
Supplementary Material for

A phenotype driven integrative framework uncovers

molecular mechanisms of a rare hereditary

thrombophilia
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A phenotype driven integrative framework uncovers molecular mechanisms of a rare hereditary thrombophilia

1 Multiplicative update rules

As presented in Section Materials and methods of the main paper, the Simultaneous Orthogonal

Non-negative Matrix Tri-Factorization, SONMTF, can be formulated as the following minimization

problem:

min
P,S,G,Ui≥0

f(P, S,G,Ui) = min
P,S,G,Ui≥0

||M − PSGT||2F +
3∑

i=1

||Ri −GUiG
T||2F ,

s.t. PTP = I and GTG = I,

where F denotes the Frobenius norm, M is a matrix containing the germline variant profiles of the

subjects, R1,R2,R3 represent the adjacency matrices of PPI, COEX and GI molecular networks,

respectively, P is a matrix relating ns subjects to ng genes, S is interpreted as the compressed

representation of the molecular profiles, G is interpreted as the cluster indicator matrix of genes,

and Ui is interpreted as the compressed representation of each molecular network. Note that, as

explained in the next section, P is a fixed matrix factor.

Following the semi-NMTF simplification [1] for a more computationally tractable solution, we

remove the non-negativity constraint on S,Ui ≥ 0. To solve the optimization problem, we derive

the Karush-Kuhn-Tucker (KKT) conditions for our SONMTF as follows:

∂f

∂G
= −MTPS +GSTP TPS +

∑
i

((−2RT
i GUi +RiGUT

i ) + 2(GUiG
TGUT

i +GUT
i G

TGUi))− η = 0,

∂f

∂S
= −P TMG+ P TPSGTG = 0,

∂f

∂Ui
= −GTRiG+GTGUiG

TG = 0,

η,G ≥ 0,

η ⊙G = 0,

where ⊙ is the Hadamard (element wise) product and matrix η is the dual variable for the pri-

mal constraint G ≥ 0. Because adjacency matrices Ri are symmetric, therefore matrices Ui are
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symmetric, too. For Ui and S, we have closed formulas:

Ui = (GTG)(GTRIG)(GTG)−1

S = (P TP )−1(P TMG)(GTG)−1.

(1)

As explained in [2], we derive the following multiplicative update rule to solve the KKT condi-

tions above:

Gij ← Gij

√√√√(MTPS)+ij +G(STP TPS)−ij +
∑

i(RiGUi)
−
ij + (G(UiGTGUi)+)ij

(MTPS)−ij +G(STP TPS)+ij +
∑

i(RiGUi)
+
ij + (G(UiGTGUi)−)ij

. (2)

We start from an initial solution, Ginit, and iteratively use Equations (1) and (2) to compute new

matrix factors Ui, S and G until convergence. To generate initial Ginit, we use the Singular Value

Decomposition based strategy [3]. This strategy makes the solver deterministic and also reduces

the number of iterations that are needed to achieve convergence [3].

We measure the quality of the factorization by sum of the relative square errors (RSE) between

the decomposed matrices and the corresponding decompositions:

RSE =
||M − PSGT ||2F

||M ||2F
+

∑
i ||Ri −GUiG

T ||2F∑
i ||Ri||2F

.

In our implementation, the iterative solver stops after 1000 iterations, the value for which the RSE

of the decomposition is not decreasing anymore.

2 Subject stratification and gene clusters

In the main paper, we present the generic SONMTF framework used for integrating germline

variants, protein-protein interactions, co-expressions and genetic interaction data. The outputs

of the SONMTF algorithm are interesting gene clusters that take into account the phenotypic

differences between diseased subjects and the healthy carrier. For this reason, in the first run

of our data-integration framework, we set the number of subject clusters to two. By default,

solving SONMTF leads to a subject stratification (from matrix factor P , see Section Materials and
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methods of the main paper) that is best supported by the variant profiles of the subjects and by

the considered molecular networks. In our case, subjects are grouped according to their family

relationships, which is expected (see Figure 1, panel A). To account for the observed phenotypes of

the subjects, it is possible to enforce the subject stratification (i.e., to force the diseased subjects to

be in the same cluster and the healthy subject to be in a different cluster) by fixing matrix factor

P (see Figure 1, panel B). For sanity check, for each of the two runs (when fixing or not the subject

stratification), we extract the corresponding clusters of genes and measure their biological coherence

by the percentage of them that are significantly enriched in at least one biological annotation.

As presented in Figure 2, while forcing the subject stratification slightly reduces the functional

enrichment of the obtained clusters of genes, our clusterings are highly biologically coherent.

Default Fixed P

A) B)

Figure S 1: Cluster indicator matrices for the subjects. A: The cluster indicator matrix,
P , that is obtained when solving the default SONMTF (see Section Methods of main paper). It
groups subjects B1, B2, and D1 into cluster 1, and subjects S1 and S2 into cluster 2. B: The
cluster indicator matrix, P , that is kept fixed in order to group together the diseased subjects (B1,
D1, S1, and S2) into cluster 1, and the healthy subject (B2) into cluster 2.

On the one hand, the clusters of genes that are obtained with the default solver lead to variant

profiles (percentages of genes with variants per cluster) that are very similar across subjects (Fig-

ure 3, panel A), while the clusters of genes that are obtained when fixing P lead to variant profiles

that are different for healthy and diseased subjects (Figure 3, panel B). Importantly, fixing P leads

to clusters of genes that better separate healthy and disease-specific variants (Figure 3, panels C

and D).

To test the robustness of our method to data imbalance, we make pairwise runs of our SON-
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Figure S 2: Cluster enrichment analysis. For the clusterings that are obtained by using the
default SONMTF (in red), by fixing the subject stratification (in blue) or by considering random
clusters (in green) the bars present the percentage of the clusters that are significantly enriched in at
least one biological annotation (see Section Enrichment in biological annotations) using Reactome
Reaction (RR), Reactome Pathway (RP), gene ontology Biological Process (BP), gene ontology
Molecular Function (MF), and gene ontology Cellular Component (CC) annotations.

MTF data integration framework using pairs of patients, i.e., B1-B2, D1-B2, S1-B2 and S2-B2. All

the corresponding gene clusters are in agreement with the ones obtained when using all five indi-

viduals together, with Rand indices ranging from 88.7% to 90.1%. All these large agreements are

statistically significant, with permutation-based p-values (using 100,000 permutations) all smaller

than 10−5. We also checked these agreements at the individual cluster level. For example, 86.7%

to 95.3% of the genes from the ADRA2A-TBXA2R cluster are also grouped together in the same

cluster in the pairwise clusterings. Hence, our methodology and results are robust to the data

imbalance.
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Mutated in subject
Gene B1 B2 D1 S1 S2

ALB
APOE
APOH 1 1 1 1
CPB2 1 1 1 1 1
ELF3
F11
F2 1 1 1 1 1
F5 1 1 1
F7 1 1
F9

FGA
FGB 1 1

FGFR4 1 1 1 1 1
HRG 1 1 1 1 1
LPA 1 1 1 1 1
PLG 1 1
PROC
REN

SERPINA10 1 1 1 1
SERPINB2 1 1
SERPINC1
SERPIND1 1
STAT4

Table S 1: Thrombophilia related genes in cluster 19. The table indicates if a given gene
(row) is mutated in a given subject (column).
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Variant profiles, default Variant profiles, fixed P

A) B)

Specific variants, default Specific variants, fixed P

C) D)

Figure S 3: Cluster indicator matrices for the subjects. A: variant profiles (percentages of
genes with variants per clusters) that are obtained when solving the default SONMTF. B shows
the same as (A), but for the clusters that are obtained when fixing P . C: For the clusters that
are obtained when solving the default SONMTF, the first row indicates the profiles present only
in the healthy subject. The second row reports the profiles present only in the diseased subjects.
D: shows the same, but for the clusters that are obtained when fixing P .

3 Analysis of the germline variants

As a sanity check, we assess the relevance of the genes with variants of our five subjects with

thrombophilia by investigating their known associated phenotypes in DisGeNet v6.0 [4]. These

genes with variants are annotated with 492 phenotype annotations. In particular, the majority of

the identified phenotypes are classified as “Laboratory Procedure” semantic type (123 phenotypes,

out of 492), which are all related to blood tests, e.g., Blood Protein Measurement, Corpuscular

Hemoglobin concentration Mean and Triglycerides Measurement. We further analyze the pheno-

types classified as “Disease or Syndrome” by performing a systematic literature search in PubMed

database [5]. We automatically retrieve the number of scientific publications that associate each

7



A phenotype driven integrative framework uncovers molecular mechanisms of a rare hereditary thrombophilia

phenotype to thrombophilia by searching for co-occurrences between the two in PubMed. We call

thrombophilia-related phenotypes those ones that co-occur at least one time with thrombophilia.

We find that our gene variants are associated with 125 thrombophilia-related phenotypes out of 492,

e.g., Rheumatoid Arthritis, Diabetes Mellitus, Non-Insulin-Dependent and Leukemia Myelocytic

Acute. These findings suggest that considered gene variants are highly related to blood tests and

disorders (50.4% of the phenotype annotations found for our gene variants are either thrombophilia-

related or associated with blood tests), which is in accordance with thrombophilia-related tests and

risk of thrombosis. Indeed, both Rheumatoid Arthritis and Diabetes Mellitus are autoimmune

diseases that are linked to an increased risk of venous thrombosis [6]. To assess the relevance of the

observation that thrombophilia co-occurs with 125 of the “Disease or Syndrome” phenotypes that

annotate the subjects’ genes with variants in PubMed articles, we also measure the co-occurrences

between any two of these “Disease or Syndrome” phenotypes in PubMed articles. We find that

thrombophilia co-occurs more with the phenotypes that annotate the subjects’ genes with variants

in PubMed articles than 73% of the considered “Disease or Syndrome” phenotypes. This further

suggests that the genes with variants of our five subjects are indeed related to thrombophilia.

Moreover, we analyze the impact of our germline variants using the PhD-SNPg method [7]. We

use PhD-SNPg to extract pathogenic variants and compare these results with our findings. We find

that only 173 out of the 17,104 genes considered in our study are predicted as pathogenic variants

(p-values< 0.05). Moreover, we compute a hypergeometric test to check if these pathogenic variants

are over-represented in our reported clusters. The results show that the cluster containing F2 also

contains 14 predicted pathogenic variants and F12/TGFB1 cluster contains 12 predicted pathogenic

variants out of 695 (hypergeometric p-values< 0.05). Instead, the disease-specific subnetwork

contains six predicted pathogenic variants out of 461, and the healthy-specific subnetwork does

not contain them, which is in accordance with its healthy specificity. Interestingly, PhD-SNPg

predicted pathogenic variants are not annotated as thrombophilia genes.
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4 Candidate genes overview

In the main manuscript, we find some candidate genes that need to be further investigated. How-

ever, the majority of these genes have already been annotated for other diseases (17 out of 20).

We report in Table 2 their disease associations found using DisGeNet. Interestingly, some of the

diseases associated with our candidate genes are related to blood conditions.

Candidate gene Disease

CD320 Encephalitis, Fever
DHCR7 Smith-Lemli-Opitz Syndrome, Movement Disorders
FN3KRP Diabetes, Endothelian dysfunction
GCSH Nonketotic Hyperglicemia
MPST Corpuscolar Hemoglobin Concetration Mean
RTEL1 Glioma
SCL27A4 Ichthyosis Prematurity Syndrome
UCP2 Diabetes
APOA5 Serum total cholesterol measurement, Triglycerides measurements
CRYGB Crystalline cataract
GNAT1 Night Blindness
SERPINF2 Aortic Aneurysm, Cerebral Infarction
VTN Blood Protein Measurement
IHH Bradrydactyly, type A1
PROZ Anemia Sichke Cell, Vaso-Occlusive Crisis
ADRA2A Osteoporosis, Metabolic Diseases
TBXA2R Asthma, Cerebral Infaction

Table S 2: Thrombophilia candidate genes. The table shows DisGeNet annotation for the
candidate genes.
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