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REVIEWER COMMENTS 

Reviewer #1 (Remarks to the Author): 

Summary: 

The authors present a novel deep-learning method for fast antibody and nanobody structure prediction 

with accuracy estimation. Their method can be divided into three main blocks: an antibody language 

model (described in previous publication), a graph transformer with edge updates and a structure 

module. Their model produces antibody structures of comparable accuracy to AlphaFold Multimer in a 

fraction of the time. Their model is also capable of producing nanobody structures of comparable 

accuracy to those predicted by AlphaFold2. 

It is a well written paper, easy to read and with clear figures. 

Major comments: 

1. In the abstract, the authors make the following statement: “we predicted structures for 105K paired 

antibody sequences, expanding the observed antibody structural space by over 40-fold.”. Large scale 

modelling of antibody sequences has been done previously (M. Raybould, 2021). This statement needs 

to be removed or qualified in some way 

2. In the abstract, the authors make the following statement: “Accurate structure prediction on this 

timescale makes possible avenues of investigation that were previously infeasible”. However, tin the 

paper they show that IGfold has about equal speed and around a 10% increase in accuracy with respect 

to an already published method ABlooper. This statement needs to be removed or rephrased to say 

equally fast but improved performance . 

3. Why is AlphaFold2 used to generate the augmented structural dataset and AlphaFold Multimer for 

the benchmark? 

4. The template data is successfully incorporated into predictions section is confusing. Is it surprising 

that given the true values for certain parts of the structure the model will be capable of predicting these 

accurately? 



5. For nanobody structure prediction the authors should compare to Nanonet (T. Cohen, 2021) which 

claims higher accuracy than AlphaFold2 and greater speed than that claimed in this paper. 

6. The authors claim that homology modelling is less accurate for the framework (line 25). However 

their results show otherwise (AbodyBuilder the homology modelling methods that is compared to is 

more accurate at predicting the light chain framework than IgFold in the used benchmark) 

7. In line 312 the authors claim that IgFold approaches the accuracy of AlpfaFold2 on nanobodies. From 

the results it appears that AlphaFold is still a far more accurate on these proteins. 

8. The code is provided under a non-commercial licence. 

Minor comments: 

1. When showing clusters generated from AntiBERTy embeddings for each CDR, the authors argue that 

the clustering plots show that the encodings include structural features. However, the claim that the 

organization observed within the embedding space corresponds to different canonical folds is 

debatable. Furthermore, for CDR-H3 sequences are being labelled based on CDR length. 

2. In line 269, the authors claim that their predicted RMSD is well-calibrated with respect to the real 

RMSD. Although they show that both these metrics do correlate, in every plot where they compare 

these values the predicted RMSD consistently predicts lower values than the true RMSD. The authors 

should at least comment on this. 

3. When showing the predicted RMSD for the generated structural OAS dataset, it would be beneficial to 

split this by CDR, as the whole Fv RMSD is often uninformative. 

7. There is a typo in the caption of Figure 4. It should be structure instead of structre. 



Reviewer #2 (Remarks to the Author): 

[Summary of the contribution] The paper presents IgFold, a deep learning method for antibody 

structure prediction. IgFold is an end-to-end neural network that consists of a pre-trained language 

model trained on 558M natural antibody sequences, followed by graph networks that directly predict 

backbone atom coordinates. The network allows for ingestion of template information and provides 

uncertainty estimates in addition to the residue locations. IgFold performance was compared with four 

baseline models. The results show that the accuracy is lower than AlphaFold-Multimer, similar to 

DeepAb, and better than two non-deep learning baselines. The authors mention that IgFold provides 

faster predictions than AlphaFold (about 50 times faster) and DeepAb (about 10 times faster) and is 

comparable in time to the other two baselines. 

[Technical contribution] The proposed neural network combines good elements of previously proposed 

networks such as AlphaFold. Thus, the paper does not have novelty with respect to advancing state of 

the art in deep learning. However, it is a reasonable application of deep learning to this particular 

bioinformatics problem. The value of this paper should be found in its potential to advance science. 

[Strengths] 

+ The main strength of IgFold is that it provides good accuracy and fast predictions. So, it fills a gap 

between very accurate but slower AlphaFold and less accurate but faster ABodyBuilder. Thus, IgFold can 

be helpful in specific applications where gains in computation efficiency justify losses in accuracy. 

+ Presentation is very good. The paper is well organized, and everything is explained sufficiently well. 

Analysis of predictions on specific antibodies provides an insight into the performance of IgFold and 

baselines. 

+ Sharing over 100k predictions with the research community is welcome 

[Weaknesses and Suggestions] 

- Main weakness of the work is the lower accuracy of IgFold compared to AlphaFold. To me, this is the 

paper's most interesting result: AlphaFold, trained on a large set of structures without an attempt to 

specialize in antibody structures, is more accurate than IgFold, explicitly trained to do well on 

antibodies. Such a result is not unheard of in deep learning because foundational models in other 

domains (e.g., in NLP and computer vision) also often do better in specialized applications than the 

smaller models made specifically for those specialized applications. [Suggestion] It will be helpful for the 

authors to point to that similarity with other domains. 

- The authors attempt to justify IgFold by comparing prediction speed. Unfortunately, the computational 

time is mentioned only briefly in lines 172-180 and 217, which does not amount to a thorough analysis. 



[Suggestion 1] To make this point stronger, the authors should devote more space to this aspect. It 

would be good to see the prediction times of each model on each of the test structures and see how the 

sequence length impact the prediction times. [Suggestion 2] Because low prediction cost is stated as the 

objective of this paper, the authors should change how they present their work. It would be important 

to discuss how the authors designed IgFold with that objective in mind. It would be important to provide 

an ablation study that demonstrates (1) that reducing IgFold architecture comes at the cost of 

unacceptable deterioration in accuracy and (2) that additional layers do not lead to further 

improvements in accuracy. [Suggestion 3] It would be important for the authors to provide more detail 

about why AlphaFold and DeepAb are slower than IgFold. In particular, what are the main reasons the 

baselines are slower, and would removing or compressing some of their components cause significant 

loss of accuracy? 

- The authors repeatedly imply (lines 199, 227, 236) that IgFold predictions could be helpful despite 

being less accurate than AlphaFold. The argument seems to be that IgFold predictions improve the 

diversity of predicted structures, which could be helpful in some downstream applications. This claim is 

suspect because it is well known from the mixture of experts research that adding inferior predictors to 

an ensemble leads to lower accuracy. [Suggestion] For a claim of that sort to hold, the authors should 

show at least one example (hopefully, not cherry-picked) where adding IgFold to AlphaFold predictions 

is helpful. 

- The authors imply that IgFold finds a sweet spot between accuracy and prediction time. However, they 

do not provide any specific practical example where IgFold would be desirable over more accurate or 

faster models. [Suggestion] The authors should introduce a cost function that combines accuracy and 

time to demonstrate it. For example, in what application 10% accuracy loss can be justified by 10 or 100 

times lower computational cost? 

- On one hand, it is positive that the authors used the structures discovered after July 1, 2021, as test 

data in the evaluation. On another, the set of 67 paired antibodies and 21 nanobodies is too small to 

evaluate IgFold properly. [Suggestion] It would be important to create the second, larger test data set 

using structures prior to July 1, 2021. One suggestion is to start selecting test structures from the 

training data one by one at random and remove from the training data set all similar (e.g., 70% and 

higher identity in CDRs) sequences. In this way, the test sequences will be sufficiently different from the 

remaining training data and would allow proper testing without the fear of biased results. 

+ The results shown in Figures 3 and 4 and the accompanying discussion only refer to 4 specific 

structures. It is not clear why those structures are selected over other test structures. Without 

justification, a reader can start wondering if those structures are cherry-picked. 



Response to reviewers 
 
We thank the reviewers for their comments and critiques, which have undoubtedly 
resulted in a stronger manuscript. Below we detail the changes made in response to the 
reviewer’s comments. For convenience, the original reviewer comments are included, 
while our responses (indented) are below. Changes to the manuscript are indicated by 
red text.  
 
Reviewer 1 
 
Summary:  
 
The authors present a novel deep-learning method for fast antibody and nanobody 
structure prediction with accuracy estimation. Their method can be divided into three 
main blocks: an antibody language model (described in previous publication), a graph 
transformer with edge updates and a structure module. Their model produces antibody 
structures of comparable accuracy to AlphaFold Multimer in a fraction of the time. Their 
model is also capable of producing nanobody structures of comparable accuracy to 
those predicted by AlphaFold2.  
It is a well written paper, easy to read and with clear figures.  
 
Major comments:  
 
In the abstract, the authors make the following statement: “we predicted structures for 
105K paired antibody sequences, expanding the observed antibody structural space by 
over 40-fold.”. Large scale modelling of antibody sequences has been done previously 
(M. Raybould, 2021). This statement needs to be removed or qualified in some way  
 

We appreciate the reviewer bringing this prior work to our attention. We have 
added a discussion of this work to the results section, to highlight the value of 
large-scale modeling of antibody structures. Additionally, we have now 
significantly expanded our set of predicted antibody structures to 1.4M unique 
structures. To our knowledge, this new set is significantly larger than any 
previous effort. We describe these changes in the following text: 
 
Prior work exploring large-scale predictions of antibody structures have provided 
insight into the structural commonalities across individuals, and provide evidence 
of a public structural repertoire (50). Further, comparison on the basis of 
structure (rather than sequence alone) has enabled discovery of convergent 
binders that diverge significantly in sequence (51). 
 
The first set consists of 104,994 paired antibody sequences (clustered at 95% 
sequence identity) from the OAS database (34). These sequences are made up 



of 35,731 human, 16,356 mouse, and 52,907 rat antibodies. The second set 
contains 1,340,180 unique paired human antibody sequences from the immune 
repertoires of four unrelated individuals (52). These sequences span the affinity 
maturation spectrum, consisting of both naive and memory B-cell sequences. 
The structures are predicted with low estimated RMSD by IgFold, indicating that 
they are accurate (Figure S14 and S15). We highlight the predicted accuracy of 
the CDR H3 loops for the 1.3M human antibody sequences in Figure 4G. The 
median length and predicted RMSD for this set are 13 residues and 1.95 Å, 
respectively. We note that the predicted RMSD values tend to be 
underestimations, and in practice the actual H3 loop RMSDs, were structures to 
be experimentally determined, would likely be higher. As of October 2022, only 
2,448 unique paired antibody structures have been determined experimentally 
(33), and thus our predicted dataset represents an over 500-fold expansion of 
antibody structural space. 

 
In the abstract, the authors make the following statement: “Accurate structure prediction 
on this timescale makes possible avenues of investigation that were previously 
infeasible”. However, in the paper they show that IGfold has about equal speed and 
around a 10% increase in accuracy with respect to an already published method 
ABlooper. This statement needs to be removed or rephrased to say equally fast but 
improved performance.  
 

We have now expanded our analysis to measure the runtimes of all methods with 
publicly available code on identical hardware. This analysis shows that IgFold 
provides significant speed improvements vs alternative methods in the full-atom 
prediction setting (including ABlooper), which we believe is the most relevant 
application of such models. We have added the following text to discuss these 
findings: 
 
Although the performance of the deep learning methods for antibody structure 
prediction is largely comparable, the speed of prediction is not. Grafting-based 
methods, such as RepertoireBuilder, tend to be much faster than deep learning 
methods (if a suitable template can be found). However, as reported above, this 
speed is obtained at the expense of accuracy. Recent deep learning methods for 
antibody structure prediction, including DeepAb, ABlooper, and NanoNet, have 
claimed faster prediction of antibody structures as compared to general methods 
like AlphaFold. For our benchmark, all deep learning methods were run on 
identical hardware (12-core CPU with one A100 GPU), allowing us to directly 
compare their runtimes. All computed runtimes are measured from sequence to 
full-atom structure, using the recommended full-atom refinement protocols for 
each method. We could not evaluate the runtimes of RepertoireBuilder as no 
code has been published. The results of this comparison are summarized in 
Figure 4E-F. 



For paired antibodies, we find that IgFold is significantly faster any other 
method tested. On average, IgFold takes 22 seconds to predict a full-atom 
structure from sequence. The next fastest method, ABlooper, averages nearly 
three minutes (174 seconds) for full-atom structure prediction. Although ABlooper 
rapidly predicts coordinates in an end-to-end fashion, the outputs require 
expensive refinement in OpenMM to correct for geometric abnormalities and add 
side chains. The ColabFold (12) implementation of AlphaFold-Multimer evaluated 
here averages just over seven minutes (435 seconds) on average for full-atom 
structure prediction. This is considerably faster than the original implementation 
of AlphaFold-Multimer, which required an expensive MSA search and repeated 
model compilation for every prediction. Finally, the slowest method for paired 
antibody structure prediction was DeepAb, which averaged over twelve minutes 
(750 seconds). DeepAb is considerably slower by design, as it requires 
minimization of predicted inter-residue potentials in Rosetta. We also 
investigated the impact of sequence length on prediction times. In general, the 
runtimes of all methods increased with sequence length (Figure S13A). DeepAb 
and ABlooper were the most sensitive to sequence length, with AlphaFold-
Multimer and IgFold scaling more favorably. 

For nanobodies, we again find that IgFold outpaces alternative methods 
for full-atom structure prediction, requiring an average of 11 seconds. NanoNet 
was the next fastest method, averaging 15 seconds for full-atom structure 
prediction. Similar to ABlooper for paired antibodies, NanoNet outputs require 
expensive refinement to correct for unrealistic backbone geometries and add 
side chains. DeepAb was able to predict nanobody strucutres in just under four 
minutes (224 seconds) on average. Finally, the slowest method for nanobody 
structure prediction was AlphaFold, which averaged nearly six minutes (345 
seconds). As with paired antibodies, we also investigated the impact of sequence 
length on prediction times. In general, the runtimes of all methods increased with 
sequence length  (Figure S13B). Although NanoNet had several outlier cases 
that required significant refinement, the prediction times for a majority of targets 
increased with sequence length. We also note that for methods capable of 
predicting both nanobody and paired antibody structures, runtimes tend to 
roughly double in the paired setting (scaling linearly with total length), as 
expected. 

 
Why is AlphaFold2 used to generate the augmented structural dataset and AlphaFold 
Multimer for the benchmark?  
 

We have added the following text to the manuscript to clarify that we used a 
modified AlphaFold to predict paired antibodies because AlphaFold-Multimer was 
not yet released: 
 
Because AlphaFold-Multimer was not yet released, all predictions were 
performed with the original AlphaFold model. 



 
The template data is successfully incorporated into predictions section is confusing. Is it 
surprising that given the true values for certain parts of the structure the model will be 
capable of predicting these accurately?  
 

We agree with the authors that it is not surprising that the model can successfully 
incorporate the true structure (in the form of templates) into its predictions when 
provided. We have added the following text to provide context for highlighting this 
result: 
 
Although these results are not surprising, they showcase a key functionality 
lacking in prior antibody-specific methods. 

 
For nanobody structure prediction the authors should compare to Nanonet (T. Cohen, 
2021) which claims higher accuracy than AlphaFold2 and greater speed than that 
claimed in this paper.  
 

We have now added a comparison to NanoNet on our expanded nanobody 
structure benchmark. Notably, we do not find improvements over AlphaFold2 by 
NanoNet, and find that the prediction speed of NanoNet (for a full-atom structure, 
rather than unrefined backbone coordinates) is comparable to or slower than 
IgFold on average (see response to earlier comment). The following text has 
been added to introduce NanoNet and describe its performance on the 
benchmark: 
 
Another tool, NanoNet, has been trained specifically for prediction of single-chain 
antibodies (nanobodies) and provides fast predictions. 
 
NanoNet, trained specifically for nanobody structure prediction, outperforms 
DeepAb (average RMSD of 5.43 Å). 

 
The authors claim that homology modelling is less accurate for the framework (line 25). 
However their results show otherwise (AbodyBuilder the homology modelling methods 
that is compared to is more accurate at predicting the light chain framework than IgFold 
in the used benchmark). 
 

Indeed, as the reviewer notes, the benchmark data presented do not support this 
claim. We have adjusted the text to remove this claim, and instead note that 
ABlooper relies on external tools for framework modeling. 
 
ABlooper, while faster and more informative, relies on external tools for 
framework modeling, cannot incorporate CDR loop templates, and does not 
support nanobody modeling. 



 
In line 312 the authors claim that IgFold approaches the accuracy of AlpfaFold2 on 
nanobodies. From the results it appears that AlphaFold is still a far more accurate on 
these proteins. 
 

We have now expanded our nanobody benchmark using the same methodology 
described in our submission to 76 structures (from 23) using new structures 
deposited in the PDB. On the expanded benchmark, we find that the difference in 
performance between AlphaFold2 and IgFold is significantly reduced compared 
to our initial, smaller benchmark. These results are described in the following 
additions: 
 

 
As with paired antibodies, all methods evaluated produced highly accurate 
predictions for the framework residues, with the average RMSD ranging from 
0.57 Å to 0.80 Å. No method achieves sub-angstrom accuracy on average for 
CDR1 loops, though AlphaFold and IgFold achieve the best performance. For 
CDR2 loops, we observe a substantial improvement by IgFold and the other 
deep learning methods over RepertoireBuilder, with AlphaFold achieving the 
highest accuracy on average. For the CDR3 loop, RepertoireBuilder prediction 
quality is highly variable (average 
RMSDCDR3 of 7.54 Å), reflective of the increased difficultly of identifying suitable 
template structures for the long, conformationally diverse loops. DeepAb 
achieves the worst performance for CDR3 loops, with an average RMSDCDR3 of 
8.52 Å, probably because its training dataset was limited to paired antibodies 
(14), and thus the model has never observed the full range of conformations 
accessible to nanobody CDR3 loops. NanoNet, trained specifically for nanobody 
structure prediction, outperforms DeepAb (average RMSDCDR3 of 5.43 Å). 
AlphaFold displays the best performance for CDR3 loops, with an average 
RMSDCDR3 of 4.00 Å, consistent with its high accuracy on general protein 
sequences. IgFold CDR3 predictions tend to be slightly less accurate than those 
of AlphaFold (average RMSDCDR3 of 4.25 Å), but are significantly faster to 
produce (eleven seconds for IgFold, versus six minutes for the ColabFold 
implementation of AlphaFold). 

To better understand the distinctions between IgFold- and AlphaFold-
predicted nanobody structures, we highlight two examples from the benchmark. 
First, we compared the structures predicted by both methods for the benchmark 
target 7AQZ (unpublished, Figure 2F). This nanobody features a 15-residue 
CDR3 loop that adopts the "stretched-twist" conformation (44), in which the 
CDR3 loop bends to contact the framework residues that would otherwise be 
obstructed by a light chain in a paired antibody. IgFold correctly predicts this 
nanobody-specific loop conformation  (RMSDCDR3 = 2.81 Å), while AlphaFold 
predicts an extended CDR3 conformation (RMSDCDR3 = 7.08 Å). Indeed, there 
are other cases where either IgFold or AlphaFold correctly predicts the CDR3 



loop conformation while the other fails (see off-diagonal points in Figure S8G). In 
the majority of such cases, AlphaFold predicts the correct conformation, yielding 
the lower average CDR3 RMSD. In a second example, we compared the 
structures predicted by both methods for the benchmark target 7AR0 
(unpublished, Figure 2G). This nanobody has a long 17-residue CDR3 loop with 
a short helical region. Although both methods correctly predict the loop 
conformation, IgFold fails to predict the helical secondary structure, resulting in a 
less accurate prediction (RMSDCDR3 = 2.27 Å) than that of AlphaFold 
(RMSDCDR3 = 0.84 Å). Such structured loops highlight a key strength of 
AlphaFold, which was trained on a large dataset of general proteins and has thus 
encountered a broad variety of structral arrangements, over IgFold, which has 
observed relatively few such structures within its training dataset. 

 
The code is provided under a non-commercial licence.  
 
 
 
Minor comments:  
 
When showing clusters generated from AntiBERTy embeddings for each CDR, the 
authors argue that the clustering plots show that the encodings include structural 
features. However, the claim that the organization observed within the embedding 
space corresponds to different canonical folds is debatable. Furthermore, for CDR-H3 
sequences are being labelled based on CDR length.  
 

In response to the reviewer’s comment, we have softened the claim that 
AntiBERTy has learned structural features of antibodies from sequence pre-
training. We now note that there is some organization in the dimensionality 
reduction analysis, but we only claim that the model has picked up on some 
distinguishing features. We also note that in the absence of defined clusters, 
CDR H3 loops are labeled according to length. We note this in the text and have 
now added this to the supplemental figure legend as well. These changes are 
described below: 

 
To determine whether the CDR loop representations encoded structural features, 
we labeled each point according to its canonical structural cluster. For CDR H3, 
which lacks canonical clusters, we instead labeled by loop length. For the five 
CDR loops that adopt canonical folds we observed some organization within the 
embedded space, particularly for CDR1 loops. For the CDR H3 loop, we found 
that the embedding space did not separate into natural clusters, but was rather 
organized roughly in accordance with loop length. These results suggest that 
AntiBERTy has learned some distinguishing structural features of CDR loops 
through sequence pre-training alone. 
 



Updated supplemental figure legend: 
For CDR H3, points are labeled according to loop length, as canonical structures 
are not defined. 

 
In line 269, the authors claim that their predicted RMSD is well-calibrated with respect to 
the real RMSD. Although they show that both these metrics do correlate, in every plot 
where they compare these values the predicted RMSD consistently predicts lower 
values than the true RMSD. The authors should at least comment on this.  
 

We have added some discussion of the underestimation of CDR RMSD and 
suggested potential sources of this behavior. We have also reworded our 
statement claiming calibration on unnatural sequences to instead note that the 
accuracy estimation is sensitive to such out-of-distribution sequences. These 
changes, along with updates reflecting new results given our larger benchmark, 
are provided below: 
 
We observed significant correlations between the predicted error and the loop 
RMSDs from native for all the paired Fv CDR loops (Figure S10). For CDR H2 
and CDR L2 loops, the correlations between predicted and measured RMSD 
were notably weaker. However, given the relatively high accuracy of predictions 
for these loops, there was little error to detect. For nanobodies, we observed 
significant correlations between the predicted error and RMSD for all the CDR 
loops (Figure S11). Interestingly, for all loops the model tended to predict lower 
RMSD than was measured. This may be a result of the imbalance between the 
smaller number of residues with higher RMSD (CDR loops) and the greater 
number with lower RMSD (framework residues). In the future, this miscalibration 
may be solved by using a weighted loss function that penalizes larger errors 
more heavily. However, the model's ability to effectively rank the accuracy of 
different CDR loops is still useful for identifying potentially inaccurate predictions. 
 
This suggests that the RMSD predictions from IgFold are sensitive to unnatural 
antibody sequences and should be informative for a broad range of antibody 
structure predictions. 

 
When showing the predicted RMSD for the generated structural OAS dataset, it would 
be beneficial to split this by CDR, as the whole Fv RMSD is often uninformative.  
 

We have now performed a more substantive investigation of the properties of our 
predicted antibody datasets. We show the relationship between CDR loop 
lengths and predicted RMSD, as well as plot univariate marginals to show the 
distributions of these parameters individually. We provide these results for both 
predicted datasets in new supplemental figures S14 and S15. 
 



The primary advantage of IgFold over other highly accurate methods like 
AlphaFold is its speed at predicting antibody structures. This speed enables 
large-scale prediction of antibody structures on modest compute resources. 
Prior work exploring large-scale predictions of antibody structures have provided 
insight into the structural commonalities across individuals, and provide evidence 
of a public structural repertoire (50). Further, comparison on the basis of 
structure (rather than sequence alone) has enabled discovery of convergent 
binders that diverge significantly in sequence (51). To demonstrate the utility of 
IgFold’s speed for such analyses, we predicted structures for two non-redundant 
sets of paired antibodies. The first set consists of 104,994 paired antibody 
sequences (clustered at 95% sequence identity) from the OAS database (34). 
These sequences are made up of 35,731 human, 16,356 mouse, and 52,907 rat 
antibodies. The second set contains 1,340,180 unique paired human antibody 
sequences from the immune repertoires of four unrelated individuals (52). These 
sequences span the affinity maturation spectrum, consisting of both naive and 
memory B-cell sequences. The structures are predicted with low estimated 
RMSD by IgFold, indicating that they are accurate (Figure S14 and S15). We 
highlight the predicted accuracy of the CDR H3 loops for the 1.3M human 
antibody sequences in Figure 4G. The median length and predicted RMSD for 
this set are 13 residues and 1.95 Å, respectively. We note that the predicted 
RMSD values tend to be underestimations, and in practice the actual H3 loop 
RMSDs, were structures to be experimentally determined, would likely be higher. 
As of October 2022, only 2,448 unique paired antibody structures have been 
determined experimentally (33), and thus our predicted dataset represents an 
over 500-fold expansion of antibody structural space. These structures are made 
available for use in future studies. 

 
 
There is a typo in the caption of Figure 4. It should be structure instead of structre. 
 

Thank you. This and similar typos have been corrected. 
 
 
Reviewer 2 
 
Summary: 
 
The paper presents IgFold, a deep learning method for antibody structure prediction. 
IgFold is an end-to-end neural network that consists of a pre-trained language model 
trained on 558M natural antibody sequences, followed by graph networks that directly 
predict backbone atom coordinates. The network allows for ingestion of template 
information and provides uncertainty estimates in addition to the residue locations. 
IgFold performance was compared with four baseline models. The results show that the 
accuracy is lower than AlphaFold-Multimer, similar to DeepAb, and better than two non-



deep learning baselines. The authors mention that IgFold provides faster predictions 
than AlphaFold (about 50 times faster) and DeepAb (about 10 times faster) and is 
comparable in time to the other two baselines.  
 
Technical contribution: 
 
The proposed neural network combines good elements of previously proposed 
networks such as AlphaFold. Thus, the paper does not have novelty with respect to 
advancing state of the art in deep learning. However, it is a reasonable application of 
deep learning to this particular bioinformatics problem. The value of this paper should 
be found in its potential to advance science.  
 

Since submitting our manuscript for publication, two new methods (ESMFold, 
OmegaFold) employing approaches similar to IgFold have been described in 
preprints. We have added the following text to emphasize our contribution in the 
introduction: 
 
Our model was the first to combine a single-sequence pretrained language 
model with an equivariant structure module for protein structure prediction, an 
approach which has since seen success for general protein structure prediction. 

 
Strengths: 
 
The main strength of IgFold is that it provides good accuracy and fast predictions. So, it 
fills a gap between very accurate but slower AlphaFold and less accurate but faster 
ABodyBuilder. Thus, IgFold can be helpful in specific applications where gains in 
computation efficiency justify losses in accuracy.  
 

In response to other reviewer comments, we have significantly expanded our 
benchmark with structures released since our submission. On the new 
benchmark, we find that IgFold performs equally well as AlphaFold on paired 
antibodies (a major target for drug development) and only slightly worse on 
nanobodies. We believe the speed difference will make IgFold a preferred tool for 
high-throughput antibody structure screens and analyses. 
 
Results on the updated paired antibody benchmark are summarized in an 
updated Table 1 and Figure 2A. 
 
Results on the updated nanobody benchmark are summarized in an updated 
Table 2 and Figure 2E, and described below: 
 
AlphaFold displays the best performance for CDR3 loops, with an average 
RMSDCDR3 of 4.00 Å, consistent with its high accuracy on general protein 
sequences. IgFold CDR3 predictions tend to be slightly less accurate than those 



of AlphaFold (average RMSDCDR3 of 4.25 Å), but are significantly faster to 
produce (eleven seconds for IgFold, versus six minutes for the ColabFold 
implementation of AlphaFold). 

 
Presentation is very good. The paper is well organized, and everything is explained 
sufficiently well. Analysis of predictions on specific antibodies provides an insight into 
the performance of IgFold and baselines.  
 

We thank the reviewer. 
 
Sharing over 100k predictions with the research community is welcome  
 

Thank you. We hope the expanded set of structures described above will be of 
use to researchers. 

 
Weaknesses and Suggestions: 
 
Main weakness of the work is the lower accuracy of IgFold compared to AlphaFold. To 
me, this is the paper's most interesting result: AlphaFold, trained on a large set of 
structures without an attempt to specialize in antibody structures, is more accurate than 
IgFold, explicitly trained to do well on antibodies. Such a result is not unheard of in deep 
learning because foundational models in other domains (e.g., in NLP and computer 
vision) also often do better in specialized applications than the smaller models made 
specifically for those specialized applications. [Suggestion] It will be helpful for the 
authors to point to that similarity with other domains. 
 

As noted above, we have significantly expanded our benchmark with structures 
released since our submission. On the new benchmark, we find that IgFold 
performs equally well as AlphaFold on paired antibodies and only slightly worse 
on nanobodies. 
 
Results on the updated paired antibody benchmark are summarized in an 
updated Table 1 and Figure 2A. 
 
Results on the updated nanobody benchmark are summarized in an updated 
Table 2 and Figure 2E, and described below: 
 
AlphaFold displays the best performance for CDR3 loops, with an average 
RMSDCDR3 of 4.00 Å, consistent with its high accuracy on general protein 
sequences. IgFold CDR3 predictions tend to be slightly less accurate than those 
of AlphaFold (average RMSDCDR3 of 4.25 Å), but are significantly faster to 
produce (eleven seconds for IgFold, versus six minutes for the ColabFold 
implementation of AlphaFold). 



 
The authors attempt to justify IgFold by comparing prediction speed. Unfortunately, the 
computational time is mentioned only briefly in lines 172-180 and 217, which does not 
amount to a thorough analysis. [Suggestion 1] To make this point stronger, the authors 
should devote more space to this aspect. It would be good to see the prediction times of 
each model on each of the test structures and see how the sequence length impact the 
prediction times. [Suggestion 2] Because low prediction cost is stated as the objective of 
this paper, the authors should change how they present their work. It would be 
important to discuss how the authors designed IgFold with that objective in mind. It 
would be important to provide an ablation study that demonstrates (1) that reducing 
IgFold architecture comes at the cost of unacceptable deterioration in accuracy and (2) 
that additional layers do not lead to further improvements in accuracy. [Suggestion 3] It 
would be important for the authors to provide more detail about why AlphaFold and 
DeepAb are slower than IgFold. In particular, what are the main reasons the baselines 
are slower, and would removing or compressing some of their components cause 
significant loss of accuracy? 
 

We have now expanded our analysis to measure the runtimes of all methods with 
publicly available code on identical hardware. This analysis shows that IgFold 
provides significant speed improvements vs alternative methods in the full-atom 
prediction setting, which we believe is the most relevant application of such 
models. We also show the impact of sequence length on prediction times in a 
new supplemental figure. We have added the following text to discuss these 
findings: 
 
Although the performance of the deep learning methods for antibody structure 
prediction is largely comparable, the speed of prediction is not. Grafting-based 
methods, such as RepertoireBuilder, tend to be much faster than deep learning 
methods (if a suitable template can be found). However, as reported above, this 
speed is obtained at the expense of accuracy. Recent deep learning methods for 
antibody structure prediction, including DeepAb, ABlooper, and NanoNet, have 
claimed faster prediction of antibody structures as compared to general methods 
like AlphaFold. For our benchmark, all deep learning methods were run on 
identical hardware (12-core CPU with one A100 GPU), allowing us to directly 
compare their runtimes. All computed runtimes are measured from sequence to 
full-atom structure, using the recommended full-atom refinement protocols for 
each method. We could not evaluate the runtimes of RepertoireBuilder as no 
code has been published. The results of this comparison are summarized in 
Figure 4E-F. 

For paired antibodies, we find that IgFold is significantly faster any other 
method tested. On average, IgFold takes 22 seconds to predict a full-atom 
structure from sequence. The next fastest method, ABlooper, averages nearly 
three minutes (174 seconds) for full-atom structure prediction. Although ABlooper 
rapidly predicts coordinates in an end-to-end fashion, the outputs require 



expensive refinement in OpenMM to correct for geometric abnormalities and add 
side chains. The ColabFold (12) implementation of AlphaFold-Multimer evaluated 
here averages just over seven minutes (435 seconds) on average for full-atom 
structure prediction. This is considerably faster than the original implementation 
of AlphaFold-Multimer, which required an expensive MSA search and repeated 
model compilation for every prediction. Finally, the slowest method for paired 
antibody structure prediction was DeepAb, which averaged over twelve minutes 
(750 seconds). DeepAb is considerably slower by design, as it requires 
minimization of predicted inter-residue potentials in Rosetta. We also 
investigated the impact of sequence length on prediction times. In general, the 
runtimes of all methods increased with sequence length (Figure S13A). DeepAb 
and ABlooper were the most sensitive to sequence length, with AlphaFold-
Multimer and IgFold scaling more favorably. 

For nanobodies, we again find that IgFold outpaces alternative methods 
for full-atom structure prediction, requiring an average of 11 seconds. NanoNet 
was the next fastest method, averaging 15 seconds for full-atom structure 
prediction. Similar to ABlooper for paired antibodies, NanoNet outputs require 
expensive refinement to correct for unrealistic backbone geometries and add 
side chains. DeepAb was able to predict nanobody strucutres in just under four 
minutes (224 seconds) on average. Finally, the slowest method for nanobody 
structure prediction was AlphaFold, which averaged nearly six minutes (345 
seconds). As with paired antibodies, we also investigated the impact of sequence 
length on prediction times. In general, the runtimes of all methods increased with 
sequence length  (Figure S13B). Although NanoNet had several outlier cases 
that required significant refinement, the prediction times for a majority of targets 
increased with sequence length. We also note that for methods capable of 
predicting both nanobody and paired antibody structures, runtimes tend to 
roughly double in the paired setting (scaling linearly with total length), as 
expected. 

 
The authors repeatedly imply (lines 199, 227, 236) that IgFold predictions could be 
helpful despite being less accurate than AlphaFold. The argument seems to be that 
IgFold predictions improve the diversity of predicted structures, which could be helpful in 
some downstream applications. This claim is suspect because it is well known from the 
mixture of experts research that adding inferior predictors to an ensemble leads to lower 
accuracy. [Suggestion] For a claim of that sort to hold, the authors should show at least 
one example (hopefully, not cherry-picked) where adding IgFold to AlphaFold 
predictions is helpful.  
 

We have removed prior statements throughout the results text where we claim 
that the diversity of predictions could be useful for downstream applications, and 
instead simply report on the finding. 

 
The authors imply that IgFold finds a sweet spot between accuracy and prediction time. 



However, they do not provide any specific practical example where IgFold would be 
desirable over more accurate or faster models. [Suggestion] The authors should 
introduce a cost function that combines accuracy and time to demonstrate it. For 
example, in what application 10% accuracy loss can be justified by 10 or 100 times 
lower computational cost? 
 

On the updated benchmark (see response to earlier reviewer comment) we have 
found that there is little difference in average accuracy between IgFold and the 
AlphaFold models. We are hesitant to introduce such a cost function, as the 
accuracy demands placed on these models may vary widely based on 
application. For example, to evaluate evaluate hydrophobicity in framework 
structures, IgFold’s speed should be incredibly valuable. Indeed, for paired 
antibodies, AlphaFold appears to offer no advantage over IgFold. Given the slight 
degradation of performance on nanobodies, we have removed our claims in the 
results text that the diversity of predictions may be useful in practice, as we 
believe the 30-fold speedup over AlphaFold is itself compelling. 

 
On one hand, it is positive that the authors used the structures discovered after July 1, 
2021, as test data in the evaluation. On another, the set of 67 paired antibodies and 21 
nanobodies is too small to evaluate IgFold properly. [Suggestion] It would be important 
to create the second, larger test data set using structures prior to July 1, 2021. One 
suggestion is to start selecting test structures from the training data one by one at 
random and remove from the training data set all similar (e.g., 70% and higher identity 
in CDRs) sequences. In this way, the test sequences will be sufficiently different from 
the remaining training data and would allow proper testing without the fear of biased 
results. 
 

We have now expanded our benchmark sets using the same methodology 
described in our original submission. Additions to the PDB have now allowed us 
to compare performance on 197 paired antibody structures and 71 nanobody 
structures. The overarching conclusions remain the same, though we do find that 
performance of IgFold on nanobodies is more comparable to AlphaFold2 than we 
initially presented. The updated text describing these results is provided in an 
earlier comment to the reviewer. 

 
The results shown in Figures 3 and 4 and the accompanying discussion only refer to 4 
specific structures. It is not clear why those structures are selected over other test 
structures. Without justification, a reader can start wondering if those structures are 
cherry-picked. 
 

We have added additional text to the benchmarking results section to motivate 
the selection of the specific examples highlighted in Figure 3. Although there is 
nothing special about these particular examples, they illustrate the structural 
implications of a trend observed across the broader set of benchmark targets. In 



the interest of space, and to focus more attention on other reviewer comments, 
we have removed the specific structural examples from Figure 4. 
 
To illustrate the structural implications of these differences in predictions, we 
highlight two targets from the benchmark where IgFold and AlphaFold-Multimer 
diverge. 



REVIEWER COMMENTS 

Reviewer #1 (Remarks to the Author): 

Thank the authors for addressing our comments but still have a few concerns. 

1. 1. Although it makes sense to compare with the ColabFold version of AlphaFold-Multimer and 

AlphaFold2 for high-throughput modelling, one would expect it to generate models of inferior quality to 

those generated using the original implementation as described in their papers. The authors should 

either compare against the implementations of these methods as described in the literature or refer to 

them as ColabFold throughout the paper and acknowledge the potential differences. 

2. In the abstract, the authors make the following statement: “(...) we predicted structures for 1.4 

million paired antibody sequences, expanding the observed antibody structural space by over 500 fold”. 

Although this is undoubtedly a great contribution to the field, the way it is phrased makes it seem like 

IgFold predicted models are of equal value to experimentally resolved structures. I think this needs to be 

rephrased slightly. 

3. 1. Certain parts of the text have been edited but not highlighted or mentioned in the response. For 

example, in the results section the authors use to compare against ABodyBuilder and now compare 

against RepertorieBuilder 

Reviewer #2 (Remarks to the Author): 

The revised version of the paper and the responses to the reviewers successfully address all the issues 

raised in the original reviews. Evaluation on the increased test set shows that the gap in accuracy 

between IgFold and AlphaFold is much smaller than in the original submission. New runtime 

experiments clarify the differences in predictions costs amonts different approaches. It is positive that 

the authors now provide a significantly expanded set of predicted structures. It is important to 

emphasize that the github repository with the code, trained predictor, and predicted structures is a key 

contribution of this work. It will be very important for the authors to maintain this repository after the 

paper is published. 



Response to reviewers 
 
We thank the reviewers for their comments and critiques, which have undoubtedly 
resulted in a stronger manuscript. Below we detail the changes made in response to the 
reviewer’s comments. For convenience, the original comments are included, while our 
responses (indented) are below. Changes to the manuscript are indicated by red text.  
 
Reviewer 1 
 
Comments:  
 
Although it makes sense to compare with the ColabFold version of AlphaFold-Multimer 
and AlphaFold2 for high-throughput modelling, one would expect it to generate models 
of inferior quality to those generated using the original implementation as described in 
their papers. The authors should either compare against the implementations of these 
methods as described in the literature or refer to them as ColabFold throughout the 
paper and acknowledge the potential differences. 
 

Although speed and accuracy are commonly at odds, benchmarks and blind 
evaluations have demonstrated that ColabFold provides improvements to both 
over the original DeepMind AlphaFold pipeline. In the ColabFold publication 
(https://www.nature.com/articles/s41592-022-01488-1), the authors find 
considerable speed-ups with optimizations to the MSA generation and model 
inference steps, without degradations to performance. Further, at the recent 
CASP15 blind structure prediction assessment 
(https://predictioncenter.org/casp15/zscores_final.cgi), ColabFold outperformed 
the original AlphaFold pipeline from DeepMind, despite using the same model 
weights. Given these results, as well as the ubiquity of ColabFold amongst 
practitioners, we believe it is logical to compare to ColabFold instead of the 
DeepMind reference implementation. 
 
To the reviewer’s recommendation regarding attribution of results in our 
publication to AlphaFold vs ColabFold, we opted for the former because: 

(1) ColabFold is ultimately an alternative means of running AlphaFold and 
(2) After consulting the ColabFold corresponding author, Sergey 
Ovchinnikov, he agreed that the model performance should be attributed 
AlphaFold. Additionally, he suggested that recognition be given to the 
MMseqs2 method used to generate the input multiple-sequence 
alignments, as this is the primary distinction in the two pipelines. 

 
To make this decision more explicit, and highlight the considerations above, we 
have added the following text at the beginning of the benchmarking results 
section: 



 
We opted to benchmark the ColabFold (Mirdita et al., Nature Methods (2022)) 
implementation of AlphaFold, rather than the original pipeline from DeepMind, 
due to its significant runtime acceleration and similar accuracy. 
 
And in the methods section: 
 
The ColabFold pipeline utilizes the model weights trained by DeepMind, but 
replaces the time-consuming MSA generation step with a faster search via 
MMseqs2 (Steinegger et al., Nature Biotechnology (2017)). 

 
In the abstract, the authors make the following statement: “(...) we predicted structures 
for 1.4 million paired antibody sequences, expanding the observed antibody structural 
space by over 500 fold”. Although this is undoubtedly a great contribution to the field, 
the way it is phrased makes it seem like IgFold predicted models are of equal value to 
experimentally resolved structures. I think this needs to be rephrased slightly.  
 

We have adjusted our phrasing to emphasize that we believe our predicted 
structures will provide insights through future studies, but not suggest 
equivalency with experimentally determined structures: 
 
As a demonstration of IgFold's capabilities, we predicted structures for 1.4 million 
paired antibody sequences, providing structural insights to 500-fold more 
antibodies than have experimentally determined structures. 

 
Certain parts of the text have been edited but not highlighted or mentioned in the 
response. For example, in the results section the authors use to compare against 
ABodyBuilder and now compare against RepertorieBuilder. 
 

We apologize for the oversight in failing to highlight these edits in the previous 
response. 
 
To the reviewer’s specific point about substituting ABodyBuilder with 
RepertoireBuilder in the latest version the manuscript, we had to make this 
change to evaluate on the expanded benchmark requested by reviewers. In the 
period between revisions, the ABodyBuilder server was updated and no longer 
provided homology modeling as benchmarked here. Unfortunately, as the code 
for ABodyBuilder is not publicly available, we had to replace the method. 
RepertoireBuilder uses an alternative, though still grafting-based, approach to 
antibody modeling. In prior work, RepertoireBuilder has been shown to perform 
comparable to ABodyBuilder, making it a suitable substitution to continue 
benchmarking these types of methods (Ruffolo et al., Patterns (2022)). 



 
 
Reviewer 2 
 
The revised version of the paper and the responses to the reviewers successfully 
address all the issues raised in the original reviews. Evaluation on the increased test set 
shows that the gap in accuracy between IgFold and AlphaFold is much smaller than in 
the original submission. New runtime experiments clarify the differences in predictions 
costs amonts different approaches. It is positive that the authors now provide a 
significantly expanded set of predicted structures. It is important to emphasize that the 
github repository with the code, trained predictor, and predicted structures is a key 
contribution of this work. It will be very important for the authors to maintain this 
repository after the paper is published. 
 

We thank the reviewer for their helpful feedback on the manuscript. 



REVIEWERS' COMMENTS 

Reviewer #1 (Remarks to the Author): 

The authors have done an excellent job and the overall paper is well presented and explained. 
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