevis_WP_012685590 Bcereus_WP_001015543 Bfirmus_WP_174752055 Bhalodurans_WP_010897400 Blicheniformis_WP_003185310 Bmegaterium_WP_013057585 Bpumilus_WP_041815618 Bthuringiensis_WP_001015535 Bweihenstephanensis_WP_002126773 Ccandidums_WP_123043699 Fphosphorivorans_WP_066393213 Gstearothermophilus WP 053414763 Hhalophilus_WP_014641757 Lamyloliquefaciens WP 068444514 Lsaccgaru_WP_102992088 Lsphaericus WP 024363643 Laphaericus_ww_024353543 Nthermophilus_WP_07719037 Oiheyensis_WP_011065627 Paraliobacillus_WP_112180199 Pcavernae_WP_119884294 Ppolymyxa_WP_013371121 Pthermoglucosidasius_WP_003250158 Rstabekisii_WP_066786518 Spsychrophila_WP_067207038 Ssilvestris_WP_014824326 Sterrae_WP_028976672 Tavium_WP_087458819 Tcomposti_WP_015255871 Tooriensis WP 038563309 Vhalodenitrificans_WP_121616112

Bsubtilis YetF Aeribac_WP_063387519 Amphibac_WP_015010493 Anoxyibac_WP_012575618 Bamylo_WP_013351317 Banthracis_NP_844257 Batrophaeus_WP_003328379 Bbrevis_WP_012685590 Bcereus_WP_001015543 Bfirmus_WP_174752055 Bhalodurans_WP_010897400 Blicheniformis WP 003185310 Bmegaterium_WP_013057585 Bpumilus_WP_041815618 Bthuringiensis_WP_001015535 Bweihenstephanensis_WP_002126773 Ccandidums_WP_123043699 Fphosphorivorans_WP_066393213 Gstearothermophilus_WP_053414763 Hhalophilus_WP_014641757 Lamyloliquefaciens_WP_068444514 Lsaccgaru_WP_102992088 Lsphaericus WP 024363643 Nthermophilus_WP_077719037 Oiheyensis_WP_011065627 Paraliobacillus_WP_112180199 Pcavernae_WP_119884294 Ppolymyxa_WP_013371121 Pthermoglucosidasius_WP_003250158 Rstabekisii_WP_066786518 Spsychrophila_WP_067207038 Ssilvestris_WP_014824326 Sterrae_WP_028976672 Tavium WP 087458819 Tcomposti_WP_015255871 Tgoriensis_WP_038563309 Vhalodenitrificans_WP_121616112

Bsubtilis YetF Aeribac_WP_063387519 Amphibac_WP_015010493 Anoxyibac_WP_012575618 Bamylo WP 013351317 Banthracis_NP_844257 Batrophaeus_WP_003328379 Bbrevis_WP_012685590 Bcereus_WP_001015543 Bfirmus_WP_174752055 Bhalodurans_WP_010897400 Blicheniformis_WP_003185310 Bmegaterium_WP_013057585 Bpumilus_WP_041815618 Bthuringiensis_WP_001015535 Bweihenstephanensis WP 002126773 Ccandidums_WP_123043699 Fphosphorivorans_WP_066393213 Gstearothermophilus_WP_053414763 Hhalophilus_WP_014641757 Lamyloliquefaciens_WP_068444514 Lsaccgaru_WP_102992088 Lsphaericus_WP_024363643 Nthermophilus_WP_077719037 Oiheyensis_WP_011065627 Paraliobacillus WP 112180199 Pcavernae WP 119884294 Ppolymyxa_WP_013371121 Pthermoglucosidasius_WP_003250158 Rstabekisii_WP_066786518 Spsychrophila_WP_067207038 Ssilvestris WP 014824326 Sterrae WP 028976672 Tavium_WP_087458819 Tcomposti_WP_015255871 Tgoriensis WP 038563309 Vhalodenitrificans_WP_121616112

	10	54	
	160	170	
QEVEYAILETNGMVSVLPKSD	FDKPTNKDLQIPSK	SVSLPITLIID	176
REVEYAVLETDGTISVLKKSE	FDKPTRNDLNILSS	PATIPYTIIVD	175
RDVEYAILENDGTISVLNNTR	SQTPTRKDLKLQDE	KVYLPVTLIND	177
REVEYAILETDGTVSVMKKAP	YEQPTRQDHNISAS	EAVLPVTVIID	176
QEAEYAILETNGMVSVLPKFP	YDTTKNGDMQIKPK	QVSLPVTLIID	176
REVEYMILEPNGNISVLKKSK	YESPTINDLSLKHK	PVYLPISLISD	177
KEAEYAILETNGMISVLLKSK	YDTPKMQDVELAPK	QVYLPITLILD	176
ADVEFALLEPTGQMSVFLKEQKE-	KVTREDLALMKKLQ\	GPVSYKGLPIPLILD	183
REVEYMILEPNGNISVLKKSK	YESPTINDLSLKHK	PVYLPISLISD	177
RECEYAILETDGTVSAFKKPL	YATPTIQDLNLPIY	NAELPVTLILD	175
SDVEFAILEPSGKLSVIEKR	PFSGKSSS	YLPLPLILD	166
EEVLYAIVETNGTLTVLKKPQ	FRNVTKKDLWVATTPEC	GKLPIELIMD	177
YEAEYVILETNGEVSVAPKHE	FGPPTKNDLNIPYS	QTNLPIALIMD	174
NEIEYAILETDGSVSVLPKMK	YATATAEDVNVKGK	EVKLPRTFIID	175
REVEYMILEPNGNISVLKKSK	YESPTVNDLSLKHK	PVYLPISLISD	177
REVEYMILEPNGNISVLKKSK	YESPTINDLSLKHK	PVYLPISLISD	177
EDVELAVLEANGKLSVVPKTDRNSKET	GITQRNVSAPSPGKSETPPKIRYE	LLPLPLILD	187
REVEYAILESNGSLSILPKYQ	YGPPNRQDLNLQSQ	EQPELPITLILD	178
REVAFCFLEADGEISVLKKAH	YQKTTREDFQLPPH	PVYVPVTLIRD	175
SEVSYAIFETDGTLSVMKKTG	EQPFTKKDGNVVSN	SPAVYPIPTTVVSD	178
EEVEYAILEADGEVSVLKKPE	YQTPTIADLNLAPK	PVKIGRVLISD	176
SDVEFAVLETTGKLSVFPKEEKR-	PAFKEDVRRDLK-QE	RMPIPVIID	173
DEIDFAILEPNGTLSILKKPP	FQGTQKIDINISPE	NPPFLPIEIISD	179
TDVEHAILETSGKLSVILKEGKQ-	PVTKEEAGVELRGQH	IHLPVPLIID	176
QEVEFAVLEANGTLSVLKKSD	YQIPTRKDLKMSTT	EVDLSTTLIND	176
NDVDYAIFETDGSLSVDKKEK	VKPLAKTD-LQIQN	KANVFPTPTMIVSD	177
QEVAYAVLETNGQLSIMKTEE	AKNPTKSDLGVAKK	TPKKIPAAVFID	176
REVLYATLETNGSLSVMRKPE	YEPPAAQDMGIDAQ	PDLFSVTVIDK	176
REVAFCYLETNGTISVLKKAK	YQKTTREDFQLPPH	PVHVPVTLIRD	175
REVKYVILEPGGQISVMKR	DSS-DQIT	TDTLPRLIIDE	165
KDVHYAILETNGKLSVLKKAG	LEAATKKDVNAAIQ	VPKYIPTEVIAE	182
EEVLFAIIETNGTLTVLKKPQ	FRNVNKQDLMIPITPE	NLPIELIMD	177
REVAFAILETDGSISVKQKSQ	YATPTMEDLQKQQK	PVYLPITIIED	175
TEVDYAILEPDGQLSILKKTK	HLPASKHDVETGRA	NTAPFGVQIVSD	175
REIEYAVLETNGMISVLPKRP	YGPPTRADLGLHGV	GGRVPITLILD	176
RDVETAIVEPNGALSVLKKQS	KMPATREDLQIQQQ	PSAIAFPVISD	180
KEVDYAIFETSGKLSVMKKEN	KQPATKSDIHQLTTY	SPKIFPTEIISD	177

	180	190	200	210	220	230	
(GEIVRDNLKE	AGVDEQWL	KQELKKKNIDK	TEDVLFAEWH	KNKP-LYTVI	YEQSRST	231
(GEVVSENLKE	AGFDEKWL	QQQLLAYSVEI	AKDVFYAEWD	QNNG-LFVQF	ΥY	224
(GEIIEDNLAE	INKDKDWL	YDQIKKQKISS	IEEIFYAEYI	EDEP-LFIQ	M	226
(GEVIWDNLRE	NGWDEQWL	KKHIRHAGFEN	YSDILYAEWQ	DGKG-MHVQI	PΥ	225
(GEVLYENLKE	AGVKEEQL	IQDLKKQNIKF	TEDVFYAEWK	HDKP-LFVLI	PYEEKK	229
(GKVVKDNLRE	AGFDEGWL	YKQIKKKGITK	FEDVLYAEWK	TDDG-FFCQE	EMDR	228
(GEVVYDNLQE	CAGVDEEWL	KQELASQGVNE	CKDVLFAEWH	AGQP-LFFI	YDSGSDK	231
(GKVRTEALSK	IGQNELWL	KREIRKYGIKI	IREVSFCSIE	E-RGIMYLD	KDKP	235
(GKVVKDNLRE	AGFDEGWL	YKQIKQKGITK	FEDVLYAEWK	TDDG-FFCQE	EMQR	228
(GEVVWDNLKS	INWDETIL	KNEIKKYGASC	VKDVLYAEWK	KGEA-LHVQ1	Ϋ́Υ	224
(GKVQEKHLEK	INKTSLWL	RQQLRKLGYRI	IKKISYCAIK	E-DGTFFID]	IKDEK	218
(GKMKNENLKI	NQLTQAWL	QSEMKKRGLSI	DEVFYAVLSE	DGNIYID	TYEDHIHSSFDKE	236
(GKVVPGNLKE	ANVDEKWL	KKQLAIKKIKK	YSEVFYAEWQ	QERG-LEITE	(F	223
(GEILKDDLQE	AGFDETWL	SEQLKRQHISS	YRDVLFCEWI	ENEG-IYAMP	YEKSKKHS	231
(GKVVKDNLRE	AGFDEGWL	YKQIKQKGITK	FEDVLYAEWK	TDDG-FFCQE	EMQR	228
(GKVVKDNLRE	CAGFDEGWL	YKQIKQKGITK	FEDVLYAEWK	TDDG-FFCQE	EMPR	228
(GQVQDDSLEK	IGKNRFWL	KTRLREQGIEÇ	FRQVFFCSIE	H-KGRFYVDF	KK	237
(GELNHDNLSI	AGLSRNKL	LEQIHKQGYSI	IKEVVYAEFS	EGKLLIME	CTKPKK	231
(GQLLADELAE	LGKTEQWL	AAKLQKQGIAS	PKDVLIAEWI	EGDG-LFVQ1	YQPAERQRPTRRQTAPE	240
(GKINDANMQS	LNLDQKWL	HHQLKSAGVPS	SISDVFYAEVQ	KDGS-LYIDA	(RNDTIH	232
(GEIVWDNLKE	ASLNKTWL	EEELHKQNVQS	IEDVFYAEWQ	ENQQKLFVAI	YHTKKKRQN	234
(GKVQEEGLKK	LGQNRFWL	KAEIQKRGLKE	FKEVFYAAVN	Y-EGRLYIDF	RKDRPTR	227
(GKLLKRNLLE	VGKNRQWL	KDELKKMSIEN	IIEEVFYAEIÇ	SNGQ-LFIQ	Ϋ́Υ	228
(GKVQDKRLEE	IGQTRFWL	KNEVQKQGYKI	FKDIFFALYD	VSNGELHIDE	RKQS	228
(GEVIQDNLKE	KNLSIEWL	MEQIKKEGYER	IEDVFYAEYI	KDKP-LFLLE	PYINRNHQKWDVD	236
(GKIDNNNLEK	LHLNKDWV	MKQLESAGVGS	IDEVFYAAVÇ	KDGT-LYIDN	ITNDTVH	231
(GNWMTDACHE	IGVAQKTI	EKQLKDSGYKN	ILDDVFLVQWQ	EDGT-LYVDF	KKTDVKQS	231
(GRLLNESMRG	KTIDVELI	KAKTREQGYDS	IDEIAYAELS	EDGT-LHIVE	PMKEK	228
(GELLRDELQE	LGKDEQWL	NEQLRAYGVTS	HQDVFIAEWL	EGDG-LFVQ1	YS	225
(GQIVNRTLNÇ	IRKNEQWV	INLLKKEGYED	IEKVYYAEWS	EGKG-LYVQC	INE	215
(GKISKGNLAE	LNLTEEWL	FEQLKKQGIGN	IVKTVFFAEVÇ	TDGS-LHVDN	IKAEGEK	236
(GEVMKQNLDÇ	NNLSEQWL	HSELKQRNLVÇ	SNVLYAVLSC	NGNMYIDI	YENHIHSPIDKE	236
(GEVDWDNLKE	CAGLNEEWL	LKNLRRHHIRS	YKDVFYCEWK	KDEG-VFIEM	MNANERR	230
(GQLLTHNLKI	IKRDEKWL	EQQLKQQGIPT	YKEVFYAEAQ	EGGG-LYVDF	KKDQPY	229
(GRLQSDNLGK	ASLSEPWL	KQQLADRGITS	YEGVLYADWE	PEEG-LFVME	PHQ	226
(GYIHHDTLTH	IFKLDEEWL	RKQLAEQNIIG	MNQIFFASIS	HPQS-LHISI	.KERKLNIPPIKH	240
(GELNEANLKK	LNLDTNWL	NGQLKQAGITS	LSEVFYAEVQ	PDGT-LYFD	IKRDGLYH	232

Supplementary Figure S5

Sequence alignment of *B. subtilis* YetF with the best YetF match in other *Bacilli*. Sequence conservation is shown as a bar graph, with red bars indicating identity among YetF homologs. Secondary-structure assignments of YetF from the crystal structure (PDB ID: 3C6F) are shown as blue cylinders (helices) and orange arrows (β strands). Predicted secondary-structure elements by AlphaFold for the N-terminal TM region are shown as gray cylinders (α helices).

Bsubtilis_YetF Rcellulolyticum_WP_015924636 Sglycolicus_WP_013625014 Sthermophilum_WP_01197382 Tacctatoxydans_WP_01378043 Titalicus_WP_012994581 Tphaeum_WP_01504695 Tstercor arium_WP_015358013 Tthermos accharolyticum_WP_015312322 Adegensii_WP_015739924 Adegensii_WP_015739924 Adegensii_WP_003516115 Cacetobutylicum_WP_00890760 Cacetobutylicum_WP_010890760 Cacetobutylicum_WP_01964829 Caproiciproducens_WP_128742257 Cdesulforudis_WP_012303154 Cdifficile_WP_009889750 Clentocellum_WP_013658886 Cperfringens_WP_003472738 Csubterraneus_WP_00531278 Ctetani_WP_0311051 Dacetoxidans_WP_015757363 Dformicocacticum_WP_0860402 Dgibsoniae_WP_006522671 Dhafniense_WP_014187430 Druminis_WP_014187430 Druminis_WP_014187430 Druminis_WP_01275606 Ibutyriciproducens_WP_058117823 Iphytofermentans_WP_013764 Maustraliensis_WP_013764 Maustraliensis_WP_013764 Pacheselicum_P_035311643 Pthermocucincqmes_WP_103079909

Bsubtilis_YetF Rcellulolyticum_WP_013625014 Stheycolicus_WP_013625014 Sthermophilum_WP_01197382 Tacetatoxydans_WP_01378043 Titalicus_WP_012994581 Tphaeum_WP_015049695 Tstercorarium_WP_015739924 Adegensii_WP_015739924 Adegensii_WP_015739924 Athermocellus_WP_003516115 Cacetobutylicum_WP_010890760 Cacetobutylicum_WP_010804829 Caproiciproducens_WP_128742257 Carthromitus_WP_005805303 Cbotulinum_WP_011948896 Cdesulforudis_WP_012303154 Cdifficile_WP_009889750 Clentocellum_WP_013658886 Cperfringens_WP_003511278 Ctetani_WP_003511051 Dacetoxidans_WP_005926713 Dformicoaceticum_WP_089609402 Dgibsoniae_WP_00522671 Dhafniens_WP_0115757363 Dformicoaceticum_WP_089609402 Dgibsoniae_WP_041275606 Ihutyriciproducens_WP_058117823 Lphytofermentans_WP_012198749 Lumeaense_WP_011391764 Psordellii_WP_055331643 Pthermoaucinngens_MP_0307990

H2 H1 10 MGNYLS---VAVELVCGLGILFIILKLLGKTQFSQITPFDFISALILGELVGNAVYDHE-I -EGL----VVFRSLLSFFSLLIFTRILGKEQISQLTFFDVILGITIGSIAASLSTDLS-S See. MGNYLS -MN----MIIA-----TIRTIILYLVIVIIIRIMGKKQIGQLQPFELVIILMISELAAIPSQNIG-I 54 --MN--PFL---FILLRAVGAFLGVLFITRLVGKSQVGQLTISDVALDIADVFPQLAV --MN--PFL---EILLRAVGAFLGVLFITRLVGKSQVGQLTISDVALDIASIAACLATDIK-E 57 -----MSVLG---QVVWRTVLIYFVVLVMMRLMGKREIAQLSPFDFAVAIMIAELAAVPMENTS-V 54 ------MIVI-----VWRTLIYILVVIVMRLMGKRQIAGLQPFELVITIMISELAAVPMQDKR-I 54 --MED--PLI----NTVFRSVIVYLIAMFLTRLMGRKLISOMTFFDFVMGVSMGSIITDSIVGOK-F 58 --MLD--FII----NUVISIIGFTMLIFAKILGKQQISQLTFFDYILGTIGSIAATLTTDLS-557 --MN---EGL----VUVRSIIGFTMLIFAKILGKQQISQLTFFDYILGTIGSIAATLTTDLS-557 ------MLIV-----FIRTVLLYAVVILAVRLMGKRQISELQYSELVVTLLISDIASIPMQDSG-254 --MN--EAL----VUVRAIIGFTLIFARMEGARIIAGLEIVOIDIALEIVOIDIALEEDOIS --MN---PFL----EIVIRAVGAFIAVILITRLVGKSQIGQLTVTDFVNGIVIGSIAAALAIDIR-S 57 ------MTVV-----LIRSIILYITVLIALRVMGKGEIAEMNCFDLVITLLIAEVASVPMENNN-I 54 -----MEVI----OAIITALGSAAALFTLSKLMGNREMSOLSMFDYINSITIGSIAAEMATCEF-T 56 -----MLIT-----FIRTAILYFIVIISIRLMGKRQIGQLQPYELVITLMLSDLASLPMQDTR-L 54 -----MLIL-----FIRTLILYALVVVFMRISGKQQIGQLQPYELVVAIMIADLVAIPMQNKG-I 54 --MN---EGL----VVVIRSIIGFFSLLIFARVLGKQQVSQLTFFEYVLGITIGSTASTLSTDLS-T 57 -----MLLI-----LIRTLILYLGVVIVMRVMGKQEIGGLQPYELVIALMIADLAAIPMBNTG-V 54 -----MET-----VLRTVGLLAFGFICYRLMGYRSMGDMEPTDFVIMLVIAETLGTPLADES-L 53 MLIN--PYI----EIPLRALFAYLFLLLFTRINGREQISQLTYFEYVVGITIGSIAGTLTTTPE-D 59 -MS---EGL----VIVRSLIGFSLLIFARIIGKQISQLTFFDYVLGITIGSMAASLATDLS-S 57 --MS---PYL----QLIRGIGAELGVLVITRVVGKTQVGQLTVADFVNAIVIGSLAAMVTDLK-E 57 ------MLIV-----VVRTLILYALVIIALRLMGKREIGQLQPFELVVLIMISELAAVPSENVG-V 54 ------MALT-----VVWRTVIIYSVLVIVRLMGKREIGQLSSFDFVVAIILAELAAIPMESEK-I 55 -----MIIA-----FLRTIILVLIIAGTRLMGKRQVGELEPSELVLDLIIADLAAVPMQDFG-I -----MTII----RVILSSFASIVALFFLCKFIGYRQMSQMSLFDYINGITIGSIAAEMAT-DL-E -----MNAFLL---VAIKLLIGFFALVIIINISGKGNLAPSSASDQIVNYVLGGIIGGVIYNSS-V 54 55 57 --MK---MIA---EIIIQTIMAFFAILIFTRLGKQQITELTYDYINGITFGSIAGVMATDIS-Q 57 --MK---FV----EVFLQTLAFFAILITTRLGKQQIGQLTFFEYINGITFGSIAAVLATDTAPN 57 ---MINEIY----IVSIKSIISVIIFIITKINGKKQIGLIVFEYIVGISIGSIAAVLATDTAPN 57 -----MINEIY----FVRTLILYAVVIVVMRLMGKKQIGELQPFELVVAILISDLAAVPMQNTG-I 54

 H3
 H4
 H5
 H6

 60
 70
 80
 100
 100

 70
 80
 100
 100
 100

 80
 100
 100
 100
 100

 80
 100
 100
 100
 100

 80
 100
 100
 100
 100

 80
 100
 100
 100
 100

 80
 100
 100
 100
 100

 80
 100
 100
 100
 100

 80
 100
 100
 100
 100

 80
 100
 100
 100
 100

 80
 100
 100
 100
 100

 80
 100
 100
 100
 100

 90
 100
 100
 100
 100

 80
 100
 100
 100
 100

 90
 100
 100
 100
 100

 90
 100
 100
 100
 100

 90
 100
 100
 100
 100

 90
 100
 100
 100
 100

 90
 100
 100
 100
 100

 90
 100
 100
 100
 100</

121 FLSRGLF IV UDLLSRG FILTOLVALKSRWMAKMLDGEFVILVRQ ILEENLRRLRMESELAELLRS RWPVFVGLFAWGGFTLLTOLVALKSRWMAKMLDGEFVILVRQ ILEENLRRLRMESELAELLRS RLTHGIFPVAITSLLMYLLAIIITKNRKVENILQGTSRILIKDGEVVVSNLKKERITTDLLVLLRE PLLSGIPILTLLVSQLFLSYLSMKSLRARAIGGTPTILEKGKILTSQLQKERYNINDLEELRV -PLPLLLALFVFAALTYLVRYFTLKSRAVRKLLAGEPAVVIQNGKIMERTMRRMHYSTDDLLMQLRT 124 127 126 NILHGLLAIGVLVLCQFLLSILSIKSLTVRTIICGRPRIVIKNGKILEKNLKKELVTINDLLEQLEM 122 PLLTGIIPIFTLLISQLFLSYISMKSLRGREMICGKPTVLIDKGKILTKELQKERYNINDLLEELRV 121 NPWYYVFGLAIFASLTILVQYVSLIYRPARKFLLDEPTVVVHNGRILERNMARMRYNVDDLMSQLRE 124 PLFRGLLPLLILTVLEIGFSYLSLHSRWLRRLVYGEPQLVIWEGKVLHREMRRARYNLDDLLAQLRE 124 PLINGUP JILTLLSGQVIISYLSLKSTKFRGLIGGRPSILIHKGRIVGELRRLRINVNDLLEQLRS PLINGUP JILTLLSGQVISYLSLKSTKFRGLIGGRPSILIQNGKINEAELRKEMYSVNDLLEQLRS TSISSVTALTVLSILVIITGYIHIKSLKLREIINSKPIILVDNGNIVEENMKESRITINELLMKLRE 121 125 PANPHWGLLTWALLGYLMEYISTKWRYAGKYLEGEPTIVINKGKIMEDAMKKMNFRATINGLLA RAMPHWGLLTWALLGYLMEYISTKWRYAGKYLEGEPTIVINKGKIMEDAMKKMNFRATINGLLA PLASGLIPIAALVMFEIVLSVLMLKSTKFRKLICGRPIIVINNGVVQQNEMKRLRMTTEDLSEQLRQ 121 PLLYGIICIFTILFIEFIISQIQLKNIKLRKLFGGKSVILVKDGKFIKENLKNEKLTINDVLEDLRS 121 TAWSHWIGLLTWCAIGFLLOWITLKWRYAAKYIEGEPTIVIMDGKIMEDTLRKMKYTVADVLEOLRG 124 PASFYFLALAVFSGLTLFLEWSTMKSRPVRKILEDEPTVVVHOKKILETMORKINKRNMRYHLDDLMQLRS PIINGVAAISGLVIMQTLISFLSLKSRKLSSFLSGKPSVLIDKGKIVYKELKKERISIDELLEQLRI DLLKPFTAMIVFALFNILLSLLTNKSIKIRRLATGKPSILYDNGQLYYKTFAKAKMDLGEFLVQCRV 124 121 123 PLLLGIVPIITLLFVKILISEIQQHSRLFFKILDGTPSIIISDGEINLEMMKKQRLTMNDILEELRS PLVAGIIPVLTLLISQLVLSYLSMKSLRARVIICGTPTILIEKGKILTSQLQKERYNINDLLEELRV RAWPHWVALISWAILGYIMQLITLKQRTMAKYIDGEPTIVIVNGKIMEEALKTMKYRAADILQLLRN 121 124 PLANGLVPIFGLLIAOVFISYAALKNIKFRTIVCGAPSILVKNGOLVESELRRIRYNIHDLLEOLRV 121 SINTIIAUSTITUQIIFSWTGLKSTFLLQLMOGRPIPUQNGKILEKMMRKARVNRSDIMELRV 120 PGPGLLGMAVWTILPILTGLLVLKSVPARKILEGEPIVVIQNGKIDEKALARQRTNLDDLMMLRQ 126 RAWPHWVALITWAALGYVMEKITIKWRYAAKFLEGEPVVIVMSGKIMDDALRKNNYRISELMGLLRN 124 NGWYMAFGLLLFGLLTVISBYASLKYRPLRKLIEGEPTVVINKILEDNNKKKLIYNVDDLMMQLRE PMLSGVIPILVLLSASLTLAWISLKSKARNIIGKPSILIDRGKISQDELRKNCYNTDLLEELRL PIWHGIVPIATLGLLEVTFSYLTLLNRPLRKIVYGSPQVIIENGKLLKHEMRSSRYNLDDLLSQLRE PLLSGIIPILTLLSVTMVLSVLTMKSVKFRAIVCGRPSIIVENGRLAQEMRRNRFTVDELNEELRV 124 122 121

 PLLSGIIPILTLSVIMVLSVLTMKSVKFKAIVCGRPSIIVENGRLNQQEMRKNRFYDVELDELEELKV
 121

 NDLHALIAMAIYSVVAVALSIG7DKVUNGYPLVLLDNDKLLYEDRFKKAKIDIEEFQUCKN
 124

 RILDFIAILCIWCILVLGLKWIKTHNVKAKQLIDGKALTIIDGGKIIVENCKKAGLSAHDVSFKLRT
 124

 RTRQHLMGLALFALLTFLMSYISMKSRPARKLLEGEPTIVVLNQQILEDNLRKMHVNIDDLISELRQ
 124

 SYIQGITGMTIYALFFILLSFISLKSHLARKLLEGEPTIVVLNQQILEDNLKKMHVNIDDLIEELAQLRQ
 124

 SYIQGITGMTIYALFFILLSFISLKSHLARKLLEGEPTIVLNQNELNEKKKKKNINDLIEECKL
 125

 PLVNGIIPIFTLLIQLAMSLISLKSVKARGIICGKPSILIEKGKINESVLRREMYTINDLLEQLRS
 121

Conservation 30% -100%

Bsubtilis YetF Rcellulolyticum_WP_015924636 Sglycolicus_WP_013625014 Sthermophilum_WP_011197382 Tacetatoxydans_WP_013778043 Titalicus_WP_012994581 Tphaeum_WP_015049695 Tstercorarium_WP__015358013 Tthermosaccharolyticum_WP_015312322 Adegensii_WP_015739924 Adegensii_WP_015739458 Ametalliredigens_WP_012065355 Athermocellus_WP_003516115 Cacetobutylicum_WP_010890760 Cacetobutylicum_WP_010964829 Caproiciproducens_WP_128742257 Carthromitus_WP_005805303 Cbotulinum_WP_011948896 Cdesulforudis_WP_012303154 Cdifficile WP_009889750 Clentocellum_WP_013658886 Cperfringens_WP_003472738 Csubterraneus WP 009611278 Ctetani_WP_035111051 Dacetoxidans_WP_015757363 Dformicoaceticum WP 089609402 Dgibsoniae_WP_006522671 Dhafniense_WP_011459753 Dkuznetsovii _AEG16849 Dorientis_WP_014187430 Druminis_WP_041275606 Ibutyriciproducens WP 058117823 Lphytofermentans_WP_012198749 Lumeaense_WP_111524166 Maustraliensis WP 013780881 Mtermoacetica_WP_011391764 Psordellii_WP_055331643 Pthermosuccinogenes_WP_103079909

Bsubtilis YetF Rcellulolyticum_WP_015924636 Sglycolicus_WP_013625014 Sthermophilum_WP_011197382 Tacetatoxydans_WP_013778043 Titalicus_WP_012994581 Tphaeum_WP_015049695 Tstercorarium_WP__015358013 Tthermosaccharolyticum_WP_015312322 Adegensii WP 015739924 Adegensii_WP_015739458 Ametalliredigens_WP_012065355 Athermocellus WP 003516115 Cacetobutylicum_WP_010890760 Cacetobutylicum_WP_010964829 Caproiciproducens WP 128742257 Carthromitus_WP_005805303 Cbotulinum_WP_011948896 Cdesulforudis_WP_012303154 Cdifficile_WP_009889750 Clentocellum_WP_013658886 Cperfringens_WP_003472738 Csubterraneus_WP_009611278 Ctetani_WP_035111051 Dacetoxidans_WP_015757363 Dformicoaceticum_WP_089609402 Dgibsoniae_WP_006522671 Dhafniense_WP_011459753 Dkuznetsovii _AEG16849 Dorientis_WP_014187430 Druminis WP 041275606 Ibutyriciproducens_WP_058117823 Lphytofermentans_WP_012198749 Lumeaense_WP_111524166 Maustraliensis_WP_013780881 Mtermoacetica_WP_011391764 Psordellii WP 055331643 Pthermosuccinogenes_WP_103079909

130 140 150 160 170 180 190 AGSFSIQEVEYAILETNGMVSVLPKSDFDKPTNKDLQIPSKSVSLPITLIIDGEIVRDNLKEAGVDE 191 KDIFDLTEVDFAIIEPNGQLSVLKKPEYQNLTPKDMYIQKKASGISSELIYDGILIEENLRQLDKDK 191 NNIPNIADVEYAILETNGQLSVIPKTDKRPLTPADMNIHPAYEGLPSILIMDGIVQKRNLERSNANL 188 OSVFHFDEVELAVLEPRGTLSVLRTADTOPVTPADLGIPASSRGLGIELVVDGEVMDONLRRLGVNR 191 KDVTNINEVEEAAIEPNGKLSVIKKKYMQTVTPRDLGLWSNQGIFPTLVIDGGEVIQDNLDRVGVSI 194 KGYPNIADVEYAILETNGSLSVIPKSDKRPVTPQDLNLTPQYEGLPLPIIIDGRIMHQNMQKAGIDM 188 KGVFNISDVEFAVVEPNGRLSVLLKSQKMPVTREDMQIPSQYRGISSELIVDGEVIYQNLRQNNLDE 193 LNIQNISDVEYGILETNGQLSVVLKSQKRPVTPEDLGIETKYEGLSLDLIIDGIVITHNLKLAKLDM 189 MGYPNIADVEYAILETNGCLSVIPKVDKRPVTPNDLNLTPQYEGLPLPIIIDGKIIHKNMKMANVDM 188 KGYFNLADVEFATVEPNGSLSVLPKSOKRPVTPEDLGLPTKYEGVPSELTVDGOTTYONLVONNLTE 191 KGYHDPSEVACAVLESSGRLSVIPRSEYRPLTRGDLGLPPVPVGPVRVLVADGEILEENLKVVGVDR 191 KEYLNLSDVEYAILETNGQLSIMPKPDKRGVITSDLAVAVQQEELPVTLIIDGKVNQNNLKRAGYDM 188 KNIYNIADVEFALLETNGOLSVIPKSOKRPVSPEDLNIPTKYEGLSLDIIVDGEISHENLKLANLDV 188 KNIFNMADVEFAIIEIDGQLSVLPKASQKPLTPSNMNINVTSTGLTQDIIIDGNILDENLYKAGLDI 192 KDVFDLNEVDFAIIEPNGKLSVLKKPELQPVTCNDMNITKNEMGISTELIYDGILIEENLRQLNKTK 191 KNVFSIQDVAYAIVETNGKMSVIKKPDKEQPTAGMLAVPLPDTGIETVVISDGVISDFSLQLCGKSA 188 GGNYDLSKIGFAILERSGKIAVIPK-NNEN-----EKVYLPTSIIIDGEIVKEGLKYINRNN 177 KDIFDLSKVDFAILESDGQLSVLKKPGEEPLTAKDLNIFKSKTGISRELIYDGEIVEDNLREINRDK 191 KGVFNIADVEFAVLEPNGEMSVQLKSQKRPVTPADLQLPTRYEGMPSELIVDGTVIEQNLIQNNLDE 191 QGYFNLKDVQYAILETDGNLSVVPASSYNSTPPR-----AFNHLPIPLILDGRIINKNLDIAQKDT 182 NDYFDLTDIQTALLEPNGKISFLPVSNKRPITGEDLNISPSQNYLVANVIIDGKIMLQNLKHIGNNE 190 AGYLDISDIOYAIIETNGTISIIPKSACDNVKRKDLKIKESESKIPIVLFEDGRLNKKALOGMNKDE 188 KGYPNIADVEYAILETNGSLSVIPKSDKRPVTPKDLNITPEYEGLPLPIIIDGRIMHQNMQKAGIDL 188 KDIFDLKQVKFAIIEPNGQISVLKKEEYLPVTPQDMNISPSPSDISIEVIYDGLIIEEHLKWFKKDK 191 KNIANIADVEFAILETGGKLSVIPKSQKRPLIPEDLQISTKYEGIPTTLIIDGQIMSNNLRMIKLDE 188 QGLSNYLDVEFAYLEPSGRFSIIRKKEVEPITPRYLG----KKTSKTIMENGEIFADQLTQSGVTA 182 KDIFNIGDVENAIFERNGELTVQRKSQLNPVTPADLNISTLYQGLPTTLVQDGVVIENRLKEISLSK 193 KGIFDVSQVDFAILEPNGQLSVLQKPENLPLTPKDMNIKASSSGISSELIYDGMIVEQNLRQFKKDK 191 KNVFNIADVEFAVAEPNGGLSVLLKSHKQPLTPSDMQIPTKYQGIPSELIVDGVVLQQNLKQNNLTE 191 NNMPNIADVEFAILENNGQLSVIPKTNKRPTIPDDFKISPQYEGLPLTVIMDGKLNKKNLEHYNKDI 188 KGYPNMEDVEYAILETSGKLSVIPRSQKRPVTPEDLGIPTPYEGLPTVLVMDGDVLEENLQKVNLTE 189 QGITDLSTVKYAILETNGRVSVIPYANQRPVTAEQMNLFPDDVGLPLVIINDGRLLEHNLKLRGFNE 188 CGYFDITTIQTALLEPNGTVSILPKATHRPATPKDLSIKAPQDYMVFNLVLDGIMIVSNLKILDLDE 189 NRIYSTKDVKRAVLEQNGQLILIQSG--EENPK-----FPVITDGQVQSDILEVIGKDE 176 KDVFNLKDVKYAILEPSGNLSILQNADIKPLTPKDMNISPQQQSLPSELIVDGQIIYQNLAQNNLNG 191 KNVFDIADVEYAIMEPDGDLSVLLKSQKRPLTPSDLKLSTKYEGVPTELIEDGEILFQNLRQNHLDE 191 KDVFDIKDIKFAILETSGNLSIOLKSKHKPLTPEDINLKLKDKYLCVNLIIDGKILDNHLEIIGKDI 192 KDIYNIADVEYAILETNGOLSVLPKAOKRPLTLODMNIPAOYEGLPLVLINDGYVSKKDLDKAGVDE 188

QWLKQELK-KKNIDKTEDVLFAEWH-KNKPLYTVTYEQSRST	231
WWLLNELK-KQGITDISDVFIATLN-PSGSLYIDLYNDHMTKITDIGDY-KGPY	242
TWLKNELN-KANL-KVNDVLIASLD-NQNHLYFQAKKSNS	225
IWLMAKLK-EQGIRSPAEAFLAVVD-ADGKLYVDRYTDRVPKSHDLSDY-PGPN	242
DLMLRQLN-QKGIGRLKEVKSAWID-EDGNLSIERVTETTSK	234
EWLNEQLK-MWKIQNVKEVLFASLD-TNKVLTVYRKED	224
AWLISELA-KQGIKSPREVMLAGLD-TQGNLYVDKRQDDQRHVVQVRDD-PGE	243
DWLVGKLK-ENGWDNPRDIFYAYID-TAGNFQFQPKLKASKSRVMNTP	235
KWLNDQLK-MWNVNNIENIILASLD-PNKVLTVYKKE	223
EWLLKELE-KQGVKSLKEVLYASLD-SEGKLYIDKRQDKLEHLTDVTDKLPGQSGQ	245
EWLLRELE-KQGFREPEKVFLATLS-PQGKLFVSPKEEEEGELPN	234
SWLLKQTE-NEGIKGLHNVFFAFIS-SEGNFHAQEKAK	224
NWLNDTLS-KFGINNPKDVLLASLD-SEGKLYYQLKERRNN	227
DWLLSQLN-SQNIKNESEVFYAGID-NTKKLYVSKKARKNTKY	233
DWLFKVLE-SRGIKNVSEVFLATLN-PGGSLYIDLYKDHIKKVLDIGDY-KGPY	242
DWLQGVLN-GQHLQAG-EIFLMTAN-TKGDFFIVKREAPK	225
DWLMKQLK-ENKIKSPKDVLYAYTD-SNGTFKYQLETK	213
EWLKAELK-KRNIKDSSDVFLATIN-ENNQIYIDTYKDHLKRIIDIGDY-KGPY	242
EWLYRELE-KQGVRSSEEVMYASLD-SEGKLYVDLKEDAIEHYTDITDKVPDKIPQ	245
NWLMGILK-SNHIETFKDVLICVLD-ENDKIFIQNKKGD	219
KWLTKQLR-IHDVSDISEVFLATCD-RNNKLCVYKKLTEKMTADLLE	235
KWLDEKLK-SLNYPPRDKLFLVMMD-SNGKLFIQRKNQKDKEDIIL	232
AWLDEQLK-IWNIKSVKEVLFASLD-SNKVLTVYKKEG	224
KWLKKELK-KRNINDPSEVFLATMD-NTGNFYADKYNDLMKKENVTKDGTY-KGPL	244
NWLERELA-KFGIDSHQKVLFASLD-TNGKLFWQLKSD	224
AELAEILE-SFHIDDLNQLESIVIT-PDGHIALTKKQQ	218
DWLLKKLQTEHGVNEISQVSIAQLD-TSGNLYVDLKNANPENKPH	237
KWLQKELQ-KQGIKDVSEVFFASLN-PAGSLYIDLYKDRLQNPVDIGDY-KGPY	242
DWLYRELE-KQGIKSVKDVMYASLD-AEGKLYVDRKEDTMQHVTDITDKLPGKMPQ	245
QWLKKELK-KQKIHQIEDVFIASLD-SSGNLFAQEKKQPKKQKNNKKKKNPDVR	240
AWLKEKLA-ERGFH-PKKVLLATLN-TNGQLLIDCQNDDRQK	228
GWLNKRLE-EHGVRAVRDVFLLSVD-EQNRVYFVPKEVGVK	227
DWLIKQLK-SQGYNDYHELLLVTCN-HKHEITAYKRYKKNHAS	230
DWLLEELK-KQGIEKYSDVFLGEYV-NNSLILTIDK	210
KWLMDMLA-AHDIHSIKEVAYASIDPLTKEFYVDTYKDSVPKNIDISDVYKGKLE	245
KWLIQQLQ-AQGIQDISQVDYAVLR-SNGTLYVNTKEDDIINPVDITDAPESPVKTEKEEQDRP	253
KWLNSELD-KKGIKNTSDILLAYMD-SSKKINIYLKNKDIPITPTL	236
NWLKSELA-KHGISDARDVLFASLD-SSGNLFLQRKER	224

Conservation 30% -100%

Supplementary Figure S6

Sequence alignment of *B. subtilis* YetF with the best YetF match in *Clostridia* species. Sequence conservation is shown as a bar graph, with red bars indicating identity among YetF homologs. Secondary-structure assignments of YetF from the crystal structure (PDB ID: 3C6F) are shown as blue cylinders (helices) and orange arrows (β strands). Predicted secondary-structure elements by AlphaFold for the N-terminal TM region are shown as gray cylinders (α helices).

Clostridia

Supplementary Figure S7

Surface representation of a tetrameric YetF, showing conservation among best matched YetF homologs identified in *Clostridia* species.