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Supplementary Note 1. Existing methods of predicting missing reactions

GapFind and GapFill

GapFind and GapFill are two optimization-based algorithms that can be used to identify and fill

gaps in GEMs1. First, GapFind pinpoints the metabolites in a GEM which cannot be produced

under any uptake conditions. Subsequently, GapFill identifies the reactions from a customized

multi-organism database that restores the connectivity of these metabolites to the parent network

using four mechanisms:

1. Reversing the directionality of one or more reactions in the existing model;

2. Adding reactions from another organism to provide functionality absent in the existing model;

3. Adding external transport mechanisms to allow for importation of metabolites in the existing

model;

4. Restore flow by adding intracellular transport reactions in multi-compartment models.

Detailed formulation of the two optimization problems of GapFind and GapFill can be found in1.

FastGapFill

FastGapFill is an extesion of GapFill. It is the first scalable algorithm capable of efficiently

detecting and filling gaps in compartmentalized GEMs2. FastGapFill first utilizes the developed

FastCore algorithm3 to compute a near-minimal set of reactions that need to be added to an input

GEM to render it flux consistent. Then FastGapFill generates a global model by expanding the

compartmentalized metabolic model (i.e., the metabolic model without blocked reactions) by a

universal metabolic database (e.g., the KEGG database). Finally, FastGapFill computes a compact

flux consistent subnetwork of the global model, which leads to the final gap-filled model.

Matrix boost algorithm

Matrix boost algorithm (BoostGapFill) is the first algorithm in this category that conducts inference

jointly in the incidence and adjacency space by performing an iterative completion-matching

optimization4. Given an incomplete hypergraph H with n nodes, denote A = HH⊤ ∈ Rn×n as

the adjacency matrix of H. Suppose that the complete adjacency matrix is given by A +∆A, and
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it can be decomposed by

A +∆A = A + [∆A]A + [∆A]Ā, (1)

where [X]A denotes the operation that only keeps the entries of X at A’s nonempty entries and mask

all else, and [X]Ā is conversely defined as keeping X only at A’s empty entries. Define A+[∆A]A =

A+ and [∆A]Ā = ∆A−. BoostGapFill first approximates the empty entries of A+, denoted by ∆Â,

with known A+ (which can be approximated iteratively). The optimization problem is as follows:

min
Θ

∑
i<j

∥A+
ij − yij∥2F + γR(Θ), (2)

where Θ = {w0, wi, wj, vif , vjf} is the set of parameters, yij = w0 +wi +wj +
∑k

f=1 vifvjf , and

R is a regularizer. After training, ∆Â can be obtained by

∆Âij =

w0 + wi + wj +
∑

f vifvjf if A+ = 0,

0 if A+ ̸= 0.

(3)

Let U ∈ Rn×m̃ be the incidence matrix of the candidate hyperlinks of H and Λ ∈ Rm̃×m̃ be a

diagonal indicator matrix of the candidate hyperlinks. In the matching step, BoostGapFill solves

the optimization problem as follows:

min
Λ

∥[UΛU⊤]Ā −∆Â∥2F

subject to Λpp = {0, 1} for p = 1, 2, . . . , m̃.

(4)

The optimization problem (4) can be relaxed by making the integer Λpp continuous within [0, 1],

which can be solved by subgradient methods. The continuous scores Λpp can be viewed as soft

indicators of the candidate hyperlinks.

BoostGapFill leverages the powerful matrix factorization technique to perform inference

in the adjacency space in recovering missing hyperlinks. Yet, it has limited scalibility since the

candidate hyperlink set must be present during training. If the candidate hyperlink set becomes

extremely large (e.g., the entire BiGG database), the matrix optimization will be difficult (or even

impossible) to solve. Moreover, BoostGapFill cannot handle unseen hyperlinks in the test phase.
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Coordinated matrix minimization

Coordinated matrix minimization (CMM) is an improved version of BoostGapFill, which

introduces a latent factor matrix to significantly simplify the algorithm5. CMM alternatively

performs non-negative matrix factorization and least square matching in the adjacency space, in

order to infer a subset of candidate hyperlinks that are most suitable to fill the target hypergraph.

Similarly to BoostGapFill, denote A = HH⊤ ∈ Rn×n and U ∈ Rn×m̃ as the adjacency matrix of

H and the incidence matrix of the candidate hyperlinks, respectively. Let a non-negative matrix

Q ∈ Rn×k be the latent factor matrix (k ≪ n), and assume that the complete adjacency matrix of

the hypergraph is factoried by

A + UΛU⊤ ≈ QQ⊤, (5)

where Λ ∈ Rm̃×m̃ is a diagonal indicator matrix of candidate hyperlinks. To find

the missing hyperlinks, CMM solves the following optimization problem by using the

expectation–maximization (EM) algorithm:

min
Λ,Q≥0

∥A + UΛU⊤ − QQ⊤∥2F

subject to Λpp = {0, 1} for p = 1, 2, . . . , m̃.

(6)

After relaxing the constraint of Λpp to be continuous within [0, 1], the linear least square problem

can be solved very efficiently using off-the-shelf optimization tools such as IBM-CPLEX6.

Although CMM is simpler than BoostGapFill and exhibits a better performance, it still suffers

from the issue of scalibility and cannot handle unseen hyperlinks.

Clique closure-based coordinated matrix minimization

Clique closure-based coordinated matrix minimization (C3MM) is an improved version of CMM,

which utilizes the unique characteristic of clique-closure of a hypergraph7. C3MM improves CMM

by introducing a clique-closure hypothesis into its objective function which significantly hunts

down more hyperlinks which are missed by CMM. C3MM first approximates the latent factor

matrix Q ∈ Rn×k (k ≪ n). Suppose that m̃ is the total number of candidate hyperlinks. Given a

diagonal indicator matrix ΛU ∈ Rm̃×m̃ (which can be initialized randomly), C3MM computes

min
W≥0

∥A + ACN + UΛUU⊤ − QQ⊤∥2F, (7)
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where ACN = A2 − diag(A) captures the common neighbor information of the projected graph.

Define ∆A = QQ⊤ − A. To find the missing hyperlinks, C3MM solves the second optimization

problem as follow:

min
ΛU,ΛH

∥A − HΛHH⊤ − UΛUU⊤∥2F + ∥∆A − UΛUU⊤∥2F + ∥ΛH∥1

subject to (ΛU)pp = {0, 1} for p = 1, 2, . . . , m̃

(ΛH)pp = {0, 1} for p = 1, 2, . . . ,m.

(8)

The algorithm solves the two optimization problems alternatively for a certain number of iterations.

C3MM has proved to perform well on temporal hyperlink prediction tasks, compared to CMM.

However, C3MM has the same issues with BoostGapFill and CMM (i.e., scalability and inability

of handling unseen hyperlinks). Therefore, more sophisticated deep learning techniques are needed

in order to fix these issues.

Node2Vec-mean

Node2Vec-mean (NVM) is a baseline method for hyperlink prediction with a relatively simple

architecture. Given an incomplete hypergraph H with n nodes, NVM initializes the node features

by performing Node2Vec on the clique-expanded graph, where Node2Vec is a random walk-based

graph embedding method. Suppose that the feature vector of node vi is xi. The feature vector of a

hyperlink ep then can be computed by using a mean pooling function, i.e.,

yp =
1

|ep|
∑
vi∈ep

xi. (9)

The final score of ep can be obtained through a one-layer neural network, i.e.,

Sp = sigmoid(Wscoreyp + bscore), (10)

where Wscore and bscore are the learnable parameters in the scoring neural network. During

inference, the score Se ∈ [0, 1] can be viewed as a soft indicator of a unseen hyperlink. However,

decomposing a hypergraph into a graph could lose higher-order structural information. Moreover,

Node2Vec is computationally expensive when dealing with large graphs.
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Self attention-based graph neural networks for hypergraphs

Self attention-based graph neural network for hypergraphs (Hyper-SAGNN) exploits the self-

attention-based graph neural networks to refine the node features8. Hyper-SAGNN initializes

node features by passing the adjacency matrix of the hypergraph A = HH⊤ − D ∈ Rn×n

(defined differently from CMM and C3MM by discarding the self-loops) through a one-layer

neural network, i.e.,

xi = tanh(Wencai + benc) for i = 1, 2, . . . , n, (11)

where ai ∈ Rn are the columns of the adjacency matrix, and Wenc and benc are the learnable

parameters in the encoder. Note that Hyper-SAGCN uses tanh as the default nonlinear activation

function. Subsequently, Given a hyperlink ep, HyperSAGNN incorporates two different ways

(static and dynamic) to refine the features of the nodes within ep, i.e.,

si = tanh(Wlinearxi) for vi ∈ ep

di = tanh(
∑

vi,vj∈ep
j ̸=i

αijWconvxj)
(12)

where αij are the attention coefficients defined by

αij =
exp

(
(W⊤

i xi)
⊤(W⊤

j xj)
)

∑
vk∈ep exp

(
(W⊤

i xi)⊤(W⊤
k xk)

) , (13)

and Wlinear and Wconv are the learnable parameters in the static and dynamic neural networks,

respectively. Therefore, the feature vector for ep through a mean pooling function is given by

yp =
1

|ep|
∑
vi∈ep

(si − di)
∗2, (14)

where the subscript ∗2 denotes the Hadamard power (element-wise power). The final scoring

function is same as (10). It has been shown that HyperSAGNN does not perform well on relatively

sparse hypergraphs such as metabolic networks.

Neural hyperlink predictor

Neural hyperlink predictor (NHP) shares a similar structure with Hyper-SAGNN, but employs a
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new maximum minimum-based pooling function which can adaptively learn weights in a task-

specific manner and include more prior knowledge about the nodes9. Similar to NVM, NHP

initializes node features by performing Node2Vec on the clique-expanded graph. Suppose that

the feature vector of node vi is xi. Then NHP refines the features with a traditional graph neural

network on each clique corresponding to a hyperlink in the original hypergraph. Given a hyperlink

ep, NHP computes

x̃i = ReLU(Wconv1xi +
∑

vi,vj∈ep
j ̸=i

Wconv2xj), (15)

where Wconv1 and Wconv2 are the learnable parameters in the graph neural network. Note that

NHP uses ReLU as the default nonlinear activation function. Subsequently, NHP uses a maximum

minimum-based pooling function to compute hyperlink features, i.e.,

(y(maxmin)
p )j = max

vi∈ep
{(x̃i)j} − min

vi∈ep
{(x̃i)j} for j = 1, 2, . . . , dconv, (16)

where dconv denotes the hidden dimension of the graph neural network. The final scoring function

is same as (10). NHP has the same issues with NVM, i.e., using Node2Vec on the clique-expanded

graph could lead to a loss of higher-order structural information with higher computational costs.

Supplementary Note 2. CHESHIRE

Difference between CHESHIRE and NHP

NHP is a state-of-the-art algorithm for hyperlink prediction. Although CHESHIRE and NHP share

a similar deep neural network architecture, CHESHIRE differs from NHP in the following aspects:

1. In the feature initialization step, NHP initializes node features by performing Node2Vec on

the expanded graph. There are two limitations: (1) decomposing a hypergraph to a graph will

result in a loss of higher-order structural information; and (2) Node2Vec is extremely expensive

for large dense graphs since its time and memory dependencies on the graph’s branching factor b

(the number of children at each node) are O(b2)10. On the other hand, CHESHIRE generates node

features by simply passing the incidence matrix through a one-layer neural network. The incidence

matrix encodes all the higher-order topological attributes of the hypergraph, which can provide

7



more accurate initial node features with less computaional costs.

2. In the feature refinement step, NHP uses the traditional graph neural networks to refine node

features, while CHESHIRE uses the highly sophisticated CSGCN. CSGCN exploits the Chebyshev

polynomial expansion and spectral graph theory to learn the localized spectral filters which can

extract local and composite features on graphs that encode complex geometric structures11.

3. In the pooling step, NHP uses a new maximum minimum-based pooling function which can

adaptively learn weights in a task-specific manner and include more prior knowledge about the

nodes9. In addition to the maximum minimum-based pooling function, CHESHIRE incorporates a

Frobenius norm-based pooling function, which is efficient at separating boundaries of the hyperlink

feature space in learning hyperlink features12.

4. Other than these major steps, CHESHIRE also utilizes advanced deep learning techniques

including graph normalization13 and alpha dropout14 to smooth the learning process.

Complexity analysis

We analyze the computational complexity of CHESHIRE as follows. First, generating node

features by passing the incidence matrix through a one-layer neural network takes O(nmdenc)

time, where n and m are the total number of nodes and hyperlinks, respectively. During the

feature refinement, the computational complexity of graph normalization and CSGCN are given by

O(ncdenc) and O(ncmcdencdconvK), respectively. Here, nc and mc are the total number of nodes and

edges in the disjoint graph (where nc =
∑m

p=1 |ep| and mc =
∑m

p=1
1
2
|ep|(|ep| − 1)). We ignore the

computational complexity for the alpha dropout layer since it is negligible. The final scoring layer

including the Frobenius norm-based and the maximum minimum-based pooling functions takes

O(ncdconv + mdconv) time. Note that CSGCN is the most expensive component in CHESHIRE,

which determines the overall time complexity.

Furthermore, we compared the running time of CHESHIRE with C3MM and NHP on the

five largest GEMs (based on the number of reactions) from the BiGG database. We did not consider

NVM because of its poor performance in internal validation. The testing GEMs include Recon3D

(Homo sapiens), iCHOv1 (Cricetulus griseus), iLB1027 lipid (Phaeodactylum tricornutum CCAP
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1055/1), iCHOv1 DG44 (Cricetulus griseus), and RECON1 (Homo sapiens). The running time

is computed based on the first set of internal validation in a Mactonish machine with Apple M1

Pro chip and 32 GB memory. As shown in Supplementary Table 4, among all the three methods,

CHESHIRE is the most computationally efficient method in predicting missing reactions.

Supplementary Note 3. Data and resources

BiGG models

The 108 BiGG models used in the internal validation were downloaded from the BiGG database

(http://BiGG.ucsd.edu) in January 2022. Biomass reaction, exchange reactions, demand

reactions and sink reactions were removed in each GEM before gap-filling as these types of

reactions do not represent knowledge gaps.

Construction of BiGG universal reaction pool

The universal BiGG reaction database was downloaded from the BiGG database (http://

BiGG.ucsd.edu). Biomass, exchange, demand, and sink reactions were removed. Reactions

involving compartments other than cytosol, periplasm, and extracellular space were also removed.

We further removed reactions with empty reaction names and excluded two reactions with

imbalanced stoichiometry of carbon atom (FPGS tm and SUCptspp 1). Finally, we excluded

reactions whose identifiers start with letter ”r” and follow by digital numbers, all of which are

derived from non-microbial GEMs. The resulting BiGG database contains 10,393 metabolites

(unique IDs) and 16,337 reactions (unique IDs). We found that 2.45% of metabolite IDs have

ambiguous names, i.e., names associated with more than one metabolite IDs. Similarly, 2.01%

of reactions have ambiguous reaction formula, i.e., the same reactions associated with more than

one identifier. Since the duplication of metabolites and reactions only inflate the entire database

slightly, we did not further curate the BiGG universal database to resolve these inconsistencies.

Construction of BiGG genus-specific reaction pools

To find BiGG reactions that belong to a given taxonomic level, we used 818 AGORA15 models
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and their full taxonomy as a scaffold to map information. These models and their taxonomic

information were downloaded from the Virtual Metabolic Human (VMH) database (https:

//www.vmh.life). We chose to build genus-specific reaction pools because the mean number

of AGORA models per species (1.34; 611 species) is too few compared to that per genus (3.60;

227 genera). Since the namespace of VMH is different from that of BiGG, we mapped the

reaction identifiers between the two databases by individually mapping reactions of each database

to MetaNetX (https://www.metanetx.org), Seed (https://modelseed.org), and

KEGG (https://www.genome.jp/kegg/). The mapping files were also downloaded from

the BiGG and VMH databases. For each of the 227 VMH genera, we built its specific BiGG

reaction database by aggregating all reactions in the BiGG universal databases if they were found

in the VMH database and associated with a taxonomy.

Fermentation metabolite test data

The dataset contains 24 bacterial genomes (Supplementary Table 1) and the measurement of

9 fermentation products (acetic acid, butyric acid, ethanol, formic acid, lactic acid, butanol,

propionaic acid, succinic acid and acetone) in the culture media. The genomes and fermentation

data have been compiled by Zimmermann et al.16 and released to the public (assessible from

https://github.com/jotech/gapseq).

Amino acid secretion test data

The amino acid profile test was performed using data from a public study17. The dataset contains

25 bacterial genomes (Supplementary Table 2) and their associated 20 amino acid secretion

profiles (histidine, isoleucine, leucine, lysine, methionine, phenylalanine, threonine, tryptophan,

valine, alanine, asparagine, aspartic acid, glutamic acid, serine, arginine, cysteine, glutamine,

glycine, proline, and tyrosine). The genomes were downloaded from The National Center for

Biotechnology Information (NCBI) and the amino acid production profiles were obtained by

personal communications with the corresponding author, Dr. Christian Kost.

Substrate utilization test data
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The experimental substrate utilization tests were performed for growth of 5 bacterial species

(Supplementary Table 3) using Biolog phenotype arrays18. The bacterial genomes and their test

results have been compiled and made publicly available by a previous study19 (accessible from

https://github.com/cdanielmachado/carveme). All 5 species were tested for their

utilization of carbon and nitrogen sources, except for P. aeruginosa PAO1 whose nitrogen source

test was missing. E. coli str. K-12 substr. MG1655, B. subtilis 168, and R. solanacearum GMI1000

were additionally tested for their utilization of phosphorus and sulphur sources.

Gene essentiality test data

The essential and non-essential genes for 5 bacterial species (Supplementary Table 3) have

been compiled and made publicly available by a previous study19 (accessible from https:

//github.com/cdanielmachado/carveme).

Supplementary Note 4. Internal validation

Hyperparameter selection

We intended to fairly compare CHESHIRE with other approaches including NHP, C3MM, and

NVM during internal validation. Similar as CHESHIRE, NHP and NVM are also not sensitive to

their hyperparameters. We set the Node2Vec feature dimension to 256, which is consistent with

the encoder dimension in CHESHIRE. The walk length and the number of walks per node were

set to 80 and 10 in Node2Vec (default values in the Node2Vec Python package20), respectively.

Additionally, we set the feature dimension of the graph neural network in NHP to 128, which is

also consistent with the dimension of CSGCN in CHESHIRE. The learning rate of NHP and NVM

is set to 0.01. For C3MM, we used the same latent space dimension 30 as used in the C3MM

paper7.

Threshold scores

We used a threshold score of 0.5 to determine whether an unseen reaction is true or false in Fig. 2.

However, different threshold scores may lead to different performances of a model. Therefore, we
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selected two reasonable threshold scores other than 0.5 in evaluating the performances of all the

machine learning-based algorithms (CHESHIRE, NHP, NVM, and C3MM) over 108 BiGG GEMs.

In particular, we used the mean and the median of all the unseen reactions’ scores as the threshold

score. Under the same settings used in Fig. 2a-d, we found that CHESHIRE still significantly

outperforms the other machine learning-based methods in all the evaluation metrics (except for

AUROC since it is independent of threshold scores) for the both threshold scores (Fig. 1). The mean

threshold score gives rise to similar outcomes as in Fig. 2b-d (Supplementary Figure 1a-c), while

the median threshold score results in similar Recall and Precision distributions (Supplementary

Figure 1d-f). In fact, according to Fig. 2a, the plot of AUROC also indicates that CHESHIRE is

the most robust algorithm to the threshold score.

Negative sampling strategies

Negative sampling is critically important in hyperlink prediction. Different negative sampling

strategies may lead to different performances of a model. Here we considered a general negative

sampling strategy. Suppose that we have a hypergraph H = {V , E} that captures a metabolic

network. For each (positive) hyperlink e ∈ E , we generate a corresponding negative hyperlink f ,

where α×100% of the nodes in f are from e and the remaining are from V−e (the set of nodes that

are not in e). The number α controls the genuineness of the negative reactions. Higher values of α

indicate that the negative reactions are more close to the true. In Fig. 2, we used α = 0.5 to sample

negative reactions. In order to test the sensitivity of CHESHIRE to the negative sampling strategy,

we further used α = 0.2 and α = 0.8 in evaluating the performances of all the machine learning-

based algorithms (CHESHIRE, NHP, NVM, and C3MM) over 108 BiGG GEMs. We found that

CHESHIRE still significantly outperforms the other machine learning-based methods in all the

evaluation metrics for the both values of α (Supplementary Figure 2). When α = 0.2, the negative

reactions are more random, which enables all the algorithms to distinguish fake reactions easily

(Supplementary Figure 2a-d). When α = 0.8, the negative reactions are more close to the true,

so it becomes difficult for the algorithms to distinguish negative reactions (Supplementary Figure

2e-h). Interestingly, C3MM outperforms NHP for all the evaluation metrics under this setting.
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Negative sampling ratios

The negative sampling ratio between positive and negative reactions would also affect the

performance of a model. In Fig. 2, we augmented the positive reactions by negative samples in a 1:1

ratio. We here changed the ratio to 1:2 and 1:3 in evaluating the performances of all the machine

learning-based algorithms (CHESHIRE, NHP, NVM, and C3MM) over 108 BiGG GEMs. We

found that CHESHIRE still significantly outperforms the other machine learning-based methods in

all the evaluation metrics for the both negative sampling ratios (Supplementary Figure 3). Precision

is most affected by the negative sample size for all the algorithms. On the other hand, AUROC

and Recall behave similarly when increasing the negative sample size for the deep learning-based

algorithms (NVM, NHP, and CHESHIRE).

Supplementary Note 5. External validation

Generation of GEMs

All draft GEMs were reconstructed using the standard CarveMe19 or ModelSEED21 pipelines.

Only growth phenotypes were used for the built-in gap-filling algorithm in each pipeline. To

fill the gaps in a given draft GEM, we first selected candidate BiGG or ModelSEED reactions

whose confidence scores are equal to or greater than 0.9995 and then ranked them by their

similarity scores, from lowest to highest. The top 200 reactions were iteratively added to

the draft GEM. For each added reaction, we tested whether this reaction led to increased

biomass flux, which indicates the establishment of energy-generating cycles (EGCs). EGCs are

thermodynamically infeasible energy-generating cycles, which are capable of charging energy

molecules without nutrient consumption. We used the method developed by Fritzemeier et

al.22 to detect EGCs. Briefly, we created 17 energy dissipation reactions and maximized the

flux of one reaction at a time while prohibiting all influx into the model. These dissipation

reactions correspond to 17 different types of energy metabolites: ATP (Adenosine Triphosphate),

CTP (Cytidine Triphosphate), GTP (Guanosine Triphosphate), UTP (Uridine Triphosphate), ITP

(Inosine Triphosphate), NADH (Reduced Nicotinamide Adenine Dinucleotide), NADPH (Reduced
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Nicotinamide Adenine Dinucleotide Phosphate), FADH2 (Reduced Flavin Adenine Dinucleotide),

FMNH2 (Reduced Flavin Mononucleotide), Q8H2 (Ubiquinol 8), Mql8 (Menaquinol 8), Mql6

(Menaquinol 6), Mql7 (Menaquinol 7), 2Dmmql8 (2-Demethylmenaquinol 8), AcCoA (Acetyl-

CoA), L-Glutamate, and proton. Any non-zero flux through one of the 17 dissipation reactions

indicates the presence of EGC that can generate the energy metabolite associated with the

dissipation reaction. If the added reaction is reversible, we resolved the detected EGCs by changing

its flux bounds: Its flux was restricted to be non-positive or non-negative if the reaction has a

positive or negative flux in the EGC test. If the added reaction is irreversible, we skipped this

reaction. For the fermentation metabolite test where bacteria were grown in anaerobic conditions,

we skipped any reaction that contains oxygen as a reactant or product. We also excluded reactions

that increased biomass flux over the known maximum growth rate of bacteria (2.81 1/hour,

equivalent to 15 min/generation). This process continued until 200 reactions were added.

The standard reaction selection criteria described above have been used throughout this

study, with the exception of the cofactor analysis presented below. The goal of cofactor analysis

is to investigate the possibility of including cofactors as additional selection criteria, thereby

further reducing the number of candidate reactions to be added. Here we focused on 15 cofactors,

including ATP, CTP, GTP, UTP, ITP, NADPH, NADH, FADH2, FMNH2, Q8H2, Mql8, Mql6,

Mql7, 2Dmmql8, and AcCoA. After applying the standard selection criteria based on confidence

and similarity scores, we ranked these cofactors according to the number of reactions involving

them in the draft GEM, from highest to lowest. We next tested four additional selection criteria to

prioritize addition of reactions involving different cofactors: (1) excluding reactions that involve

any of the above cofactors (NoCF); (2) excluding reactions that involve any cofactor except the top

one identified above (Top1); (3) excluding reactions that involve any cofactor except the top two

identified above (Top2); and (4) excluding reactions that involve any cofactor except the top three

identified above (Top3). After excluding specified reactions, we added the remaining candidate

reactions one at a time according to their similarity scores until a given number of reactions were

added (50, 100 or 200). The results of this cofactor analysis are shown in Supplementary Figure 9.

14



Culture media compositions

The culture media compositions used for growth simulations were determined to reproduce

the experimental conditions under which phenotypes were measured. While the dataset of

fermentation product test result from multiple experiments whose culture media can vary, we

followed the same strategy as described in Zimmermann et al.16 and assumed that all experiments

were performed under the same growth medium. We further adopted the fermentation test medium

composition and their maximally allowed fluxes developed in the same study (accessible from

https://github.com/Waschina/gapseqEval). For the amino acid secretion test, M9 minimal medium

(with glucose) was used. Glucose has a maximum uptake rate of 10 mmol/gDW/h and all other

compounds in the medium were unconstrained. For the substrate utilization test, GEMs were

also constrained to the same M9 minimal medium, where the default sources of carbon, nitrogen,

sulfur and phosphorus are glucose, ammonia, sulfate, and phosphate, respectively. For Shewanella

oneidensis, the default carbon source is DL-lactate. To simulate growth on each substrate in Biolog

arrays, the default source with the same type of the substrate (i.e., carbon, nitrogen, sulfur, and

phosphorus) in the M9 minimal medium was replaced with the substrate. The maximum uptake

rate for all Biolog substrates is 10 mmol/gDW/h and all other compounds in the M9 medium are

unconstrained. We downloaded the M9 recipe from the github repository of CarveMe (accessible

from https://github.com/cdanielmachado/carveme). For gene essentiality test, the

culture media compositions were available from the same github repository: M9 minimal medium

(with glucose) for E. coli, M9 minimal medium (with succinate) for P. aeruginosa, LB medium for

B. subtilis and S. oneidensis, and complete medium (all compounds with exchange reactions are

allowed to be uptaken) for M. genitalium. All compounds in the culture media were unconstrained.

Simulations of metabolic phenotypes

We adopted a similar strategy as used in Zimmermann et al.16 to compute outflux values of

secreted metabolites. For each GEM, we ran parsimonious Flux Balance Analysis (pFBA23) to

avoid nutrient influxes that do not contribute to biomass and used pFBA solution to constrain

import fluxes. Flux variability analysis24 was applied to predict the maximum secretion fluxes of

those metabolites under the constraint of maximum growth rate. Metabolites with a normalized
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outflow (secretion flux divided by biomass) larger than 10−5 were considered as produced by the

GEM. Therefore, our algorithm classified each metabolite as being produced or not produced by

the GEM, which can be directly compared to the observed data.

We examined the ability of a draft GEM and its gap-filled version to produce a

comprehensive list of 236 metabolites with BiGG IDs (https://raw.githubusercontent.

com/canc1993/cheshire-gapfilling/main/data/fermentation/substrate_

exchange_reactions.csv). This list was originally published by Zimmermann et al.16. For

those metabolites which can only be produced by gap-filled GEMs, we determined and output the

essential reactions needed for the production phenotypes using the algorithm specified in “Causal

reaction inference in Supplementary Note 5”.

We used Flux Balance Analysis (FBA)25 to simulate bacterial growth on each substrate

in Biolog phenotype arrays. The medium for each substrate was developed using the approach

described in Culture Media Compositions. We used the function single gene deletion from the

COBRApy package to simulate the effects of gene deletions on the growth phenotype. For both

tests, a growth phenotype was considered positive if the growth rate was at least 0.01 h−1.

Causal reaction inference

For any metabolite secreted by a gap-filled GEM but not by its corresponding draft GEM, we

used Mixed Integer Linear Programming (MILP) to identify the minimum set of reactions added

during gap-filling that enable the experimentally observed phenotype (Fig. 3a). The flux activity

of each predicted reaction was described by a binary variable A under two linear constraints: (1)

f − fminA ≥ 0 and (2) f − fmaxA ≤ 0, where f represents the flux of the reaction, and fmin and

fmax were set to -1000 and 1000 respectively (i.e., the default lower and upper bounds of exchange

reactions). Therefore, the reaction has unconstrained flux (f ∈ [−1000, 1000]) if A = 1 and carries

zero flux (f = 0) if A = 0. Then we minimized the sum of all binary indicator variables under

the constraint that the secretion flux of the metabolite is positive (a threshold of 0.1 was used).

The minimal sum indicates the minimum number of reactions needed to gap-fill the draft GEM to
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produce the metabolite and the identities of these key reactions can be obtained accordingly.

Enzymatic functional class of reactions

The enzymatic functional class of BiGG reactions was systematically extracted from their

reaction names. We searched for keywords that end with “ase” and manually removed off-target

hits (e.g., release). We further added two classes of reactions that may not be enzymatically

catalyzed: (1) transport reactions if their names contain any of the following keywords (“transport”,

“secretion”, “excretion”, “symport”, “antiport”, “uniport”, “uptake”, “efflux” and “diffusion”) and

(2) formation/degradation reactions if their names contain the keyword “formation/degradation.”
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Supplementary Table 1. Bacterial genomes used in our external validation for testing

fermentation products.

NCBI Assembly Taxonomy

GCF 000005845.2 Escherichia coli str. K-12 substr. MG1655

GCF 000008345.1 Cutibacterium acnes KPA171202

GCF 000008545.1 Thermotoga maritima MSB8

GCF 000008765.1 Clostridium acetobutylicum ATCC 824

GCF 000011065.1 Bacteroides thetaiotaomicron VPI-5482

GCF 000011985.1 Lactobacillus acidophilus NCFM

GCF 000013285.1 Clostridium perfringens ATCC 13124

GCF 000020425.1 Bifidobacterium longum subsp. infantis ATCC 15697

GCF 000020605.1 Eubacterium rectale ATCC 33656

GCF 000022965.1 Bifidobacterium animalis subsp. lactis DSM 10140

GCF 000025885.1 Aminobacterium colombiense DSM 12261

GCF 000056065.1 Lactobacillus delbrueckii subsp. bulgaricus ATCC 11842

GCF 000143845.1 Olsenella uli DSM 7084

GCF 000144405.1 Prevotella melaninogenica ATCC 25845

GCF 000160535.1 Prevotella bergensis DSM 17361

GCF 000173975.1 Anaerobutyricum hallii DSM 3353

GCF 000175255.2 Zymomonas mobilis subsp. mobilis ATCC 10988

GCF 000389635.1 Clostridium pasteurianum BC1

GCF 000392875.1 Enterococcus faecalis ATCC 19433

GCF 000469345.1 Eubacterium ramulus ATCC 29099

GCF 001456065.2 Clostridium butyricum KNU-L09

GCF 001561955.1 Anaerotignum propionicum DSM 1682

GCF 000162015.1 Faecalibacterium prausnitzii A2-165

GCF 000203855.3 Lactobacillus plantarum WCFS1
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Supplementary Table 2. Bacterial genomes used in our external validation for testing amino

acids secretions.

NCBI Assembly Taxonomy

GCF 002895265.1 Azospirillum brasilense DSM 1690

GCF 900187015.1 Serratia entomophila DSM 12358

GCF 000009045.1 Bacillus subtilis 168

GCF 000046845.1 Acinetobacter baylyi ADP1

GCF 002055965.1 Bacillus subtilis 3610 ComIQ12L

GCF 000005845.2 Escherichia coli MG1655 DSM 18039

GCF 000750555.1 Escherichia coli BW25113

GCF 000009225.2 Pseudomonas fluorescens SBW25

GCF 000012265.1 Pseudomonas fluorescnes Pf-5

GCF 000007565.2 Pseudomonas putida KT2440

GCF 000196235.1 Arthrobaacter nicotianae DSM 20123

GCF 000971565.1 Agrobacterium tumefaciens

GCF 000007805.1 Pseudomonas syringae pv. tomato DC 3000

GCF 000012245.1 Pseudomonas syringae pv. tomato DSM 50315

GCF 000454045.1 Nocardia coeliaca

GCF 001578185.1 Bacillus simplex

GCF 000196015.1 Cupriavidus metallidurans

GCF 000011645.1 Bacillus licheniformis

GCF 001591345.1 Variovorax boronicumulans

GCF 900187015.1 Serratia ficaria

GCF 002009195.1 Bacillus megaterium DSM 32

GCF 000237065.1 Pseudomonas fluorescens DSM 289

GCF 000016645.1 Flavobacterium johnsoniae DSM 2064

GCF 002303785.1 Rahnella victoriana DSM 27397

GCF 000023825.1 Pedobacter heparinus DSM 2366
19



Supplementary Table 3. Bacterial genomes used in our external validation for testing growth

phenotypes and gene essentiality. M. genitalium G-37 was not used for growth phenotype and R.

solanacearum GMI1000 was not used in gene essentiality test.

NCBI Assembly Taxonomy

GCF 000005845.2 Escherichia coli str. K-12 substr. MG1655

GCF 000009045.1 Bacillus subtilis 168

GCF 000006765.1 Pseudomonas aeruginosa PAO1

GCF 000009125.1 Ralstonia solanacearum GMI1000

GCF 000146165.2 Shewanella oneidensis MR-1

GCF 000027325.1 Mycoplasmoides genitalium G-37

Supplementary Table 4. Computational time comparison (in second) for CHEHISRE, NHP,

and C3MM on the five largest models from the BiGG database. The computational time is

computed based on the first type of internal validation in a Mactonish machine with Apple M1 Pro

chip and 32 GB memory.

BiGG Model Recon3D iCHOv1 iLB1027 lipid iCHOv1 DG44 RECON1

C3MM 2,871.36 1,456.44 636.37 441.51 444.37

NHP 321.38 175.88 91.14 86.18 86.28

CHESHIRE 211.15 109.55 63.30 45.04 42.83
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Supplementary Figure 1. Internal validation using artificially introduced gaps with mean

and median threshold scores. a-c Boxplots of the performance metrics (Recall, Precision, and F1

score) calculated on 108 BiGG GEMs (each dot represents a GEM) for CHESHIRE vs. NHP,

C3MM, and NVM using the mean threshold score. d-f Boxplots of the performance metrics

(Recall, Precision, and F1 score) calculated on 108 BiGG GEMs (each dot represents a GEM)

for CHESHIRE vs. NHP, C3MM, and NVM using the median threshold score. Each data point

is the mean over 10 Monte Carlo runs. Boxplot: central line represents the median, box limits

represent the first and third quartiles, and whiskers extend to the smallest and largest values or at

most to 1.5× the interquartile range, whichever is smaller. Two-sided paired-sample t-test: exact

p-values are provided. Source data are provided as a Source Data file.
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Supplementary Figure 2. Internal validation using artificially introduced gaps with different

negative sampling strategies. a-d Boxplots of the performance metrics (AUROC, Recall,

Precision, and F1 score) calculated on 108 BiGG GEMs (each dot represents a GEM) for

CHESHIRE vs. NHP, C3MM, and NVM using the negative sampling strategy with α = 0.2.

e-h Boxplots of the performance metrics (AUROC, Recall, Precision, and F1 score) calculated on

108 BiGG GEMs (each dot represents a GEM) for CHESHIRE vs. NHP, C3MM, and NVM using

the negative sampling strategy with α = 0.8. Each data point is the mean over 10 Monte Carlo

runs. Boxplot: central line represents the median, box limits represent the first and third quartiles,

and whiskers extend to the smallest and largest values or at most to 1.5× the interquartile range,

whichever is smaller. Two-sided paired-sample t-test: exact p-values are provided. Source data are

provided as a Source Data file.
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Supplementary Figure 3. Internal validation using artificially introduced gaps with different

negative sampling ratio. a-d Boxplots of the performance metrics (AUROC, Recall, Precision,

and F1 score) calculated on 108 BiGG GEMs (each dot represents a GEM) for CHESHIRE vs.

NHP, C3MM, and NVM using 1:2 negative sampling ratio. e-h Boxplots of the performance

metrics (AUROC, Recall, Precision, and F1 score) calculated on 108 BiGG GEMs (each dot

represents a GEM) for CHESHIRE vs. NHP, C3MM, and NVM using 1:3 negative sampling ratio.

Each data point is the mean over 10 Monte Carlo runs. Boxplot: central line represents the median,

box limits represent the first and third quartiles, and whiskers extend to the smallest and largest

values or at most to 1.5× the interquartile range, whichever is smaller. Two-sided paired-sample

t-test: exact p-values are provided. Source data are provided as a Source Data file.
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Supplementary Figure 4. Internal validation using artificially introduced gaps on AGORA

GEMs of gut bacteria. a-d Boxplots of the performance metrics (AUROC, Recall, Precision, and

F1 score) calculated on 818 AGORA GEMs (each dot represents a GEM) for CHESHIRE vs. NHP,

C3MM, and NVM. Each data point is the mean over 10 Monte Carlo runs. Boxplot: central line

represents the median, box limits represent the first and third quartiles, and whiskers extend to the

smallest and largest values or at most to 1.5× the interquartile range, whichever is smaller. Two-

sided paired-sample t-test: exact p-values are provided. Source data are provided as a Source Data

file.

24



0.2

0.4

0.6

0.8

1

CarveMe

NHP-200

CHESHIRE-200

Random-200

Accuracy

-0.5

0

0.5

1

CarveMe

NHP-200

CHESHIRE-200

Random-200

Matthew’s Correlation

0.2

0.4

0.6

0.8

0

Accuracy

CarveMe

NHP-200

CHESHIRE-200

Random-200

0.2

0.4

0.6

0

CarveMe

NHP-200

CHESHIRE-200

Random-200

Matthew’s Correlation

P
er

fo
rm

an
ce

P
er

fo
rm

an
ce

a b

c d

0.05 0.05
0.05

1.0e-3
1.0e-3

6.0e-3

0.05

0.05

0.047.6e-9

7.6e-9

1.2e-6

Supplementary Figure 5. External validation evaluated using overall accuracy and

Matthew’s correlation coefficients. a, b The fermentation metabolite test (24 bacterial GEMs).

c, d The amino acid test (25 bacterial GEMs). Each dot represents a GEM. CarveMe:

CarveMe-reconstructed GEMs; NHP-200: draft models plus 200 NHP-predicted missing reactions;

CHESHIRE-200: draft models plus 200 CHESHIRE-predicted missing reactions; Random-200:

draft models plus 200 randomly selected reactions (performance averaged over 3 Monte Carlo

runs). Boxplot: central line represents the median, box limits represent the first and third quartiles,

and whiskers extend to the smallest and largest values or at most to 1.5× the interquartile range,

whichever is smaller. Two-sided paired-sample t-test: exact p-values are provided. Source data are

provided as a Source Data file.
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Supplementary Figure 6. The fermentation metabolite test (external validation) using

ModelSEED-reconstructed draft GEMs. a-d Boxplots of the performance metrics (AUPRC,

Recall, Precision, and F1 score) calculated on 24 bacterial GEMs for CHESHIRE-200 (draft

models plus 200 CHESHIRE-predicted missing reactions) vs. ModelSEED (ModelSEED-

reconstructed GEMs), NHP-200 (draft models plus 200 NHP-predicted missing reactions), and

Random-200 (draft models plus 200 randomly selected reactions; performance averaged over 3

Monte Carlo runs). Boxplot: central line represents the median, box limits represent the first

and third quartiles, and whiskers extend to the smallest and largest values or at most to 1.5×

the interquartile range, whichever is smaller. Two-sided paired-sample t-test: exact p-values are

provided. Source data are provided as a Source Data file.

26



a b

Carv
eM

e

CHESHIR
E-20

0

NHP-20
0

Ran
do

m-20
0

0.4

0.6

0.8

1

F1
 s

co
re Bacillus subtilis

0.3

0.4

0.5

0.6

0.7

F1
 s

co
re

Carv
eM

e

CHESHIR
E-20

0

NHP-20
0

Ran
do

m-20
0

0.67

0.67

0.52

0.11
0.11

0.21

Supplementary Figure 7. Performance evaluation of CHESHIRE on 5 bacterial GEMs for

filling the gaps in (a) growth phenotype and (b) gene essentiality. Each dot in a boxplot

represents a GEM. CarveMe: draft models reconstructed from the CarveMe pipeline; CHESHIRE-

200: draft models plus 200 missing reactions predicted by CHESHIRE; NHP-200: draft models

plus 200 missing reactions predicted by NHP; Random-200: draft models plus 200 randomly

selected reactions. Boxplot: central line represents the median, box limits represent the first

and third quartiles, and whiskers extend to the smallest and largest values or at most to 1.5×

the interquartile range, whichever is smaller. Two-sided paired-sample t-test: exact p-values are

provided. Source data are provided as a Source Data file.
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Supplementary Figure 8. Reaction rankings categorized by enzymatic functional classes.

Each dot represents a specific reaction and all dots for each boxplot represent all reactions catalyzed

by enzymes of a specific functional class. Panel a was drawn using reaction rankings from GEMs

in the fermentation product test and panel b was drawn using reaction rankings from GEMs in the

amino acid test. Boxplot: central line represents the median, box limits represent the first and third

quartiles, and whiskers extend to the smallest and largest values or at most to 1.5× the interquartile

range, whichever is smaller. Source data are provided as a Source Data file.
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Supplementary Figure 9. Comparison of CHESHIRE performance across various strategies

for prioritizing cofactor-containing reactions using the fermentation metabolite test (24

bacterial GEMs) in (a, b) and the amino acid test (25 bacterial GEMs) in (c, d). The tested

strategies include: CarveMe - GEMs reconstructed using CarveMe; CHESHIRE-50/100/200 - draft

models plus 50/100/200 CHESHIRE-predicted reactions (all cofactors allowed); CHESHIRE-

50/100-NoCF - draft models plus 50/100 CHESHIRE-predicted reactions that involve none of

the 15 specified cofactors (see Section 6.1); CHESHIRE-50/100-Top1/Top2/Top3 - draft models

plus 50/100 CHESHIRE-predicted reactions that do not involve any of the 15 specified cofactors

or involve only the top 1/2/3 cofactors with the highest prevalence in the draft GEMs. Boxplot:

central line represents the median, box limits represent the first and third quartiles, and whiskers

extend to the smallest and largest values or at most to 1.5× the interquartile range, whichever is

smaller. Two-sided paired-sample t-test: exact p-values are provided. Source data are provided as

a Source Data file.
29



Supplementary references

1. Vinay Satish Kumar, Madhukar S Dasika, and Costas D Maranas. Optimization based

automated curation of metabolic reconstructions. BMC Bioinform. 8, 1–16 (2007).

2. Ines Thiele, Nikos Vlassis, and Ronan MT Fleming. FastGapFill: Efficient gap filling in

metabolic networks. Bioinformatics 30, 2529–2531 (2014).

3. Nikos Vlassis, Maria Pires Pacheco, and Thomas Sauter. Fast reconstruction of compact

context-specific metabolic network models. PLoS Comput. Biol. 10, e1003424 (2014).

4. Muhan Zhang, Zhicheng Cui, Tolutola Oyetunde, Yinjie Tang, and Yixin Chen. Recovering

metabolic networks using a novel hyperlink prediction method. arXiv (2016).

5. Muhan Zhang, Zhicheng Cui, Shali Jiang, and Yixin Chen. Beyond link prediction:

Predicting hyperlinks in adjacency space. In Proceedings of the 32th Conference on Artificial

Intelligence, 4430–4437 (2018).

6. IBM ILOG Cplex. V12. 1: User’s manual for cplex. IBM 46, 157 (2009).

7. Govind Sharma, Prasanna Patil, and M Narasimha Murty. C3MM: Clique-closure based

hyperlink prediction. In Proceedings of the 29th International Conference on International

Joint Conferences on Artificial Intelligence (IJCAI), 3364–3370 (2020).

8. Ruochi Zhang, Yuesong Zou, and Jian Ma. Hyper-sagnn: A self-attention based graph neural

network for hypergraphs. In Proceedings of the 8th International Conference on Learning

Representations (ICLR) (2020).

9. Naganand Yadati et al. NHP: Neural hypergraph link prediction. In Proceedings of the 29th

ACM International Conference on Information and Knowledge Management (CIKM), 1705–

1714 (2020).

10. Tiago Pimentel, Rafael Castro, Adriano Veloso, and Nivio Ziviani. Efficient estimation of node

representations in large graphs using linear contexts. In Proceedings of the 28th International

Joint Conference on Neural Networks (IJCNN), 1–8 (IEEE, 2019).

30
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