Supplementary Material

Cost-effectiveness of Lisocabtagene Maraleucel Versus Axicabtagene Ciloleucel and

Tisagenlecleucel for Treatment of Relapsed or Refractory Large B-Cell Lymphoma in the United States

Christopher Parker¹ · Fei Fei Liu² · Kristen A. Deger³ · Conrado Franco-Villalobos⁴ · Irina Proskorovsky⁴ · Scott J. Keating² · Sonja Sorensen³

¹Bristol Myers Squibb, Uxbridge, UK; ²Bristol Myers Squibb, Princeton, NJ, USA; ³Evidence Synthesis, Modeling & Communication, Evidera Inc., Bethesda, MD, USA; ⁴Evidence Synthesis, Modeling & Communication, Evidera Inc., Montreal, QC, Canada

Address correspondence to: Sonja Sorensen, MPH Vice President, Evidence Synthesis, Modeling & Communication Evidera Inc. Bethesda, MD 20814, USA Sonja.sorensen@evidera.com

Table of Contents

Supplemental Material 1 Patient characteristic used for matching in the matching-adjusted indirect comparisons
Supplemental Table 1 Patient characteristics and clinical factors adjusted for in the MAIC4
Supplemental Material 2 Analysis of microcosting for cytokine release syndrome (CRS) and neurological events (NE)
Supplemental Table 2 Analysis of microcosting for CRS and NEs6
Supplemental Table 3 Microcosting inputs for hypogammaglobulinemia7
Supplemental Material 3 Costing for adverse events
Supplemental Table 4 Unit cost for AEs8
Supplemental Material 4 Monitoring9
Supplemental Table 5 Monitoring frequency and unit costs9
Supplemental Material 5 Deterministic sensitivity analysis (DSA) and probabilistic sensitivity analysis (PSA)
Supplemental Material 6 Scenario analysis of liso-cel versus axi-cel and liso-cel versus tisa-cel
Supplemental Table 6 Top 15 scenarios: liso-cel versus axi-cel
Supplemental Table 7 Top 15 scenario results: liso-cel versus tisa-cel
Supplemental Material 7 Model results of health outcomes compared with published models 15
Supplemental Table 8 Comparison of model results with published models15
References16

Supplemental Material 1 Patient characteristic used for matching in the matching-adjusted indirect comparisons

Two pairwise unanchored matching-adjusted indirect comparisons (MAIC) were conducted comparing lisocabtagene maraleucel (liso-cel) to axicabtagene ciloleucel (axi-cel) and tisagenlecleucel (tisa-cel). Each MAIC produced a set of weights that can be applied to the TRANSCEND NHL 001 (TRANSCEND) population to reflect the patient population more closely in each of the relevant comparator trials. For the purposes of economic modeling, the MAIC weights were incorporated into the statistical analyses for extrapolating progression-free survival (PFS) and overall survival (OS) to derive relative treatment effect terms based on matched populations. For safety, the odds ratios resulting from each MAIC were applied to the liso-cel–naïve adverse event (AE) rates to derive AE rates for each comparator based on matched populations.

Full details of the MAIC methods have been previously published [1, 2]. Briefly, the methods and factors adjusted were as follows. Individual patient data (IPD) from TRANSCEND were adjusted to match the marginal distribution (e.g., mean, variance) of clinical factors among patients from each comparator trial (ZUMA-1 and JULIET) individually. Patients from TRANSCEND were removed from the IPD set if they did not satisfy eligibility criteria specified in the comparator trial for each MAIC. IPD for patients who remained in the TRANSCEND data set were then weighted using a method-of-moments propensity score model. Baseline characteristic and outcome definitions were aligned with those in each trial. Clinically relevant prognostic factors (identified from literature, TRANSCEND data, and five independent clinical experts) were adjusted collectively in a stepwise fashion by ranked order.

Clinical factors adjusted for/matched	Axi-cel	Tisa-cel		
	ESS = 99	ESS = 49 ^a		
Bridging therapy	Not adjusted in matching used for economic model	No adjustment needed		
Disease histology	Patients with FL3B or PMBCL were removed	Patients with FL3B were removed		
ECOG PS	Patients with ECOG PS of 2 were removed	Patients with ECOG PS of 2 were removed		
Secondary CNS lymphoma	Patients with secondary CNS lymphoma were removed	Patients with secondary CNS lymphoma were removed		
Prior allogeneic HSCT	Patients who had received prior allogeneic HSCT were removed	Patients who had received prior allogeneic HSCT were removed		
Disease histology	\checkmark	\checkmark		
Tumor burden – sum of the products of perpendicular diameters before lymphodepleting therapy	\checkmark			
ECOG PS score	\checkmark	\checkmark		
Tumor burden – bulky disease	\checkmark			
IPI score	\checkmark	\checkmark		
R/R status to last therapy	\checkmark	\checkmark		
Age	\checkmark	\checkmark		
Prior auto-HSCT	\checkmark	\checkmark		
Disease stage	\checkmark	\checkmark		
Creatinine clearance	\checkmark	√c		
Tumor burden – extranodal disease	\checkmark			
Prior number of therapies	\checkmark	\checkmark		
LVEF	\checkmark	√c		
Sex	\checkmark			
Pre-leukemia absolute lymphocyte count	\checkmark	√b		

Supplemental Table 1 Patient characteristics and clinical factors adjusted for in the MAIC

Axi-cel axicabtagene ciloleucel, CNS central nervous system, ECOG PS Eastern Cooperative Oncology Group performance status, ESS effective sample size, FL3B follicular lymphoma grade 3B, HSCT hematopoietic stem cell transplantation, IPI International Prognostic Index, LVEF left

Supplementary Material

ventricular ejection fraction, *MAIC* matching-adjusted indirect comparisons, *OS* overall survival, *PFS* progression-free survival, *PMBCL* primary mediastinal B-cell lymphoma, *R/R* relapsed or refractory, *tisa-cel* tisagenlecleucel ^aDifferent ESS were used for OS (ESS = 49, rounded from 49.30) and PFS (ESS = 48, rounded from 47.52) owing to comparison with the JULIET

trial involving different rank order of factors for OS and PFS

^bIncluded only in the OS scenario

°Included only in the PFS scenario

Supplemental Material 2 Analysis of microcosting for cytokine release syndrome (CRS) and neurological events (NE)

CRS, NEs, and hypogammaglobulinemia are events of special interest for chimeric antigen receptor (CAR) T cell therapies. These events require vigilant monitoring, aggressive supportive treatments, and occasionally intensive care [3]. Accordingly, all-grade CRS, NEs, and hypogammaglobulinemia events were included in the model, irrespective of incidence. These AEs were microcosted based on drug costs in treating and managing them, along with any associated hospital or inpatient stay.

		0
AE	Cost, USD	Source
CRS grade ≥3	59,737	Liso-cel CRS and neurotoxicity analysis, BLA data-cut
CRS grade 1–2	9232	USPI AE
NEs grade ≥3	13,401	
NEs grade 1–2	6779	

Supplemental Table 2 Analysis of microcosting for CRS and NEs

AE adverse event, BLA Biologics License Application, CRS cytokine release syndrome, *liso-cel* lisocabtagene maraleucel, NE neurological event, USD United States dollars, USPI United States prescribing information

Supplemental Table 3 Microcosting inputs for hypogammaglobulinemia

Drug cost: intravenous immunoglobulins

	Cost per unit, USD [4]	Concentration per unit	Tablet/ vial size	Administration route	Cost per mg, USD
Unit cost	47	500 mg	1 vial	IV	0.09
	Dosing	Frequency	Duration	Drug cost per episode, USD	Admin cost per episode, USD
Hypogammaglobulinemia grade ≥3	0.5 g/kg [5, 6]	Every 4 weeks	11.4 months	45,934	5304
Hypogammaglobulinemia grade 1–2	400 mg/kg [5, 6]	Every 4 weeks	4.5 months	14,505	2094
Management cost	Cost, USD	Notes			
Hypogammaglobulinemia grade ≥3	9410 [7]				
Hypogammaglobulinemia grade 1–2	84 [8]	Assume the cost of a GP visit			

GP general practitioner, IV intravenous, USD United States Dollars

Supplemental Material 3 Costing for adverse events

All other AEs were costed using data extracted from the Healthcare Cost and Utilization Project (HCUP) database. Grade \geq 3 AE costs are presented below. The corresponding grade 1–2 AEs were assumed to have required a single general practitioner (GP) visit (\$84) [8].

	Supplemental	Table	4 Ur	nit cost	for AEs
--	--------------	-------	-------------	----------	---------

	Grade ≥3 AEs
	Average cost per episode, USD
Infections	10,507
Prolonged cytopenia	16,566
Febrile neutropenia	21,916
Anemia	7872
Fatigue	7999
Hypertension	8358
Hypotension	7042
Нурохіа	9154
Leukopenia	4040
Lymphopenia	4040
Neutropenia	12,396
Pyrexia	7592
Thrombocytopenia	11,890

AE adverse event, USD United States Dollars

Supplemental Material 4 Monitoring

The phases of monitoring included 28 days after CAR T-cell infusion, progression free, progression free for more than 2 years, and after progression. The types and frequencies of monitoring associated with each phase were informed based on internal Bristol Myers Squibb clinical assumption in the absence of published or long-term observational data. Resource use for patients in the third-line or later (3L+) PFS state is relatively intensive for the first few years, particularly 28 days after infusion; for patients who remain in the PFS state beyond 2 years, resource use becomes less frequent, reflecting that these patients are no longer expected to be at risk of progression or death from disease. Patients who progress require less monitoring care (vs the PFS state) until the end of the time horizon.

Supplemental Table 5 Monitoring frequency and unit costs

				Unit(s) per year			
	Linit cost	Intensive: up to 28 days after infusion		Progression free		Patients	Aftor
Monitoring type	USD [8]	CAR T cells	Salvage chemotherapy	CAR T cells	Salvage chemotherap y	progression free for >2 years	progression
Cancer nurse	52	12	0	0	0	0	4
Oncology visit	175	12	0	4	4	2	4
Complete blood count	37	12	0	4	4	2	0
Liver function test	49	12	0	4	4	2	4
Lactate dehydrogenase	34	12	0	4	4	2	4
Coagulation panel	180	12	0	4	4	2	0
Inflammatory markers	121	12	0	4	4	2	0
Immunoglobulins	73	0	0	4	4	2	0
CT scan	622	0	0	4	4	2	2
PET scan	622	0	0	2	2	0	0
Total cost, USD		7776	0	6408	6408	2582	2484

CAR chimeric antigen receptor, CT computed tomography, PET positron emission tomography; USD United States Dollars

Supplemental Material 5 Deterministic sensitivity analysis (DSA) and probabilistic sensitivity analysis (PSA)

In the DSA, the lower and upper bounds of a parameter were based on the 95% confidence intervals (CI). If no CI was available, the bounds were assumed to be within ±10% of the base-case value. PSA was performed by simultaneously varying multiple parameters using a Markov chain Monte Carlo simulation with 1000 replications. Values for each parameter were sampled using statistical distributions chosen to best match the data type (e.g., beta distribution for utilities and probabilities to restrict between 0 and 1, gamma distribution for costs to restrict to 0 and positive values, Dirichlet distribution for proportions adding to 100%). Standard errors (SE) used in the PSA distributions were informed directly from the input source; if unavailable, they were calculated from the standard deviation (SD) and sample size or CIs; and, if none of those estimates were available, the SE was assumed to be 10% of the mean. Uncertainty in the survival projections and health state utilities was captured in the variance-covariance matrices from the statistical analyses and applied using the Cholesky decomposition approach.

Two key scenarios focused on differences between the CAR T-cell therapy trials. The first assumed that all patients received their CAR T-cell infusion, as this may differ in clinical practice to the trials. The second explored the impact of potential bias resulting from a difference in the ZUMA-1 and TRANSCEND designs regarding bridging therapy use. This scenario compared liso-cel with axi-cel using an MAIC that matched on bridging (i.e., excluding patients from TRANSCEND who received bridging therapy). In this scenario, PFS and OS curves for axi-cel were derived by applying hazard ratios (HR) from an update of the analysis by Maloney et al. [1] (PFS HR = 0.94; OS HR = 0.91) to the liso-cel reference curves.

Supplementary Material

Supplemental Material 6 Scenario analysis of liso-cel versus axi-cel and liso-cel versus tisa-cel

Scenario analyses were performed to assess the impact of a specific scenario or model assumption on results. Selected model parameters were varied (e.g., exploring alternative distributions), using alternative literature-based values or clinical expert assumptions versus the TRANSCEND trial, among others.

Rank	Scenario name	Base-case value or setting	Scenario setting	INMB, USD	Percentage change from base-case INMB, %
	Base case			75,170	—
1	Comparative	MAIC-derived comparative	Naïve comparison:		
	efficacy source for OS and PFS	efficacy	liso-cel: gamma (OS), loglogistic (PFS)		
			tisa-cel: gamma (OS), loglogistic (PFS)	50,563	-32.7
			axi-cel: gamma (OS), loglogistic (PFS)		
			salvage chemotherapy: loglogistic (OS)		
2	Efficacy for patients receiving liso-cel out of specifications	Assume same efficacy as liso-cel	Assume same efficacy as salvage chemotherapy	57,002	-24.2
3	Pretreatment patient flow	As observed in trials	All patients receive CAR T cells	58,244	-22.5
4	Source for AE rates for all treatment	MAIC-derived AE rates	Observed AE rates	59,106	-21.4
5	AE costing approach	Microcosting	Average costs based on HCUP [7]	63,479	-15.6
6	Projection approach for axi-cel (MAIC HR vs liso-cel)	Projection with MCM fittings	HR matching on bridging vs liso- cel	85,950	14.3
7	Alternative MAIC-	Gamma for all treatment	Weibull for all treatment arms	71,998	-4.2
	based OS fittings	arms	Exponential for all treatment arms	66,521	-11.5
8	Health state utilities	Based on TRANSCEND NHL 001:	Based on axi-cel [9] and PV NICE [10] submissions:	73,834	-1.8

Supplemental Table 6	5 Тор	15 scenarios: I	liso-cel versus axi-cel
----------------------	--------------	-----------------	-------------------------

Rank	Scenario name	Base-case value or setting	Scenario setting	INMB, USD	Percentage change from base-case INMB, %
		pretreatment: 0.764; initial PFS: 0.831; progressed	pretreatment: 0.647; initial PFS: 0.722; progressed disease: 0.647		
		disease: 0.764	Lower progressed disease value based on Whittington et al. 2019 [11] publication: 0.390 (reduction of PFS value by 0.443)	67,258	-10.5
9	Proportion receiving bridging therapy based on real-world evidence	Liso-cel: 59% Tisa-cel: 92% Axi-cel: 0%	Liso-cel: 59% Tisa-cel: 92% Axi-cel: 53%	81,276	8.1
10	AE decrements for CRS and neurotoxicity	Decrement for CRS based on Howell et al. 2022 [12]; Decrement for neurotoxicity based on TRANSCEND (0.152 for 37.2 days)	CRS assumed the same as progression-free (assumption in axi-cel NICE submission [9]) Neurotoxicity = 0.178 applied for 365 days per Howell et al. 2022 [12]	79,895	6.3
11	Discount rate for	3%	0%	77,297	2.8
	health outcomes		5%	74,383	-1.0
12	Time horizon	Lifetime	10 years	73,366	-2.4
			25 years	74,918	-0.3
13	Discount rate for	3%	0%	74,798	-0.5
	cost outcomes		5%	75,395	0.3
14	IVIG use	Based on incidence of hypogammaglobulinemia	Based on all IVIG use in TRANSCEND	75,763	0.8
15	Cutoff for long-term remission assumptions	2 years	5 years	75,638	0.6

AE adverse event, axi-cel axicabtagene ciloleucel, CAR chimeric antigen receptor, CRS cytokine release syndrome, HCUP Healthcare Cost and Utilization Project, HR hazard ratio, INMB incremental net monetary benefit, IVIG intravenous immunoglobulin, *liso-cel* lisocabtagene maraleucel, MAIC matching-adjusted indirect comparison, MCM mixture cure model, NICE National Institute for Health and Care Excellence, OS overall survival, PFS progression-free survival, PV Polatuzumab vedotin, *tisa*-cel tisagenlecleucel, USD United States Dollars

Rank	Scenario name	Base-case value or setting	Scenario setting	INMB, USD	Percentage change from base-case INMB, %
	Base case			134,125	_
1	Discount rate for	3%	0%	222,470	65.9%
	health outcomes		5%	95,546	-28.8
2	Time horizon	Lifetime	10 years	49,862	-62.8
			25 years	122,371	-8.8
3	Comparative efficacy	MAIC-derived comparative	Naïve comparison:		
	source for OS and PFS	efficacy	liso-cel: gamma (OS), loglogistic (PFS)		
			tisa-cel: gamma (OS), loglogistic (PFS)	66,727	-50.2
			axi-cel: gamma (OS), loglogistic (PFS) salvage chemotherapy: loglogistic (OS)		
4	Pretreatment patient flow	As observed in trials	All patients receive CAR T cells	186,548	39.1
5	Efficacy for patients receiving liso-cel out of specifications	Assume same efficacy as liso-cel	Assume same efficacy as salvage chemotherapy	115,957	-13.5
6	Excess mortality for	SMR 1.40 for first 2 years	SMR 1.40 for the first 2 years [13]	143,819	7.2
	cured patients vs general population	followed by 1.18 [13]	SMR 1.56 for the first 5 years [14]	138,880	3.5
7	Alternative MAIC- based OS fittings	Gamma for all treatment arms	OS projected using Weibull fittings for all treatment arms	132,450	-1.2
			OS projected using exponential fittings for all treatment arms	128,664	-4.1
8	Health state utilities	Based on TRANSCEND: pretreatment: 0.764; initial PFS: 0.831; progressed disease: 0.764	Based on axi-cel [9] and PV NICE [10] submissions: pretreatment: 0.647; initial PFS: 0.722; progressed disease: 0.647	129,293	-3.6
			Lower progressed disease value based on Whittington et al. 2019 [11] publication: 0.390 (reduction of PFS value by 0.443)	128,919	-3.9
9		3%	0%	130,673	-2.6

Supplemental Table 7 Top 15 scenario results: liso-cel versus tisa-cel

Supplementary Material

Rank	Scenario name	Base-case value or setting	Scenario setting	INMB, USD	Percentage change from base-case INMB, %
	Discount rate for cost outcomes		5%	135,497	1.0
10	AE costing approach	Microcosting	Average costs based on HCUP [7]	131,313	-2.1
11	Source for AE rates for all treatment	MAIC-derived AE rates	Observed AE rates	136,875	2.1
12	Cutoff for long-term remission assumptions	2 years	5 years	132,623	-1.1
13	AE decrements for CRS and neurotoxicity	Decrement for CRS based on Howell et al. 2022 [12]; Decrement for neurotoxicity based on TRANSCEND (0.152 for 37.2 days)	CRS assumed the same as progression free (assumption in axi-cel NICE submission [9]) Neurotoxicity = 0.178 applied for 365 days per Howell et al. 2022 [12]	133,013	-0.8
14	Alternative MAIC- based PFS fittings	Loglogistic for all treatment arms	PFS projected using Lognormal fittings for all treatment arms	134,011	-0.1
			PFS projected using generalized gamma fittings for all treatment arms	133,679	-0.3
15	Proportion receiving liso-cel administration in an outpatient setting	9.3%	0%	133,790	-0.2

AE adverse event, axi-cel axicabtagene ciloleucel, CAR chimeric antigen receptor, CRS cytokine release syndrome, HCUP Healthcare Cost and Utilization Project, *liso-cel* lisocabtagene maraleucel, MAIC matching-adjusted indirect comparison, NICE National Institute for Health and Care Excellence, OS overall survival, PFS progression-free survival, SMR (Standardized Mortality Ratio), *tisa-cel* tisagenlecleucel; USD United States Dollars

Supplemental Material 7 Model results of health outcomes compared with published models

The model results were compared with results reported in relevant published studies in the United States (US) where possible. The base-case outcomes for axi-cel and tisa-cel resulting from this analysis are aligned with other published models for diffuse large B-cell lymphoma in the US. Only US studies were considered for this comparison and verification to remain consistent from a patient health perspective (e.g., patient lifestyle, characteristics, and treatment practices) and also an economic modeling perspective (e.g., discounting). The published economic analyses were identified from a systematic literature review that was performed in early 2021. The systematic literature review was performed in accordance with the *Cochrane Handbook for Systematic Reviews of Interventions* [15] and reported in alignment with the Preferred Reporting Items for Systematic Literature Reviews and Meta-Analyses (also known as PRISMA) guidelines [16]. The database searches were restricted to the publication years 1 January 2003 to 5 February 2021. An additional targeted search was conducted in March 2022 to identify any US-based economic analyses published since February 2021; two studies were identified (Qi et al. 2021 [17] and Liu et al. 2021 [18]).

	Axi-cel		Tisa-cel	
	Discounted LYs	Discounted QALYs	Discounted LYs	Discounted QALYs
Current analysis	6.22	5.09	3.75	3.07
Roth et al. 2018 [19]	9.49	7.67	—	—
Whittington et al. 2019 [11]	9.19	7.62	—	—
ICER model for B-cell lymphoma 2008 [6]	7.35	5.87	—	—
Qi et al. 2021 [17]	—	—	—	3.35
Lin et al. 2019 [20]ª	9.11—11.80 (undiscounted)	4.28—5.50	5.9—8.25 (undiscounted)	2.82—3.92
Liu et al. 2021 [18]	9.47	7.47	6.73	5.16

Supplemental Table 8 Comparison of model results with published models

ICER Institute for Clinical and Economic Review, LY life-year, PFS progression-free survival, QALY quality-adjusted life-year, tisa-cel tisagenlecleucel

^aA range was reported assuming 20%, 30%, and 40% 5-year PFS. LYs were not discounted

References

- 1. Maloney DG, Kuruvilla J, Liu FF, Kostic A, Kim Y, Bonner A, et al. Matching-adjusted indirect treatment comparison of liso-cel versus axi-cel in relapsed or refractory large B cell lymphoma. J Hematol Oncol. 2021;14:140.
- 2. Cartron G, Fox CP, Liu FF, Kostic A, Hasskarl J, Li D, et al. Matching-adjusted indirect treatment comparison of chimeric antigen receptor T-cell therapies for third-line or later treatment of relapsed or refractory large B-cell lymphoma: lisocabtagene maraleucel versus tisagenlecleucel. Exp Hematol Oncol. 2022;11:17.
- 3. Brudno JN, Kochenderfer JN. Toxicities of chimeric antigen receptor T cells: recognition and management. Blood. 2016;127:3321–30.
- 4. IBM. IBM Micromedex RED BOOK. 2020. <u>https://www.ibm.com/products/micromedex-red-book</u>. Accessed 18 Apr 2022.
- 5. Compagno N, Malipiero G, Cinetto F, Agostini C. Immunoglobulin replacement therapy in secondary hypogammaglobulinemia. Front Immunol. 2014;5:626.
- 6. Institute for Clinical and Economic Review. Chimeric antigen receptor T-cell therapy for Bcell cancers: effectiveness and value. 2018. <u>https://collections.nlm.nih.gov/catalog/nlm:nlmuid-101744954-pdf</u>. Accessed 18 Apr 2022.
- Agency for Healthcare Research and Quality. Healthcare Cost and Utilization Project: weighted national estimates from HCUP National (Nationwide) Inpatient Sample (NIS), 2017; inflated to 2020. 2017. <u>https://hcupnet.ahrq.gov/#setup</u>. Accessed 18 Apr 2022.
- 8. InHealth Professional Services. Physicians' Fee & Coding Guide. Atlanta, GA: InHealth Record Systems; 2019.
- 9. National Institute for Health and Care Excellence (NICE). Axicabtagene ciloleucel for treating diffuse large B-cell lymphoma and primary mediastinal large B-cell lymphoma after 2 or more systemic therapies: technology appraisal guidance [TA559]. 2019. https://www.nice.org.uk/guidance/ta559. Accessed 18 Apr 2022.
- 10. National Institute for Health and Care Excellence (NICE). Polatuzumab vedotin with rituximab and bendamustine for treating relapsed or refractory diffuse large B-cell lymphoma: technology appraisal guidance [TA649]. 2020. https://www.nice.org.uk/guidance/ta649. Accessed 19 Apr 2022.
- 11. Whittington MD, McQueen RB, Ollendorf DA, Kumar VM, Chapman RH, Tice JA, et al. Long-term survival and cost-effectiveness associated with axicabtagene ciloleucel vs chemotherapy for treatment of B-cell lymphoma. JAMA Netw Open. 2019;2:e190035.
- 12. Howell TA, Matza LS, Jun MP, Garcia J, Powers A, Maloney DG. Health state utilities for adverse events associated with chimeric antigen receptor T-cell therapy in large B-cell lymphoma. Pharmacoecon Open. 2022; doi:10.1007/s41669-021-00316-0.
- 13. Maurer MJ, Ghesquières H, Jais JP, Witzig TE, Haioun C, Thompson CA, et al. Eventfree survival at 24 months is a robust end point for disease-related outcome in diffuse large B-cell lymphoma treated with immunochemotherapy. J Clin Oncol. 2014;32:1066– 73.
- 14. Howlader N, Mariotto AB, Besson C, Suneja G, Robien K, Younes N, et al. Cancer-specific mortality, cure fraction, and noncancer causes of death among diffuse large B-cell lymphoma patients in the immunochemotherapy era. Cancer. 2017;123:3326–34.
- 15. Higgins JPT GS. Cochrane handbook for systematic reviews of interventions version 5.1.0. In. Chichester, UK: John Wiley & Sons; 2011.

- 16. Moher D, Liberati A, Tetzlaff J, Altman DG, Group P. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med. 2009;6:e1000097.
- 17. Qi CZ, Bollu V, Yang H, Dalal A, Zhang S, Zhang J. Cost-effectiveness analysis of tisagenlecleucel for the treatment of patients with relapsed or refractory diffuse large B-cell lymphoma in the United States. Clin Ther. 2021;43:1300–19.e8.
- 18. Liu R, Oluwole OO, Diakite I, Botteman MF, Snider JT, Locke FL. Cost effectiveness of axicabtagene ciloleucel versus tisagenlecleucel for adult patients with relapsed or refractory large B-cell lymphoma after two or more lines of systemic therapy in the United States. J Med Econ. 2021;24:458–68.
- 19. Roth JA, Sullivan SD, Lin VW, Bansal A, Purdum AG, Navale L, et al. Cost-effectiveness of axicabtagene ciloleucel for adult patients with relapsed or refractory large B-cell lymphoma in the United States. J Med Econ. 2018;21:1238–45.
- 20. Lin JK, Muffly LS, Spinner MA, Barnes JI, Owens DK, Goldhaber-Fiebert JD. Cost effectiveness of chimeric antigen receptor T-cell therapy in multiply relapsed or refractory adult large B-cell lymphoma. J Clin Oncol. 2019;37:2105–19.