SUPPORTING INFORMATION

Comparative study of adenosine analogs as inhibitors of protein arginine methyltransferases and a *Clostridioides difficile*-specific DNA adenine methyltransferase

Jujun Zhou^{1,8}, Youchao Deng^{2,8}, Iredia D. Iyamu², John R. Horton¹, Dan Yu¹, Taraneh Hajian³, Masoud Vedadi^{3,4}, Dante Rotili⁵, Antonello Mai^{5,6}, Robert M. Blumenthal⁷, Xing Zhang¹, Rong Huang^{2,*}, and Xiaodong Cheng^{1,*}

¹Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA

²Department of Medicinal Chemistry and Molecular Pharmacology, Institute for Drug Discovery, Center for Cancer Research, Purdue University, West Lafayette, IN 47907, USA

³Drug Discovery Program, Ontario Institute for Cancer Research, Toronto, ON M5G 0A3, Canada ⁴Department of Pharmacology and Toxicology, University of Toronto, ON M5S 1A8, Canada

⁵Department of Drug Chemistry and Technologies, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy

⁶Pasteur Institute, Cenci-Bolognetti Foundation, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy

⁷Department of Medical Microbiology and Immunology, and Program in Bioinformatics, The University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA ⁸These authors contributed equally to this work

* Correspondence: huang-r@purdue.edu (RH); XCheng5@mdanderson.org (XC)

S1

Table S1. Summary of X-ray data collection and refinement statistics	Page S3
Table S2. Inhibition reaction conditions	S4
Figure S1. Raw data of IC ₅₀ plots	S5
Reference	S5
NMR spectra of compound 11a	S6
NMR spectra of compound 11b	S7
HR-MS spectra of compounds 11a and 11b	S 8
Purity of compounds 11a and 11b	S9

Compound	11a (YD905) 11b (YD907)		
PDB Code	8FS1	8FS2	
Date Collected	2021-12-05	2021-12-05	
Space group	P2 ₁ 2 ₁ 2 ₁		
Cell dimensions (Å)	80.91, 160.73, 229.62 81.26, 161.25, 229.60		
α, β, γ (°)	90, 90, 90		
Resolution (Å)	44.95-2.74 (2.84-2.74)	44.16-2.59 (2.68-2.59)	
^a R _{merge}	0.415 (2.497)	0.270 (2.329)	
R _{pim}	0.109 (0.776)	0.072 (0.722)	
CC _{1/2}	0.984 (0.417)	0.995 (0.422)	
$_{p} < I/\alpha I >$	9.9 (1.1)	10.2 (0.9)	
Completeness (%)	98.9 (95.4)	98.0 (87.7)	
Redundancy	13.7 (9.4)	12.9 (7.9)	
Observed reflections	1,084,680	1,202,139	
Unique reflections	79,171 (7780)	93,121 (8376)	
Wilson B-factor (Å ²)	48.3	53.5	
Refinement			
Resolution (Å)	2.74	2.59	
No. reflections	78,515	92,780	
^c R _{work} / ^d R _{free}	0.172 / 0.214	0.173 / 0.207	
No. Atoms			
Protein	13,309	13,318	
DNA	1704	1704	
Inhibitor	123	126	
Solvent	517	513	
B Factors (Å ²)			
Protein	54.2 61.7		
DNA	61.3	71.0	
Inhibitor	68.4	83.0	
Solvent	43.5	51.4	
R.m.s. deviations			
Bond lengths (Å)	0.006	0.008	
Bond angles (°)	0.84	0.83	

Table S1. Summary of X-ray data collection and refinement statistics* at SERCAT beamline 22ID, λ =1.0000 Å

* Values in parenthesis correspond to highest resolution shell; a $R_{merge}=\Sigma|I-\langle I\rangle|/\Sigma I$, where I is the observed intensity and $\langle I\rangle$ is the averaged intensity from multiple observations; b $\langle I/\sigma I\rangle$ = averaged ratio of the intensity (I) to the error of the intensity (σI);

^c $R_{work}=\Sigma|Fobs-Fcal|/\Sigma|Fobs|$, where Fobs and Fcal are the observed and calculated structure factors, respectively; ^d R_{free} was calculated using a randomly chosen subset (5%) of the reflections not used in refinement.

Enzyme	Concentrations	t (min)	Buffer	Substrate (target <u>A</u> in red and underlined)
CamA	[E]=0.1 μM [SAM]=40 μM [S]=5 μM 60 15		5 ′ –CGATTCAAAA <mark>A</mark> GTCCCAAG-3 ′ 3 ′ –GCTAAGTTTTTCAGGGTTC-5 ′	
CcrM		5	50 mM Tris–HCl pH 7.5 100 mM NaCl 1 mM DTT 0.25% DMSO	5 ′ –CG <mark>a</mark> ttcaaaaagtcccaag-3 ′ 3 ′ –gcta <mark>a</mark> gtttttcagggttc-5 ′
DAM		1.5		5 ' -CCGCGG <mark>A</mark> TCCTGCT-3 ' 3 ' -GGCGCCT <mark>A</mark> GGACGA-5 '
MettL5-Trm112		60		5'-UCGUA <mark>A</mark> CAAGGUUU-3'
PCIF1			15	
MettL3-MettL14	[E]=0.1 μΜ [SAM]=40 μΜ [S]=10 μΜ	10	50 mM HEPES pH 7.5 5 mM NaCl 1 mM DTT 0.25% DMSO	5 ′ –AACAGAAUGGG <mark>A</mark> CUGUUC–3 ′
MettL16	[E]=0.4 μΜ [SAM]=160 μΜ [S]=5 μΜ	30	20 mM Tris–HCl pH 8.0 400 mM NaCl 1 mM DTT 0.25% DMSO	5 ′ –GGUUGGCGUAGGCUAC <mark>A</mark> GAGAAGCCAACC–3 ′

Table S2. Inhibition reaction conditions at [I]=10 μ M

Figure S1. Related to Figure 2C, raw data plots of IC₅₀ values for the four compounds (from left to right) **6e**, **7**, **11a**, and **11b** against (**A**) CamA, (**B**) PRMT1, and (**C**) PRMT3. Note the compound **7** for CamA is taken from reference ¹.

Reference

1. Zhou, J.; Horton, J. R.; Menna, M.; Fiorentino, F.; Ren, R.; Yu, D.; Hajian, T.; Vedadi, M.; Mazzoccanti, G.; Ciogli, A.; Weinhold, E.; Huben, M.; Blumenthal, R. M.; Zhang, X.; Mai, A.; Rotili, D.; Cheng, X., Systematic Design of Adenosine Analogs as Inhibitors of a Clostridioides difficile-Specific DNA Adenine Methyltransferase Required for Normal Sporulation and Persistence. *J Med Chem* **2023**, *66* (1), 934-950.

NMR spectra of compound 11a (YD9-05)

NMR spectra of compound 11b (YD9-07)

HRMS spectra of compounds (11a and 11b)

120 140 160 180 200 220 240 260 280 300 320 340 360 380 400 420 440 460 480 500 520 540 560 580 600 620 640 660 680 700 720 740 760 780 Counts vs. Mass-to-Charge (m/z)

Purity of compounds 11a (YD9-05) and 11b (YD9-07) (>95%)