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Supplementary Figures and Tables

Host alias Samples Unique
sample days

Sampling period
(days)

Mean samples
per day

Median days
between sam-
ples

Max days be-
tween samples

am 206 193 539 .35 1 51
ao 74 71 144 .49 1 14
an 63 61 375 .16 2 58
ae 59 58 375 .29 2 41

Table S1: Host sampling metadata for the four hosts considered in the study. When sample meta-
data indicated that multiple samples had been collected on the same day, or were technical repli-
cates of one another, samples were merged by concatenating fastq files. Hence, the total number
of samples reported (Samples) differed from the number of samples analyzed (Unique sample
days). While gaps between successive successive samples were as long as 58 days (an), the me-
dian time between samples was either one or two days.
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Species name Genome length (bp)
Alistipes onderdonkii 3,864,643
Alistipes putredinis 2,550,678
Bacteroides cellulosilyticus 6,870,144
Bacteroides clarus 3,746,690
Bacteroides fragilis 5,723,061
Bacteroides intestinalis 6,052,596
Phocaeicola massiliensis 4,443,004
Bacteroides ovatus 7,880,760
Bacteroides stercoris 4,009,829
Bacteroides thetaiotaomicron 6,855,195
Bacteroides uniformis 4,719,097
Phocaeicola vulgatus 5,163,189
Bacteroides xylanisolvens 5,986,762
Barnesiella intestinihominis 3,433,706
Bifidobacterium adolescentis 2,304,613
Dialister invisus 1,895,960
Lachnospira eligens 2,831,389
Eubacterium rectale 3,344,951
Faecalibacterium prausnitzii (57453) 3,127,383
Faecalibacterium prausnitzii (61481) 3,090,349
Faecalibacterium prausnitzii (62201) 3,321,367
Parabacteroides distasonis 4,887,173
Parabacteroides merdae 4,434,377
Paraprevotella clara 4,187,245
Phascolarctobacterium sp 2,369,100
Ruminococcus bicirculans 2,968,500
Ruminococcus bromii 2,249,085
Sutterella wadsworthensis 2,949,098

Table S2: Reference genome lengths used by MIDAS in aligning shotgun reads for the purpose of
calling SNVs.
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am
Species name Number of strains

Bacteroides fragilis 1
Bacteroides ovatus 2
Bacteroides stercoris 1
Bacteroides uniformis 1
Phocaeicola vulgatus 3
Bacteroides xylanisolvens 2
Barnesiella intestinihominis 1
Eubacterium rectale 2
Faecalibacterium prausnitzii (57453) 1
Phascolarctobacterium sp. 1
Ruminoccocus bicirculans 1
Ruminoccocus bromii 1

Table S3: Number of strains inferred for each species analyzed in host am.

ao
Species name Number of strains

Bacteroides fragilis 1
Bacteroides ovatus 2
Bacteroides uniformis 1
Bacteroides xylanisolvens 2
Bifidobacterium adolescentis 1
Dialister invisus 1
Lachnospira eligens 1
Eubacterium rectale 1
Faecalibacterium prausnitzii (61481) 2
Faecalibacterium prausnitzii (62201) 1
Parabacteroides distasonis 1
Ruminoccocus bicirculans 1

Table S4: Number of strains inferred for each species analyzed in host ao.
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an
Species name Number of strains

Alistipes putredinis 1
Bacteroides clarus 1
Phocaeicola massiliensis 1
Bacteroides uniformis 2
Phocaeicola vulgatus 3
Bacteroides xylanisolvens 1
Barnesiella intestinihominis 1
Eubacterium rectale 2
Paraprevotella clara 1
Ruminoccocus bromii 1
Sutterella wadsworthensis 2

Table S5: Number of strains inferred for each species analyzed in host an.

ae
Species name Number of strains

Alistipes onderdonkii 2
Alistipes putredinis 1
Bacteroides cellulosilyticus 1
Phocaeicola massiliensis 2
Bacteroides ovatus 2
Bacteroides thetaiotaomicron 1
Bacteroides uniformis 1
Phocaeicola vulgatus 1
Eubacterium rectale 2

Table S6: Number of strains inferred for each species analyzed in host ae.
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WITHIN-HOST DYNAMICSCOLONIZATIONPRE-HOST DIVERSIFICATION

Oligo-colonization

Figure S1: A range of human gut microbiome studies have shown that only a small handful of
strains belonging to a species are present within a host at any one time, a phenomenon known
as oligo-colonization [5, 8, 9, 10, 11, 14]. Strains diversify before colonizing the host, typically
accumulating O(103) − O(104) mutations in their shared core genome. In this study, we explore
the within-host dynamics of oligo-colonization both in cases where a single strain belonging to a
species is present and when multiple strains are present. We find that a large majority of strains
stably colonize hosts for periods of months to years, while a smaller percentage show highly non-
stationary dynamics. For further discussion of oligo-colonization, Supplementary section 3.1.
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Figure S2: a. Four BIO-ML stool donors (aliases: am, ao, an, and ao) were longitudinally sampled
more than 50 times. Circles indicate that shotgun metagenomic sequencing data was collected at
that timepoint. b. For each host, we plot the distribution of the number of days between consec-
utive samples. While gaps between successive successive samples were as long as 58 days, the
median time between samples was either one or two days for each host (Supplementary Table 1).
b. Distribution of the number of shotgun reads per sample, by host. The mean number of reads
per sample in each host were am: 7.5m, ao: 7.6m, an: 7.3m, and ae: 8.3m.
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Figure S3: Nucleotide diversity π for each species/host combination.
.
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Figure S4: FST
′ values plotted for each species in each host, with species failing the ADF test of

stationarity highlighted in red.
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Figure S5: FST
′ values plotted for each species in each host. For details on howFST

′ was calculated,
see Materials and Methods of Main Text.

.
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Supplementary Text
1 Data
Publicly available shotgunmetagenomes from the Broad Institute-OpenBiomeMicrobiome Library
(BIO-ML) were downloaded from the Sequence Read Archive (BioProject PRJNA544527). A total
of 402 samples drawn from four individuals (aliases am, ao, an, and ae) were downloaded, with 206
samples coming from am, 74 from ao, 63 from an, and 59 from ae (Table S1). All four hosts were
healthy adults between the ages of 21 and 37, of whom three were male and one female. The full
metadata concerning these hosts reported by BIO-ML is available as Supplementary File S1.

The four hosts analyzed in this paper were sampled near daily for between 144 days (ao) and
539 days (am). While gaps between successive successive samples were as long as 58 days (an),
the median time between samples was either one or two days (Table S1).

When sample metadata indicated that multiple samples had been collected on the same day, or
were technical replicates of one another, samples were merged by concatenating fastq files before
running subsequentmetagenomic processing scripts (Supplementary section 2). Thus, all samples
taken from a single host used in this study had a unique date, and were temporally ordered.

Additionally, to calculate between-host FST , we used data from a previously collated panel [8]
of healthy human subjects of 250 North American subjects sequenced by the Human Microbiome
Project [19, 20]. Using this much broader database of samples, we estimated levels of inter-host
genetic diversity.

2 Metagenomic pipeline
We used the MIDAS software package to align metagenomic reads to reference genomes, estimate
species abundances, and call copy number variation (CNV) and single nucleotide variant (SNV)
content [3]. MIDAS’s reference database is made up of 31,007 high quality bacterial genomes,
clustered into 5,952 species groups based on a 96.5% sequence identity across 30 universal marker
genes (MIDAS reference database version 1.2). Thismarker gene average nucleotide identity (ANI)
threshold was chosen by the original authors of MIDAS to ensure a 95% genome-wide ANI species
definition. Throughout this manuscript, strains belonging to a species are much more closely re-
lated than this 95% threshold—typically, between 99% and 99.9% ANI.

All three basic modules in the MIDAS pipeline (estimating species abundance, calling CNV
content, and calling SNV content) consist of two steps. First, each sample is processed individ-
ually to ascertain the relative abundance of all species, as well as the CNV and SNV content for
those species passing user-specified thresholds in that sample (for details on threshold choices,
see Supplementary section 2.2). And second, individual samples belonging to the same host are
integrated to identify patterns of longitudinal variation within hosts.

2.1 Species abundance

MIDAS first estimates species abundances by aligning reads to 15 universal, single-copy marker
gene sequences, which are known for each species in the MIDAS database. The average read cov-
erage across these single-copy marker genes is then taken to be the abundance of the species in the
sample. In our subsequent analyses, we excluded species which were considered present in fewer
than 25 samples (see Supplementary section 5).
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2.2 Building reference panels

When calling CNV and SNV content, MIDAS relies on a sample-specific reference panel to ensure
that reads are only mapped to species which are truly present. We considered a species present if
it had an average marker gene coverage ≥ 3 in that sample. While many more species are present
at lower abundances, and are detected as such by MIDAS, SNV and CNV content cannot be confi-
dently determined in these cases due to their relatively poor coverage [8].

To conservatively guard against spurious detection of intra-species genetic diversity, a “black-
list" of genes defined in [8] which are known to be commonly shared between species were ex-
cluded from further analysis were excluded from all downstream analyses.

Lastly, to ameliorate read stealing and donating, we included all species which were present
at any timepoint within a host in the reference panel for all samples in that host. By doing so, we
keep the set of pan-genomes to which reads are aligned consistent across samples. By taking this
precaution, we ensure that the species a specific read is mapped to will remain the same regardless
of the sample in which this read originates.

2.3 CNV content

CNV content is determined by aligning reads to pan-genomes present in the MIDAS database for
each species present in our data. MIDAS defines a pan-genome as the set of unique genes identified
across all genomes available in the MIDAS reference database belonging to a species.

Reads were aligned to the host-specific reference panel using default MIDAS settings (local
alignment, MAPID ≥ 94.0%, READQ ≥ 20, and ALN_COV ≥ 0.75), and the average coverage was
estimated by dividing the total number of reads mapping to the gene cluster by its total target size.

MIDAS determines the copy number c of a gene by dividing the average coverage of the gene
by the average coverage of the species at its universal, single-copy markers (i.e. the species abun-
dance). Using these copy number estimates, we then defined the core genome for each species in
each host as the set of genes with copy number c ≥ 0.3 in 90% of samples belonging to that host.
Because we defined the core genome in a host-specific manner, this core represents the set of genes
which are shared between all strains within a host. Species detected in multiple hosts, therefore,
may have somewhat different gene content in the “core" genome.

2.4 SNV content

MIDAS calls SNVs with reference to a single representative genome per species group (specified
in the MIDAS database, and chosen so as to have minimal marker gene distance to all other isolate
genomes associated with the same species). The total length, in base pairs, of the representative
genomes used by MIDAS for SNV calling purposes for species analyzed in this work is shown in
(Table S2).

To ascertain SNVs, we aligned reads to the species included for a given sample’s reference panel
using default MIDAS mapping parameters: global alignment, MAPID ≥ 94.0%, READQ ≥ 20,
ALN_COV ≥ 0.75, and MAPQ ≥ 20. After alignment, we further excluded from analysis species
that did not have a mean genome-wide coverage ≥ 5 and non-zero coverage at ≥ 40% of reference
sites within a sample.
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3 Detecing strains
3.1 Oligo-colonization

A wide range of human microbiome studies have established that gut microbial species harbor
genetic diversity within individual hosts [6, 2, 20]. Species are in fact frequently composed of mul-
tiple strains, and which are much more distantly genetically related than lineages which diverged
subsequent to colonization [10, 14, 23]. When levels of recombination between such strains are
sufficiently low, the clonal descendants of the initial colonizers may persist within hosts as genet-
ically distinguishable subpopulations [24]. Interestingly, a number of studies have demonstrated
that this kind of multiple colonization is subject to some degree of ecological constraint: only a
small handful of strains (typically between one and four) are ever observed within a host at any
one time, a phenomenon dubbed “oligo-colonization" (see Figure S1) [5, 8, 11, 9]. The general
ecological and evolutionary mechanisms enabling a small number of strains to colonize a host and
rise to high frequency, but preventing a large number of exogenous strains from doing the same,
are not known as yet. Indeed, the factors governing strain coexistence may vary greatly between
species. For instance, only a single strain of the common gut commensal Bacteroides fragilis is ever
found within a host, potentially due to unusually potent inter-strain competition in this species
mediated by the Type-VI secretion system [9]. However, other species, like Phocaeicola vulgatus,
frequently harbor several strains [5, 23]. Whether such fine-scale diversity is maintained due to
the partitioning of metabolic niches, by spatial segregation, or due to chaotic or neutral dynamics
is an active area of research [17, 18]. In this work, we examine the dynamics of oligo-colonization
through time.

Genetically diverged strains of a species residing in different hosts will typically differ from one
another atO(103)−O(104) sites in their shared core genome [2, 4, 8, 23]. Likewise, when multiple
strains of the same species inhabit the same host, they also tend to differ from one another at a sim-
ilar number of sites—put differently, each strain will share a more recent common ancestor with a
strain found in a different host than with its other co-colonizing strains [23]. On the other hand,
even under conservative estimates of the per basepair mutation rate and host lifetime, lineages
sharing a common ancestor within the host are expected to harbor orders of magnitude fewer seg-
regating mutations [8]. We will leverage this separation of scales in the number of sites expected
to segregate between lineages sharing a common ancestor within the host, and those belonging to
separately colonizing strains, to infer the presence of strains.

Resolving the number, relative abundances, andgenotypes of co-colonizing strains froma single
shotgun metagenomic sample is a difficult inverse problem. Because short read shotgun sequenc-
ing destroys evidence of physical linkage information over , methods of resolving strains within
a sample rely on statistically deconvolving the distribution of allele frequencies to find areas of
high density [15, 16]. However, due to finite and variable metagenomic read coverage across the
genome, even perfectly linked alleles residing on a single strain’s genetic background may have
quite different observed allele frequencies due solely to sampling noise. However, several recent
studies [5, 13, 14, 24, 26] have shown that strain inference can be significantly improvedwhenmany
samples have been collected longitudinally from a host, as alleles linked on a single strain’s genetic
background will have clustered allele frequency trajectories. Strain inference algorithms designed
specifically for such longitudinal data can leverage these temporal correlations between trajectories
as a potent additional source of information when inferring true patterns of linkage within species.
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3.2 Strain inference

In our study,wemodified the allele frequency trajectory clustering algorithmdeveloped byRoodgar
et al. [5] to specifically detect large clusters of SNVs (> 1000 SNVs) in a species’ core genomewhich
strongly support the presence of multiple strains. While the approach of Roodgar et al. was ap-
propriate for their purposes—namely, detecting selective sweeps of linked variants that deviated
substantially from the overall background—the original clustering UPGMA-based clustering pro-
cedure was not sensitive enough to reliably detect low frequency strains in our dataset and thus
requiredminor modifications. Our choice of 1000 SNVs as a cutoff was informed by the previously
mentioned (Supplementary section 3.1) lower bound on the typical number of SNVs segregating
between strains found in different hosts (O(103) sites). While lineages can and do diverge due to
evolution within hosts [6, 7], by imposing the minimum cluster size of 1000 core genome SNVs,
we expect largely to exclude cases of within-host diversification.

To cluster SNV trajectories into strains, wefirst calculated the distancemetric defined inRoodgar
et al. (whichwe review here) between every pair of polymorphic SNVswith sufficient coverage. To
be considered, we required a site to have depth of coverageD ≥ 10 and some level of polymorphism
(0 < f < 1, where f is the frequency of the reference allele) in at least 25% of timepoints. By
imposing these filters, we excluded sites that were not truly polymorphic, and/or for which true
allele frequencies could not be accurately estimated.

This metric weights differences in allele frequency trajectories between sites by their joint se-
quencing depth, such that small differences in frequency at high coverage sites contribute propor-
tionally more than equally small differences at low coverage sites. In practice, this ameliorate the
of sampling noise. For a pair of SNVs i and j, the distance between their observed allele frequency
trajectories f̂i and f̂j is:

d(f̂i, f̂j) =
1

T

T∑
t=1

2(Dit +Djt)(f̂it − f̂jt)
2

(f̂it + f̂jt)(1− f̂it + 1− f̂jt)
(1)

where T is the number of sampling timepoints, f̂it and f̂jt are the allele frequencies of i and j at a
timepoint t, and Dit and Djt are the depths of sequencing coverage at timepoint t.

At any biallelic site, there are two possible choices of allelic reference state. While the choice is a
priori arbitrary, it will impact our ability to infer strain structure, as themetric (Equation 1) relies on
both sites having the same relative polarization. To account for differences in relative polarization,
we define a pair of metrics:

d+ij = d(f̂i, f̂j)

d−ij = d(f̂i, 1− f̂j)
(2)

and take the distance between i and j to be the minimum of the two polarizations:

dij = min(d+ij , d
−
ij). (3)

Still following [5], we calculated dij between every pair of SNVs, forming a distance matrix.
However, having calculated this SNV distance matrix, we took a different approach to clustering
the SNVs into strains. Specifically, while [5] applied UPGMA clustering to the matrix of SNV
distances, we implemented a greedy, network-based clustering algorithm. Our algorithm allows
us to extract only large clusters of SNVs which are likely in perfect linkage with one another.
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We considered each SNV a node in a network, and formed an edge between any pair of nodes
(i, j) if d(f̂i, f̂j) < d∗, where d∗ is a critical distance indicating likely true linkage. We used the
empirically derived threshold maximum distance criterion of d∗ = 3.5, established in [5], to iden-
tify pairs of SNVs that were likely linked to one another on a haplotype background. In essence,
this network connects SNVs whose allele frequency trajectories indicate that they likely rely on the
same haplotype background.

Next, we calculated the degree |Di| (i.e. number of edges) for all nodes in the network. We
identified the node k with the highest degree |Dk| in the network, and if |Dk|> 1000, we assigned
k and all nodes connected to it to be a strain. To ensure that no outlier SNVs not truly linked to this
cluster were assigned to it, we removed all nodes from the cluster which were connected to less
than 25% of other nodes. Lastly, we removed all nodes assigned to this cluster from the network.
We then repeated this procedure until no clusters of greater than 1000 nodes remained. If there
were no clusters of more than 1000 SNVs initially, we inferred that only a single strain of the species
was present.

When two strains are present, all SNVs which segregating between the strains will ultimately
be polarized in the same way, and so only a single cluster of SNVs will be detected (for ease of
visualization, we have shown both the detected cluster and in the Figure 1 of the Main text, as
well as in the Supplemental strain figure files). However, when three strains are present, each
pair of strains will have some number of sites segregating between them. Consequently, our strain
deconvolution algorithm will detect three clusters of SNVs when three strains are present. In the
two cases in which we detected three strains, we determined the correct relative polarizations of
these clusters with respect to one another by summing all different possible polarizations, and
looked for the choice of polarization that yielded a sumwhich was close to one at all timepoints, as
the sum of the relative strain frequencies should be precisely one at each timepoint. In both cases,
there was a single choice of polarization that resulted in the sum of strain trajectories remaining
near one at all timepoints (green trajectories), and these polarizations were therefore chosen when
determining the true frequencies of the strains (Figure S6).

Recently, Zheng et al [25] employed a high-throughput single-cell barcoding scheme to analyze
strain dynamics in samples collected from host am of the BIO-ML project. As in our work, Zheng
et al uncovered three dominant strains of P. vulgatus (a fourth strain was recovered from their co-
assembly, but was detected only at a single timepoint, had very low genome completeness (6%),
and was of “low quality"). Though collected at a far coarser sampling interval (seven timepoints,
versus the 193 timepoints available using shotgunmetagenomic samples), there is a striking visual
concordance in the dynamics of the three dominant strains of P. vulgatus between our inference
and that of Zheng et al. Interestingly, in the original BIO-ML publication [6], isolates of P. vulga-
tus collected from am indicated the presence of only two strains. That our inference, which relies
on relatively easily obtainable shotgun metagenomic sequencing data processed through publicly
available software in a matter of days, reveals similar strain dynamics at far greater temporal reso-
lution as the state-of-the-art sequencing approach of Zheng et al in this case underscores the power
of densely temporally sampled, high coverage shotgun sequencing data to recover patterns of intra-
specific genetic variation in the microbiome.

4 SLM
To simulate the SLM, we used the Euler-Maruyama method:
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Figure S6: In two samples, am (left) and an (right), three strains of P. vulgatus were detected.
In order to assess the correct relative polarizations of the three strains, we summed all different
possible polarizations of the detected clusters. In both cases, the green polarization shown in the
figure above was approximately equal to one at all timepoints, and so this polarization was chosen
when determining the true frequencies of the strains.

X(t+ δt) = X(t) +
x(t)

τi

(
1− x(t)

K

)
δt+

√
σ

τ
x(t)Zt

√
δt (4)

where Zt is a standard normal random variable. In simulations, we set δt = 1
1000 .

The SLM associated with population i depends on three parameters: Ki, σi, and τi. Ki and σi

are not fit, but rather are determined directly from the mean and variance of the actual time series
using the formulae:

σi =
2

⟨xi⟩2
σ2
xi

− 1
, Ki =

⟨xi⟩
1− σi

2

(5)

where ⟨xi⟩ is the mean abundance of the population and σ2
xi

is its variance. The parameter τi
was held constant (τi = 1) for all strains to avoid overfitting.

For each time series of strain abundances, we fit the Ki and σi parameters using the first third
of timepoints.

5 Goodness of fit test
To assess the predictive capacity of the SLM, we devised a goodness of fit test. The test seeks to de-
termine not only whether the true dynamics of a strain’s abundance match the behavior expected
under the SLM, but also whether these dynamics can be predicted from a subset of initial points.
Heuristically, the test determines whether the full sequence of transitions between timepoints sta-
tistically resembles the sequence of transitions expected were the data truly generated by the SLM.

First, we calculated the total abundance of the strain in question, observed at timepoints t0, t1, t2, ..., tT ,
to be x(t0), x(t1), x(t2), ..., x(tT ). The total abundance of a strain is it relative abundance within the
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community at large—that is, its relative frequency within the species (determined using the strain
inference algorithm described in the preceding section), multiplied by the relative frequency of the
species within the community.

For each strain, the SLM is “trained" on the first 33% of data points (i.e. x(t0), x(t1), ..., x(tT/3)),
with the model parameters Ki and σi determined as described in the main text directly from the
mean and variance in abundance across these timepoints.

The fundamental approach employed to test the fit of the SLM is to estimate an empirical dis-
tribution under the model of possible abundances at ti+1, given the known initial abundance x(ti),
and then observing where the true x(ti+1) lies. To do so, we simulated the model 1000 times be-
tween each pair of subsequent timepoints ti and ti+1 (i ∈ [(T/3 + 1), (T/3 + 2), ..., T ]), starting
with initial abundance x(ti). Next, to asses where the true x(ti+1) lay relative to our simulations,
we subdivided this distribution intoM equally likely quantiles (that is,M intervals of the real line
each having equal probability under the empirical distribution of simulations), determined which
quantile x(ti+1) fell in, and denoted this value qi.

Under the null hypothesis, x(ti+1) should have equal probability of lying in each quantile, pre-
cisely because the quantiles are non-overlapping areas of equal probability under the SLM. There-
fore, {qi}, the set of quantiles determined in this manner between all pairs of consecutive time-
points, is expected to follow a uniform distribution on [1, 2, ...,M ] if the true trajectory was gen-
erated by the SLM. To assess whether this was in fact the case, we performed a χ2 test with M
degrees of freedom. We rejected the null at a significance level of 5%. We do not perform multiple
hypothesis testing here, as we only make a single comparison (pass/fail of SLM).

In determiningM , we followed the convention for χ2 tests that the expected number of observa-
tions in each bin (here, [1,M ]) should exceed 5. As there are a total of T data points,M was chosen
so that T

M > 5. Additionally, to ensure that our χ2 test had sufficient power, we only considered
trajectories which had T > 25 timepoints [1].

6 Taylor’s Law
Taylor’s Law, a power law scaling between the mean and variance of the observed abundances of
populations within a community across either space or time, is an extremely general phenomena
observed in a wide variety of ecosystems [28, 27, 30, 31, 32]. The specific scaling exponent ob-
served is affected both by true biological variability in the underlying populations’ abundances
and by noise introduced during the sampling process. While many different ecological models can
produce Taylor’s Lawwith a wide variety of scaling exponents [29, 33], sampling noise, by itself, is
expected to induce a Taylor’s Law α exponent of one. As an example, consider a community where
population abundances are governed by Poisson fluctuations introduced solely by sampling noise:

P (xi = k) =
λke−λ

k!
(6)

where λ is a composite rate parameter, the product of the total strength of observation (e.g. total
number of individuals censused in a community) and the focal population’s relative abundance.
Because the mean of the Poisson distribution equals its variance (both are equal to λ, in this case),
we should observe a Taylor’s Law with α = 1 (i.e. σ2

xi
∝ ⟨xi⟩, trivially).

Realmetagenomic data, however, is compositional—when comparing samples, wedonot assess
abundance directly, but rather observe the relative abundances of populations. If we assume that
there are a finite number reads, we can model the situation in which the variation in observed
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Figure S7: α is approximately equal to 1 under multinomial sampling

frequencies is determined solely by sampling noise by, first, repeatedly sampling total abundances
from a multinomial distribution:

P (x1, x2, ..., xN ;N, f1, f2, ..., fN ) =
S!

x1!x2! ...xN !
fx1
1 fx2

2 ...fxN

N (7)

where S is the total number of reads, N total number of populations present, and f̄ is vector of
underlying true population abundances (here, drawn from a lognormal distribution), and T is
the number of timepoints. Following this sampling step, we can then characterize fluctuations in
relative abundance by dividing all observed abundances by the total read depth, S. Doing so, we
observe a Taylor’s Law scaling with α ≈ 1, as expected (Figure S7).

Moreover, even if the total read count S is allowed to vary between samples, α still remains
approximately equal to 1. Specifically, if S is itself drawn from a Poisson distribution—as would
be expected if sampling intensity was roughly equal between samples—and observed population
frequencies are affected only by sampling, we continue to observe an α ≈ 1 (Figure S8).

Though the relative abundances of all strains we observe in this study are certainly affected
by sampling noise, and (as we have seen) a Taylor’s Law scaling can emerge due solely to com-
positional sampling, compositionality by itself cannot explain the scaling observed in the data.
Specifically, the specific exponent we observe here (α = 1.8, Main text Figure 3) is highly unlikely
to be primarily driven by sampling effects, whether compositional or not, but rather reflects true
underlying biological variability in the relative abundance of the populations.
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Figure S8: α is approximately equal to 1, even when coverage varies between samples.
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