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Reviewers' Comments: 

 

Reviewer #1: 

Remarks to the Author: 

General: 

 

The first sequenced microbial genomes, appearing in the mid to late 1990s, led to the reconstruction 

of genome-scale metabolic networks that in turn enabled the formulation of the first genome-scale 

models (GEMs) of metabolism. GEMs brought into focus the incompleteness of genome annotation and 

the knowledge that we have available on gene function. Gaps in knowledge were reflected in gaps in 

reconstruction metabolic networks. Thus, in the mid 2000, a series of algorithms were developed to 

help fill in these knowledge gaps. This became known as gap-filling, that is the subject matter of this 

paper. 

 

The rapid drop in the cost of DNA sequencing in the late 2000s, lead to an exponentially growing 

number of whole genome sequences for bacteria. By the late 2010s this led to the availability of 10s 

of thousands of high-quality genome sequences. The need to reconstruct metabolism thus grew 

massively. An obstacle to formulating GEMs across the bacterial phylogenetic tree is the lack of 

availability of high-quality gap-filling algorithms that lead to robust metabolic models. This is likely to 

remain a growing challenge throughout the 2020s. This is thus a timely study that addresses a key 

issue 

 

This paper aims to introduce a novel ML-based gap-filling approach to address current challenges with 

gap-filling of metabolic networks in a scalable and faster fashion. This paper contains a wealth of 

information, New deep-learning based methodology introduced by authors has the advantage of 

preserving higher order structural information, and efficient training process, this results in a scalable 

and faster gap-filling solution compared to other state of the art ML-based gap-filling approaches such 

as NPH. Conventional constraint-based gapfilling approaches (Gapfill-Gapfind, Fast-gapfill etc,) are far 

from being perfect due to scalability problems and computation time. In these approaches, gap-filling 

of metabolic networks is frequently done by adding a minimum number of reactions from a reference 

database that facilitate growth under a chemically defined medium, due to this limitation, since many 

microorganisms are not culturable and subsequently there is no formulated minimal defined media 

available for them, constraint-based gap-filling approaches haven’t been applicable to such organisms. 

Also, there are many reports on non-feasible gap-filling solution for newly reconstructed models using 

current approaches due to inefficient and time-consuming search in polygonal solution space. All in all, 

new methodology introduced by authors overcomes many problems with current gap-filling 

approaches, but I do have some fundamental concerns about what authors claimed here. 

 

General comments: 

 

1) the paper is very compsci/bioinformatics in nature. Will be inaccessible to the typical life scientist as 

now written 

 

2) background literature and contextualization of results well done. There is a recent paper in CELL 

SYSTEMS on the ‘Life cycle of GEMs’ that might have some material that would be appropriate for the 

discussion. There is also community-driven development of quality standards for GEMs called MeMote, 

that appeared in Nature Biotech recently that would be a relevant reference that the authors should 

consider for the Discussion section. 

 

3) I cannot check this myself, but prompt dissemination of the code would be highly important for 

widespread adoption. 

 

4) Validation is a key issue for this paper. ‘Internal' validation is done by introducing ‘artificial gaps’ in 

existing curated models and CHESHIRE is compared to other well-known gap filling tools. This is a 



modestly stringent text as these models are well curated. They authors show statistically that 

CHESHIRE performs better than three existing tools. 

 

5) Detailing the advantages and disadvantages of CHESHIRE would be helpful. A 

biological/biochemical assessment of what kinds of gaps does CHESHIRE fill in easily, and which does 

it struggle with. 

 

6) Another test bed would be gap-filling in a pangenomic setting. I.e., starting with 100s or even 

1000s of available whole genome sequences of the same species (or even a phylogroup within a 

species) would help with comparative analysis between closely related genomes, and the mass of data 

from multiple strains might help gap fill across a species (or phylogroup). This would be a notable 

advance, given the forecast of genome availability on the 2020s 

 

7) there are cases of ‘gap-filling resistant’ cases, where none of the current tools can fill a gap. If 

CHESHIRE can gap fill such cases, it is not only statistically better, but also better ‘in kind’ compared 

to alternative methods. 

 

Technical comments: 

 

1) Considering the large number of deposited genomes on public databases and current progress on 

pangenome analysis there is an emerging trend of generating large-scale metabolic reconstruction 

which demands scalable and fast gap-filling approaches. Although authors claimed that CHESHIRE is 

faster and more scalable than the current ML-based approaches, data on computation time and 

applying the CHESHIRE on a large set of draft networks are not provided in this research. 

 

2) In some cases, gaps are produced by reactions directionality rather than lack of a specific reaction, 

it seems Hypergraph does not consider reactions directionality. Which might affect the number of 

added reactions during gap-filling. 

 

3) Although BiGG universal reactome contains a curated pool of reactions, it does not consider 

reactions directionality, also it contains same metabolite and reactions with different identifiers. In this 

regard, did authors curate these inconsistencies before using BiGG universal reactome? If not, how do 

they justify using an inconsistent pool of reactions for validation of their work? 

 

4) For external validation, Authors claimed that by adding the top 200 or 500 reactions with high 

confidence score will result in a gapfilled model with more precise secreted-metabolites prediction, 

considering the size of a normal bacterial GEM (800-200 reactions), it doesn’t make sense to add 

200/500 reactions during gapfilling, unless there would be more than 500 genes missing from genome 

annotations, which is unrealistic. 

 

5) In regard with external validation, authors only used draft models generated by CarveMe pipeline, 

though if their methodology is strong enough to fill metabolic gaps efficiently, it should be 

generalizable to the GEMs generated by other pipelines (Modelseed, Gapseq, Merlin, etc,), it is highly 

recommended to diversify testing set not only by randomization of reactions deletion but also by 

considering GEMs from different sources. 

 

6) Both internal and external validations are performed on high quality data sets. BiGG models are 

known as most curated highly consistent models which mostly generated on model organisms with 

less knowledge gaps. Also, external validation is uniform, in this case, models are generated from high 

quality reference genomes which subsequently will not be problematic during gap-filling due to a 

smaller number of missing genes from annotation. Also, all of them have been generated using the 

same pipeline, which will affect the results in a biased manner. 

 

7) Title of the article should be more detailed, the deep learning is a general terminology, it would be 



more precise if authors consider reforming title based on specific approach they’ve used (graph 

convolutional networks). 

 

8) It is recommended that authors consider a graphical abstract illustration which explains network 

architecture in detail, it would help readers skim through the provided workflow easier. 

 

9) Judging gapfilling efficiency by capability of fermentation profile is not a strong argument toward 

defending what authors have claimed in this research, it is known that different enzymes could 

produce same fermentation metabolism from different substrates. Therefor adding reaction from a 

universal reaction pool (when reaction pool is not strain/species or even genus specific reaction pool) 

might result in right phenotype but with wrong reactions. For example, false-positive phenotype of 

Anaerobutyricum hallii draft network (15) might be simply solved by checking the directionality of 

reaction instead of adding 500 reactions to make it predict better. Or in worst case scenario adding an 

isozyme of lactate dehydrogenase with different co-factor might also be helpful for solving such a 

simple problem 

 

 

 

Reviewer #2: 

Remarks to the Author: 

The manuscript presents a deep learning-based method — 

CHEbyshev Spectral HyperlInk pREdictor (CHESHIRE) — to predict missing reactions of genome-scale 

metabolic models (GEMs) purely from the metabolic network topology. The authors claim that the 

method outperforms other topology-based methods in 108 high-quality GEMs. Actually, the authors 

correctly state in the abstract that they offer "compelling evidence that CHESHIRE outperforms other 

topology-based methods," as this kind of method can only be compared by simulation experiments, 

and the results of the comparison still depend strongly on the tested conditions. 

 

The manuscript does a perfect job of describing the problem, the current procedures, and the 

challenges of the gap-filling process. 

 

The gap-filling process involves adding reactions in a metabolic model to have the model consistent 

with observed phenotypes, such as growth assays (on various substrates), metabolite production, and 

true-positive and true-negative predictions in knock-out experiments. 

In general, there are two main approaches to introducing reactions that improve model consistency: 

(1) optimization-based approaches that seek to maximize model consistency with observed 

phenotypes (production or consumption of specific metabolites, growth, etc.) by introducing, from a 

given database, a min number of reactions (although one can identify multiple alternative minimal or 

great sets of reactions), and (2) network topology methods of which, the latest and improved methods 

use ML methodologies. Both of these approaches use precisely the same starting inputs: an initial 

draft model and a reference database of reactions t used for gap-fill. 

 

The network topology methods first introduce many reactions, depending on the technique and user-

defined parameters. They then use a set of phenotypic data to test if the gap-filled model can simulate 

these phenotypes. However, there are still many reactions that are now part of the model for which 

there is no genetic or physiological justification for their presence. 

In the optimization-based approach, the phenotypic data are used in advance. The methods guarantee 

that the reactions added to the model are necessary (even as an alternative) for simulating the 

observed phenotype. In this process, no reaction is added, which does not contribute to the observed 

phenotype. 

In general, both methods could provide the result, the computational effort could be comparable, and 

they both involve a manual curation process, as the last process in the topology-based approach is a 

manual curation. 

If the authors agree with the above statements, then we would agree that some of their statements 



about the lack of manual curation and the no need for phenotypic data in ML network-topology-based 

methods are strong, and they can be misleading. 

 

Another major issue appears to exist in the comparison between the optimization-based methods and 

the CHESHIRE method (and the topology-based methods), the conclusions, and the statements about 

the results of the comparison. 

 

It is unclear if the authors performed the CarveMe reconstruction themselves or if they used the 

models in the CarveMe database. Even if the authors used the CarveMe workflow and reconstructed 

the so-called draft models, did they use only the growth as a phenotype for gap-fill within the 

CarveMe workflow, or did they use the fermentation data to obtain the draft? I assume that the 

authors used only the growth as a phenotype for gap-fill, which is the default procedure for the 

published methodology of CarveMe. In this case, I would argue that the CarveMe draft models did not 

"know the experimental phenotypes a priori." In this respect, their performance is very good since no 

reaction is added except for a minimal set for growth. To perform a fair comparison, the authors 

should compare the models from their method with models derived using the optimization gap-fill 

method in CarveMe, which uses the fermentation data as input in advance, since the author claim that 

their method does better than the optimization-based methods that use the phenotypic data as a 

priori knowledge. 

It is also unclear if the authors used the same (extracellular) media as in the CarveMe protocol. The 

definition of media is crucial for model reconstruction and validation, and the topology methods do not 

consider it. The authors here do not clearly define it and justify the one they use. 

 

Finally, I think that some major issues reduce the significance and broader impact of the manuscript. 

 

First, the improvement of the method relative to other ML, network-topology-based methods is 

insignificant and only provided as evidence. A larger set of models and phenotypes should be used to 

test that at least improvement is consistent and quantitatively better. 

 

Second, the models derived from the CHESHIRE method have an order of 500 reactions which might 

have no physiological relevance. I am afraid that the community and the users of these models would 

like to have some justification for the excessive (useless) number of reactions. How could the authors 

trim these reactions without going through a manual curation? Unless they suggest a manual curation, 

which goes against the main claimed advantage of their method (no need for manual curation). 

Although, as we discussed above, the network-topology methods still involve much effort in manual 

curation. 

 

Third, the phenotypic data comprises nine metabolites that are very close to central carbon pathways. 

The methods should be tested for various produced metabolites (or phenotypes that involve 

metabolites) distributed across different classes of metabolites (amino acids, lipids, secondary 

metabolites, terpenoids, etc.). These compounds are in complex pathways, and the gap-filling of these 

pathways is a very challenging problem for any gap-filling method. 

 

Finally, the models derived from the CHESHIRE, and similar methods, should be tested for their 

performance against growth assays and knock-out experiments, using the metrics used in these 

studies and model testing and validation (such as the overall accuracy and the Matthews Correlation 

Coefficient). These essential metrics will also evaluate the number of (mainly) false-positive 

predictions due to the large number of reactions introduced in the network. 

 

The final suggestion in the discussion, about the use of CHESHIRE and similar methods for database 

reduction also used from the optimization methods, is very valuable and could have a broader impact. 

But it will require a specific and well-designed investigation. 

 

 



 

Reviewer #3: 

Remarks to the Author: 

Chen, Liao and Liu present a method to predict missing reactions in genome-scale metabolic networks 

(GEMs) through deep learning based on CHEbyshev Spectral Hyperlink pREdictor (CHESHIRE). This 

method is based on network topology: given a metabolic network represented as metabolite-reaction 

incidence matrix, it learns the network structure, and then for a given reaction provides a score 

indicating how likely this reaction is part of the input network. The authors demonstrate the better 

performance of their method compared to the other deep learning-based and topology-based gap 

filling methods on an „internal“ validation dataset, where the removed reactions are known, and an 

„external“ validation dataset, where the missing reactions are not known. For the latter, the 

performance metric is the predicted fermentation phenotype of 9 metabolites, which is compared to 

experimentally determined phenotypes. The authors also provide biological interpretations of the gap-

filled reactions that help to recapitulate the experimentally determined phenotype. 

 

In general, the method is promising, and the application of deep learning in genome-scale metabolic 

modelling will be interesting for a broader audience interested in machine learning applications in 

biology, mathematical modelers, and system biologists. However, there is a number of issues that 

need to be clarified or addressed in order to assess the utility of this method for gap filling of 

metabolic networks in biological applications. 

 

Major comments: 

 

1) From Figure 1d,e and model architecture and training description on pages 7 and 8 it does not 

become fully clear how the model is trained and what exactly the input data is. On page 5, it is written 

that CHESHIRE takes a metabolic network and a pool of candidate reactions as input, and produces 

confidence scores for the candidate reactions as output. However, the input on Figure 1d only depicts 

metabolic network, and misses the candidate reactions. On page 7, it is written that the pooling step 

computes reaction features, does this mean for reactions from the incidence matrix? How will the 

reaction features be computed for the pool of candidate reactions? Is incidence matrix also created for 

them? 

 

2) Importantly, what is the loss function that is optimized during the training step? On page 8, it is 

written that the input model is enhanced with negative reactions („fake“ reactions added in the same 

amount as real reactions). Are these negative reactions also included as input, and is the model 

provided with the information on which reactions are true, and which are false? It seems like this is a 

crucial step in model training, but it is not described neither in Figure 1e nor explicitly in the text. 

 

3) On page 9, it is written that positive and negative reactions from each model are split into 60% 

training (metabolic network to be gap-filled) and 40% testing (unseen candidate reactions). Has these 

procedure been repeated multiple times for different splits in 60% and 40%? And what about 

validation, how were the model parameters tuned during the training phase? Was subset of the 60% 

used for optimization of model parameters? 

 

4) On page 8, it is written that negative reactions are not mandatory for algorithm testing. But in this 

section, reactions from the model (40%) are provided for testing, so if only positive reactions will be 

in the candidate pool, what is the point of assessing performance without negative reactions? 

 

5) For internal validation, providing 40% of model reactions and artificially created negative 

counterparts as candidate reaction pool seems to be over-optimistic, since in real application the pool 

of candidate reactions will be much bigger and much less balanced in terms of positive and negative 

classes (as is the case with external validation). Since all the models used for internal training are 

curated BiGG models, it would be interesting to see how CHESHIRE and other methods perform if the 

candidate reaction pool is not coming from the same model with some negative reactions added, but 



agnostically use BiGG database pool as for external validation, and demonstrate whether CHESHIRE is 

able to identify original reactions. 

 

6) For external validation, the best results were achieved when 500 reactions were added with 

CHESHIRE, but 500 gap-filled reactions are quite a lot given that models usually have 1500-2000 

reactions. Manual gap filling processes are usually adding much fewer reactions (10-100). How did the 

author assess false positives added in CHESHIRE-500? E.g., how many fermentation products were 

added, which were not observed experimentally? Is CHESHIRE biased towards scoring specific types of 

reactions higher than others (e.g. transport reactions, reactions involving cofactors, etc?) It would be 

interesting to analyze what types of reactions are scored highest, and whether there is statistical 

overrepresentation of certain types (e.g. with procedures similar to pathway enrichment analysis). 

 

Minor comments: 

 

7) On page 5, it is written that the main limitation of C3MM is that it cannot predict unseen reactions, 

since it includes all candidate reactions obtained from a universal reaction pool. However, it seems like 

CHESHIRE has exactly the same limitation, as it requires candidate reactions as input and provides 

their scoring. This limitation should be explicitly stated and discussed. 

 

8) Page 15, it is written that „lactate consumption is preferred over production as it increases 

maximum growth rate“. How is growth rate included into the CHESHIRE pipeline, so that the authors 

can make this suggestion? Are the reports that the bacteria under study (Anaerobutyricum hallii) can 

consume lactate? 

 

9) Figure 1, CHESHIRE schematic should include details about input candidate reaction pools and 

whether positive/negative labels are provided as well. 

 

10) Page 28, legend to Figure 1 g: „We identified gaps of intact draft GEMs by comparing model 

predictions with phenotypic data“ – this sentence should be rephrased for clarity. I guess what is 

meant that the CHESHIRE predictions of filled gaps were assessed by comparing the gap-filled model 

performance to the original model in terms of fermentation reactions (phenotypic data), or something 

like that. 

 

11) Figure 3 b-i, why are performance metric separated for NHP and CHESHIRE? It seems like all the 

methods could be put together on the four plots (AUROC, Recall, Precision, F1 Score). 

 

12) Page 14, it is written that mean performance significantly increase. If the word „significant“ is 

used, the p-value and the name of the statistical test should be provided as well. 

 

13) Typos: 

a. Page 1 Abstract: „spctral“ 

b. Page 4 „involving -> involved“ 

c. Page 5 „scalibility“ 



Response to Reviewer #1

Point 1.0. General:
The first sequenced microbial genomes, appearing in the mid to late 1990s, led to the reconstruction of
genome-scale metabolic networks that in turn enabled the formulation of the first genome-scale models
(GEMs) of metabolism. GEMs brought into focus the incompleteness of genome annotation and the knowledge
that we have available on gene function. Gaps in knowledge were reflected in gaps in reconstruction metabolic
networks. Thus, in the mid 2000, a series of algorithms were developed to help fill in these knowledge gaps.
This became known as gap-filling, that is the subject matter of this paper.

The rapid drop in the cost of DNA sequencing in the late 2000s, lead to an exponentially growing number
of whole genome sequences for bacteria. By the late 2010s this led to the availability of 10s of thousands
of high-quality genome sequences. The need to reconstruct metabolism thus grew massively. An obstacle
to formulating GEMs across the bacterial phylogenetic tree is the lack of availability of high-quality gap-filling
algorithms that lead to robust metabolic models. This is likely to remain a growing challenge throughout the
2020s. This is thus a timely study that addresses a key issue

This paper aims to introduce a novel ML-based gap-filling approach to address current challenges with gap-
filling of metabolic networks in a scalable and faster fashion. This paper contains a wealth of information,
New deep-learning based methodology introduced by authors has the advantage of preserving higher order
structural information, and efficient training process, this results in a scalable and faster gap-filling solution
compared to other state of the art ML-based gap-filling approaches such as NPH. Conventional constraint-
based gapfilling approaches (Gapfill-Gapfind, Fast-gapfill etc) are far from being perfect due to scalability
problems and computation time. In these approaches, gap-filling of metabolic networks is frequently done by
adding a minimum number of reactions from a reference database that facilitate growth under a chemically
defined medium, due to this limitation, since many microorganisms are not culturable and subsequently there
is no formulated minimal defined media available for them, constraint-based gap-filling approaches haven’t
been applicable to such organisms. Also, there are many reports on non-feasible gap-filling solution for newly
reconstructed models using current approaches due to inefficient and time-consuming search in polygonal
solution space. All in all, new methodology introduced by authors overcomes many problems with current
gap-filling approaches, but I do have some fundamental concerns about what authors claimed here.

Response: We thank Reviewer #1 for reviewing our manuscript and thoroughly summarizing our work. Next,
we address each of her/his comments in order.

Point 1.1. General Comments:
1) The paper is very compsci/bioinformatics in nature. Will be inaccessible to the typical life scientist as now
written.

Response: We thank Reviewer #1 for this critical comment. In the revised manuscript, we have removed
jargons unless they are absolutely needed for accurate description of the computational techniques. We
also moved a substantial amount of technical descriptions to Supplementary Information to improve the
readability of the main text. We hope that our revised version is well-received by a broad audience, including
computational biologists, systems biologists, life scientists, engineers, and computer scientists.

Point 1.2. 2) background literature and contextualization of results well done. There is a recent paper in
CELL SYSTEMS on the ‘Life cycle of GEMs’ that might have some material that would be appropriate for the
discussion. There is also community-driven development of quality standards for GEMs called MeMote, that
appeared in Nature Biotech recently that would be a relevant reference that the authors should consider for
the Discussion section.

Response: We thank Reviewer #1 for suggesting the two important papers. Both “GEM life cycle” and
“MeMote” suggest paths to standardize the production of high-quality GEMs, where gap-filling is an important
step in the stage of model maturation. In the revised manuscript, we have cited both papers and discussed
how CHESHIRE would benefit from the ongoing GEM quality assessment and improvement efforts. We have
updated the corresponding text in the revised manuscript (see Page 17, Lines 312-323):

“Although CHESHIRE advances phenotypic predictions, the use of a universal pool and the top 200
reactions risk of adding reactions that do not exist (false positives). Correct predictions of phenotypes
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do not necessarily mean correct inference of missing reactions. It is likely that different enzymes
carry the same metabolic function (e.g., fermentation metabolism) from different substrates. While
adding reactions is expedited by increasingly advanced machine learning methods, it is still a heavily
manual task to trim reactions that are wrongly added. This challenge, termed as content removal, has
been recognized as one of the two fundamental bottlenecks for GEM quality improvement [47]. This
bottleneck is largely overlooked and highly time-consuming: a significant amount of time is required to
identify which reactions should be removed. Initial community-driven efforts have been made to mitigate
this challenge, including building new GEM quality standards such as MEMOTE [48] and developing
novel frameworks for GEM quality assessment and improvement.”

Point 1.3. 3) I cannot check this myself, but prompt dissemination of the code would be highly important for
widespread adoption.

Response: We thank Reviewer #1 for pointing this out. We have included the GitHub page for CHESHIRE in
the Code Availability statement (see Page 18, Lines 347-348):

“Code Availability: The source code of our computational framework is available at https: // github.
com/ canc1993/ cheshire-gapfilling .”

Point 1.4. 4) Validation is a key issue for this paper. ‘Internal’ validation is done by introducing ‘artificial gaps’ in
existing curated models and CHESHIRE is compared to other well-known gap filling tools. This is a modestly
stringent text as these models are well curated. They authors show statistically that CHESHIRE performs
better than three existing tools.

Response: We thank Reviewer #1 for this valuable comment. In the revised manuscript, we have performed
the same internal validation (first type) on not-well-curated models, i.e., the 818 AGORA models of gut
bacteria [1]. The AGORA models were built by first automatically generating draft reconstructions using
ModelSEED, and then semi-automatically curated to improve the quality of the reconstructions. They are
generally considered as of intermediate quality – between high-quality BiGG models and low-quality draft
reconstructions. Using the AGORA models, we observed a consistent improvement of CHESHIRE over the
other gap-filling methods such as NHP and C3MM (see Fig. R1, corresponding to Fig. S4 in the revised
Supplementary Information). Therefore, our new results indicate that the performance of CHESHIRE is robust
and insensitive to the input GEM quality. We have updated the corresponding text in the revised manuscript
(see Page 9, Lines 159-161):

“We also performed the same type of internal validation on a larger set of metabolic networks, i.e., 818
AGORA models from the Virtual Metabolic Human database [8], and observed similar results (Fig. S4).”

Point 1.5. 5) Detailing the advantages and disadvantages of CHESHIRE would be helpful. A
biological/biochemical assessment of what kinds of gaps does CHESHIRE fill in easily, and which does it
struggle with.

Response: We thank Reviewer #1 for this critical suggestion. To find out the types of gaps that can
be easily filled by CHESHIRE, we expanded our validation to allow for more kinds of gaps in metabolic
functions. In addition to fermentation products that were tested in the previous submission, we have added
new assessments during the revision to test the performance of CHESHIRE in filling other gaps in amino
acid secretion, substrate utilization, and gene essentiality. We found that CHESHIRE improves the predictions
of fermentation products (24 GEMs) and amino acids (25 GEMs) over intact draft models, draft models plus
randomly added reactions, and draft models plus NHP-predicted reactions (see Fig. R9, corresponding to
Fig. 3 in the revised manuscript). We have updated the corresponding text in the revised manuscript (see
Page 13, Lines 230-240):

“The fermentation test comprises nine metabolites that are very close to central carbon pathways. To
test if CHESHIRE can fill other types of gaps, we assessed CHESHIRE for predicting secretions of
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amino acids, substrate utilization for growth, and gene essentiality. The dataset of amino acid secretions
measures production profiles of 20 amino acids for 25 bacterial GEMs (Table S2, Supplementary
Information Section 4.5). This dataset is highly unbalanced with 478 positive phenotypes and 22
negative phenotypes. Similar to the fermentation test described above, CHESHIRE-200 outperforms
Random-200 (F1 score: P < 10−5, two-sided paired-sample t-test), and NHP-200 shows no
improvement at all (Fig. 3f-i, Fig. S5). In particular, CHESHIRE increases the correct predictions of
67 amino acid secretions that are knowledge gaps in draft GEMs. Despite the significant improvement,
the recall remains very low at about 20%, suggesting many remaining false-negative gaps.”

When tested on substrate utilization and gene essentiality, both CHESHIRE and NHP, however, fail to fill
the gaps present in nearly all GEMs (see Fig. R5), suggesting a shared limitation of topology-based gap-filling
methods. The only exception is the GEM of Bucillus subtilis, for which CHESHIRE increases the F1 score from
0.58 (intact draft models) to 0.87 (draft models plus 200 CHESHIRE-predicted reactions). Since only 5 GEMs
were used in each of the two tests, a comprehensive assessment of CHESHIRE over a larger GEM collection
may be more informative of how much CHESHIRE struggles with growth phenotype and gene essentiality. We
have updated the corresponding text in the revised manuscript (see Page 13-14, Lines 241-248):

“Each of the substrate utilization and gene essentiality tests contains 5 GEMs (Table S3, Supplementary
Information Section 4.6 and 4.7). The utilization of various carbon-, nitrogen-, phosphorus-, and sulfur-
substrates for growth were tested using Biolog phenotype arrays [38] in a high-throughput manner.
Essential genes were identified using gene knockout experiments and a gene is essential if its deletion
is lethal and causes cell death. When tested on both datasets, CHESHIRE, however, fails to fill gaps
in nearly all 5 GEMs, except for the growth phenotypes of Bucillus subtilis where CHESHIRE-200
increases the F1 score of CarveMe draft model from 0.58 to 0.87 (Fig. S7). Notably, NHP fails in
all the tests, including the growth phenotypes of B. subtilis.”

Point 1.6. 6) Another test bed would be gap-filling in a pangenomic setting, i.e., starting with 100s or even
1000s of available whole genome sequences of the same species (or even a phylogroup within a species)
would help with comparative analysis between closely related genomes, and the mass of data from multiple
strains might help gap fill across a species (or phylogroup). This would be a notable advance, given the
forecast of genome availability on the 2020s

Response: We thank Reviewer #1 for raising this interesting point. We believe that gap-filling genomes of a
specific species will greatly benefit from such a pangenomic setting when an increased number of genomes
of this species can be well annotated. If genomes are poorly annotated, solely increasing their availability and
using their draft GEMs would do little help on gap-filling: genes with unknown functions remain as knowledge
gaps irrespective of the number of genomes. Currently, we are still lacking large-scale collections (100s or even
1000s) of high-quality GEMs that allow us to do such pangenomic gap-filling even for the model organisms
such as Escherichia coli. Other than being used for construction of genus-, species- or phylogroup-specific
reaction databases, the availability of massive genomics data also allow for integrating comparative genomics
analysis (e.g., searching for orthologous genes) into the gap-filling process. Yet, a further investigation of the
best use of genomics data in the context of pangenomic gap-filling is beyond the scope of the current work.
We have updated the corresponding text in the revised manuscript (see Page 17-18, Lines 324-330):

“Alternative to content removal, the number of false positives can be reduced by limiting the database
size for candidate reactions. Though at its infancy, database reduction is a valuable technology that
has broad utility for both optimization- and topology-based methods. There are many possible routes of
database reduction. First, a universal database can be split into genus-, species-, or even phylogroup-
specific databases by aggregating all reactions in GEMs that belong to individual taxa. Despite the
pioneering efforts in AGORA models, we are still lacking a large-scale database of high-quality GEMs
that cover a wide range of taxonomic diversity.”

Despite the database limitation, we have used the existing databases to create genus- or species-specific
databases and tested their utility on gap-filling. First, we constructed a genus-specific database from the BiGG
universal reaction database (see Section 4.3 in Supplementary Information for details). For the fermentation
product test where CHESHIRE improves over the draft GEMs using the universal database, no improvement
was observed for the combination of CHESHIRE and genus-specific databases. Second, the BiGG database
contains 58 high-quality Escherichia coli GEMs. We explored whether the 58 GEMs help fill the gaps in
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a draft model for E. coli K-12 MG1655, which was already included in our nutrient utilization and gene
essentiality tests. We constructed an E. coli-specific reaction database from the 58 GEMs by aggregating
reactions. Unfortunately, this species-specific reaction database, when used with CHESHIRE, does not show
improvement over draft GEMs (see Fig. R5). One possibility for the failure is that GEMs belonging to the
same genus or species might share similar gaps and need to be filled by using reactions from distantly related
organisms.

Point 1.7. 7) There are cases of ‘gap-filling resistant’ cases, where none of the current tools can fill a gap.
If CHESHIRE can gap fill such cases, it is not only statistically better, but also better ‘in kind’ compared to
alternative methods.

Response: We thank Reviewer #1 for this comment. Indeed, substrate utilization and gene essentiality are
the examples of “gap-filling resistant” cases for CHESHIRE and the other topology-based methods such as
NHP (see our response to Point 1.5 for details). Despite the challenge, CHESHIRE substantially improves the
prediction of substrate utilization by B. subtilis, while NHP shows no improvement. At least for this example,
CHESHIRE is better in kind than alternative topology-based methods. We have updated the corresponding
texts in the revised manuscript (see Page 16-17, Lines 306-311):

“Despite the success, we found that substrate utilization and gene essentiality are gap-filling resistant
cases for CHESHIRE and, broadly, the topology-based gap-filling methods. Even in this worst scenario,
CHESHIRE shows better performance than the competitive method NHP in the prediction of substrate
utilization for B. subtilis. Since only 5 GEMs were used in each of the two tests, a comprehensive
assessment of CHESHIRE over a larger GEM collection may be more informative of how much
CHESHIRE struggles with these tasks.”

Point 1.8. Technical comments:
1) Considering the large number of deposited genomes on public databases and current progress on
pangenome analysis there is an emerging trend of generating large-scale metabolic reconstruction which
demands scalable and fast gap-filling approaches. Although authors claimed that CHESHIRE is faster and
more scalable than the current ML-based approaches, data on computation time and applying the CHESHIRE
on a large set of draft networks are not provided in this research.

Response: We thank Reviewer #1 for this valuable comment. We agree that a scalable approach is highly
valuable for the large-scale reconstruction of GEMs. In the revised manuscript, we have compared the
running time of CHESHIRE with the state-of-the-art topology-based methods, including C3MM and NHP, on
the five largest models (based on the number of reactions) from the BiGG database [2]. The five modes
are Recon3D (Homo sapiens), iCHOv1 (Cricetulus griseus), iLB1027 lipid (Phaeodactylum tricornutum CCAP
1055/1), iCHOv1 DG44 (Cricetulus griseus), and RECON1 (Homo sapiens) (see Table R1 for their numbers of
metabolites and reactions). The running time is obtained for the first type of internal validation in a Mactonish
machine with Apple M1 Pro chip and 32 GB memory. Clearly, CHESHIRE is the most computationally efficient
method in predicting missing reactions (see Table R2, corresponding to Supplementary Information Table S4).
We have updated the corresponding texts in the revised main text (see Page 16, Lines 297-301):

“Compared to previous gap-filling methods, CHESHIRE adopts the concept of hypergraphs with
advanced graph convolutional networks to accurately learn the geometrical patterns of metabolic
networks and predict missing metabolic reactions without inputs from any experimental data. In addition,
CHESHIRE is computationally efficient than C3MM and NHP (Table S4, Supplementary Information
Section 3.4).”

and Supplementary Information (see Section 3.4, Lines 285-292):

“Furthermore, we compared the running time of CHESHIRE with C3MM and NHP on the five largest
GEMs (based on the number of reactions) from the BiGG database. We did not consider NVM because
of its poor performance in internal validation. The testing GEMs include Recon3D (Homo sapiens),
iCHOv1 (Cricetulus griseus), iLB1027 lipid (Phaeodactylum tricornutum CCAP 1055/1), iCHOv1 DG44
(Cricetulus griseus), and RECON1 (Homo sapiens). The running time is computed based on the first
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set of internal validation in a Mactonish machine with Apple M1 Pro chip and 32 GB memory. As shown
in Table S4, among all the three methods, CHESHIRE is the most computationally efficient method in
predicting missing reactions.”

Point 1.9. 2) In some cases, gaps are produced by reactions directionality rather than lack of a specific
reaction, it seems Hypergraph does not consider reactions directionality. Which might affect the number of
added reactions during gap-filling.

Response: We thank Reviewer #1 for pointing this out. Indeed, CHESHIRE does not consider reaction
directionality. Other hyperlink prediction methods, except for NHP, treat all reactions as bidirectional too. We
have updated the corresponding text in the revised manuscript (see Page 18, Lines 334-340):

“Finally, we should not ignore the possibility that gaps may be filled by altering the directionality of
reactions without adding new ones. The current version of CHESHIRE does not consider reaction
directionality and thus cannot fill gaps caused by wrong directions. A systematic integration of available
thermodynamic data with GEMs will reduce the number of gaps and thus the total number of incorrectly
introduced reactions. This deserves dedicated efforts, and we leave it as a future work.”

Point 1.10. 3) Although BiGG universal reactome contains a curated pool of reactions, it does not consider
reactions directionality, also it contains same metabolite and reactions with different identifiers. In this regard,
did authors curate these inconsistencies before using BiGG universal reactome? If not, how do they justify
using an inconsistent pool of reactions for validation of their work?

Response: We thank Reviewer #1 for this valuable comment. In our calculations, we did not curate the
metabolite or reaction identifier inconsistencies in the BiGG universal reactome. The BiGG database we used
contains 10,393 metabolites (unique IDs) and 16,337 reactions (unique IDs). We found that 255 metabolite IDs
(2.45%) have ambiguous names, i.e., names associated with more than one metabolite IDs, and the averaged
number of metabolite IDs per unique name is as low as 1.02. This is consistent with what was reported
in Pham et al. [3] that the averaged number of metabolite IDs per compound name is 1.01. Similarly, 328
reaction IDs (2.01%) have ambiguous reaction formula, i.e., the same reactions associated with more than
one identifiers, and the averaged number of reaction IDs per reaction formula is 1.01. Since the duplication
of metabolites and reactions only inflate the entire database slightly, the inconsistencies should have minimal
impacts on gap-filling. The high quality and low percentage of inconsistencies is exactly the reason why we
prefer the BiGG database [2] over the other reactome databases such as ModelSEED [4]. We have updated
the corresponding text in Supplementary Information (see Section 4.3, Lines 353-358):

“The resulting BiGG database contains 10,393 metabolites (unique IDs) and 16,337 reactions (unique
IDs). We found that 2.45% of metabolite IDs have ambiguous names, i.e., names associated with more
than one metabolite IDs. Similarly, 2.01% of reactions have ambiguous reaction formula, i.e., the same
reactions associated with more than one identifier. Since the duplication of metabolites and reactions
only inflate the entire database slightly, we did not further curate the BiGG universal database to resolve
these inconsistencies.”

Point 1.11. 4) For external validation, Authors claimed that by adding the top 200 or 500 reactions with
high confidence score will result in a gap-filled model with more precise secreted-metabolites prediction,
considering the size of a normal bacterial GEM (800-200 reactions), it does’t make sense to add 200/500
reactions during gap-filling, unless there would be more than 500 genes missing from genome annotations,
which is unrealistic.

Response: We thank Reviewer #1 for this critical comment. We agree with the reviewer that adding 500
reactions is unrealistic for bacterial genomes which typically have 1,000-2,000 reactions. In our previous
submission, we chose 500 because roughly this number of reactions must be included in order to have a
significant improvement on the prediction of fermentation products compared to the control approach that
randomly adds reactions. The major factor contributing to this large number is the reaction database size,
i.e., BiGG universal database has nearly 17,000 reactions and many of them are very similar in terms of their
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reactants and products profiles (e.g., may only differ by the co-factor). We found that CHESHIRE encounters
difficulty in distinguishing these subtle differences. Eventually, similar reactions will be returned with similar
confidence scores. Therefore, any reaction, even a true positive, may be surrounded in the rankings by a
number of false positive reactions with similar enzymatic processes. The percentage of false positives thus
increases proportionally to the total size of the reaction database. This also explains why the confidence scores
of hundreds to thousands of reactions in draft GEMs are so high and fall within a narrow range between 0.999
and 1.0.

In the revised manuscript, we have attempted to reduce the number of reactions added during gap-filling in
two different ways. First, we built genus-specific BiGG reaction pools (see Supplementary Information Section
4.3 for details). We found that gap-filling using these pools does not statistically improve the predictions
made by intact draft models (see Fig. R4). This might be explained by phylogeny, where closely related
microorganisms (e.g., within the same species or genus) may share similar gaps in their genome annotations.
Second, we introduced a scoring metric to measure the similarity of candidate reactions to those already in
the draft models. The similarity score between two reactions is computed based on the correlation of the
corresponding vectors in the stoichiometric matrix. Note that similarity scores of reactions are different from
confidence scores that quantify the probability of being present for these reactions. We reason that dissimilar
(rather than similar) reactions should be preferentially added since they are complementary to the existing
metabolic network and more likely to fill the gaps. Following this strategy, we have successfully reduced the
number of reactions that are added to draft GEMs from 500 down to 200. The top 200 reactions are selected
by ranking the similarity scores (from lowest to highest) of all reactions whose confidence scores are equal
or above 0.9995. With this dual-metric strategy for ranking reactions, CHESHIRE significantly improves the
prediction of fermentation products and amino acids compared to intact draft models as well as draft models
plus randomly added reactions (see Fig. R9, corresponding to Fig. 3 in the revised manuscript). We have
updated the corresponding text in the revised manuscript (see Page 11, Lines 189-197):

“Briefly, CHESHIRE is trained on the entire reaction set of a draft GEM, and candidate reactions (taken
from a reaction pool, e.g., the BiGG database [30]) are ranked based on both confidence and similarity
scores. The confidence score, returned by CHESHIRE, quantifies the probability of a candidate reaction
being present in the GEM. The similarity score measures the maximum correlation between a candidate
reaction and all existing reactions in the GEM. Given our rationale that dissimilar reactions are more
likely to be functionally complementary to the existing ones, all candidate reactions whose confidence
scores ≥ 0.9995 are ranked by their similarity scores (least similar to most similar). The top 200
reactions are added to the draft GEM to produce a gap-filled GEM (Supplementary Information Section
6.1).”

Please also see our responses to Point 1.2 and Point 1.16 on how future studies may address this limitation.

Point 1.12. 5) In regard with external validation, authors only used draft models generated by CarveMe
pipeline, though if their methodology is strong enough to fill metabolic gaps efficiently, it should be
generalizable to the GEMs generated by other pipelines (ModelSEED, Gapseq, Merlin, etc,), it is highly
recommended to diversify testing set not only by randomization of reactions deletion but also by considering
GEMs from different sources.

Response: We thank Reviewer #1 for this excellent suggestion. Among all existing pipelines, only
CarveMe, ModelSEED, and gapseq generate ”ready-to-use” GEMs that allow simulation of organism’s
biomass production and metabolic physiology [5]. Gapseq has an innate gap-filling method using a filtered
pool of candidate reactions supported by genetic evidences, whose information was not used by CHESHIRE.
Therefore, only GEMs generated by CarveMe and ModelSEED can be used for a fair external validation of
CHESHIRE.

In the revised manuscript, we have tested the performance of CHESHIRE to fill phenotypic gaps (fermentation
products) in both CarveMe- and ModelSEED-reconstructed draft models. In all tests, CHESHIRE outperforms
the control approach by randomly adding reactions and a previous topology-based method NHP (see Fig.
R9 and Fig. R3, corresponding to Fig.3 in the revised manuscript and Fig. S6 in revised Supplementary
Information, respectively). These new results demonstrate that CHESHIRE enables consistent improvement
of phenotypic prediction over GEMs reconstructed from different sources. We have updated the corresponding
text in the revised manuscript (see Page 12-13, Line 223-229):
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“To test whether the improvement of CHESHIRE over CarveMe-reconstructed draft models is
generalizable to GEMs from other sources, we performed the same fermentation test on ModelSEED-
reconstructed draft models. Similar results were observed, where CHESHIRE-200 improves the
predictions over draft models, and draft models plus randomly selected 200 reactions (Fig. S6). NHP,
again, shows no improvement. Our results suggest that CHESHIRE enables consistent improvement of
phenotypic prediction over GEMs reconstructed from different pipelines.”

Point 1.13. 6) Both internal and external validations are performed on high quality data sets. BiGG models
are known as most curated highly consistent models which mostly generated on model organisms with less
knowledge gaps. Also, external validation is uniform, in this case, models are generated from high quality
reference genomes which subsequently will not be problematic during gap-filling due to a smaller number of
missing genes from annotation. Also, all of them have been generated using the same pipeline, which will
affect the results in a biased manner.

Response: We thank Reviewer #1 for this critical comment. We agree with the reviewer that even though
artificial gaps are introduced in each model, the remaining network connectivity might be more complete
compared to those with low-quality models as the starting point. Therefore, in the revised manuscript, we have
performed internal validations on 818 AGORA models, which are considered as having intermediate quality
between draft models and well-curated models. CHESHIRE still outperforms existing topology-based methods
in resolving the artificially introduced gaps in 818 AGORA models (see Fig. R1, corresponding to Fig. S4 in the
revised Supplementary Information). The results suggest that the improvement of CHESHIRE over previous
methods is consistent and not sensitive to the input GEM quality.

Note that all external validations were performed to gap-fill draft (not curated) models. In the revised
manuscript, we have considered both CarveMe and ModelSEED pipelines for draft model reconstruction. On
average, the ModelSEED draft models are less predictive of fermentation products and amino acid secretions
compared to the CarveMe draft models. Yet, even for the CarveMe draft models, their mean F1 scores are 0.23
and 0.16 for fermentation products and amino acids respectively, suggesting substantial gaps that might result
from missing genes. Most importantly, for both phenotypes (fermentation products and amino acid secretions),
CHESHIRE improves the predictions over the control approach that randomly adds reactions as well as NHP
(the most up-to-date topology-based method before CHESHIRE); see Fig. R9 (corresponding to Fig. 3 in the
revised manuscript). All these tests provides compelling evidences that CHESHIRE does not favor a specific
reconstruction pipeline.

Point 1.14. 7) Title of the article should be more detailed, the deep learning is a general terminology, it
would be more precise if authors consider reforming title based on specific approach they’ve used (graph
convolutional networks).

Response: We thank Reviewer #1 for this excellent suggest. We have changed our title to:

“Teasing out Missing Reactions in Genome-scale Metabolic Networks through Graph Convolutional
Networks”

Point 1.15. 8) It is recommended that authors consider a graphical abstract illustration which explains network
architecture in detail, it would help readers skim through the provided workflow easier.

Response: We thank Reviewer #1 for this excellent suggestion. We have significantly improved our illustration
of CHESHIRE in Fig. R7 (corresponding to Fig. 1 in the revised manuscript), which includes the detailed
network architecture of CHESHIRE at both training and prediction phases.

Point 1.16. 9) Judging gapfilling efficiency by capability of fermentation profile is not a strong argument toward
defending what authors have claimed in this research, it is known that different enzymes could produce same
fermentation metabolism from different substrates. Therefore adding reaction from a universal reaction pool
(when reaction pool is not strain/species or even genus specific reaction pool) might result in right phenotype
but with wrong reactions. For example, false-positive phenotype of Anaerobutyricum hallii draft network (15)
might be simply solved by checking the directionality of reaction instead of adding 500 reactions to make it
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predict better. Or in worst case scenario adding an isozyme of lactate dehydrogenase with different co-factor
might also be helpful for solving such a simple problem.

Response: We thank Reviewer #1 for this very insightful comment. Indeed, with a universal reaction pool,
CHESHIRE risks of adding incorrect reactions, e.g., alternative pathways or reactions with different enzymes,
co-factors and substrates, that happen to result in the right phenotype. We have acknowledged this limitation
in the Discussion section of the revised manuscript (see also our response to Point 1.2). We have further
tested the approach of using the genus-specific reaction pool (see Supplementary Information Section 4.3),
as suggested by the reviewer. However, the use of genus-specific reaction databases does not improve the
predictions of fermentation products by CHESHIRE compared to draft models (see Fig. R4).

The reviewer mentions an alternative gap-filling strategy by changing reaction directionality. We fully agree
that it may result in the right phenotype by only changing reaction directionality without adding new reactions.
However, the selection of which reactions for the change of directionality might need to be guided by knowing
the phenotype as a priori knowledge. This is different from CHESHIRE which infers missing reactions without
knowing any experimental data. It is possible that the lactate phenotype of Anaerobutyricum hallii draft network
may be solved by changing reaction directionality. Yet, developing an algorithm to pick the right reactions and
assigning their directions, especially without any guidance from data, is a highly nontrivial task and deserves a
dedicated project on its own. This comment on reaction directionality overlaps with Point 1.9: see our response
to this comment for more information.

We also agree with the reviewer that gap-filling efficiency should be evaluated based on research objectives.
CHESHIRE not only facilities the model curation step towards building a high-quality GEM, but also it fulfills
a pressing need for rapid prediction of phenotypes given bacterial genomic sequences before any experiment
is done. Rapid phenotypic prediction plays an important role of in silico screening, i.e., phenotypes can
be simulated from draft GEMs. Here we have demonstrated that draft models with CHESHIRE-predicted
missing reactions added back enables more accurate predictions. In this context, judging gap-filling efficiency
by capability of predicting the right phenotypes is appropriate, and whether CHESHIRE predicted the right
reactions becomes less concerned (and it has been systematically tested during internal validations). We
have updated the corresponding text in the revised manuscript (see Page 4, Lines 48-56):

“However, experimental data is not readily available for non-model organisms, thus limiting the utility of
those tools. For example, most intestinal organisms are considered “uncultivable” and their functions
remain unknown [19]. Even for cultivable organisms, high-throughput phenotypic screening, i.e.,
searching for organisms with desired phenotypes, relies on the analysis of microbial extracts or genetic
modifications, which can become complicated, time-consuming, and expensive. Given the increasing
availability of cultivable organisms and their genomes, there is a pressing need for rapid and accurate in
silico predictions of metabolic phenotypes solely from genomic sequences. Even though the predictions
are theoretical, downstream experimental validations could be mush less resource-demanding.”

Finally, we thank Reviewer #1 again for reviewing our manuscript and her/his very insightful and constructive
comments, which have helped us significantly improve the quality of our manuscript. We hope our responses
above have addressed all her/his concerns in a satisfactory manner.
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Response to Reviewer #2

Point 2.0. The manuscript presents a deep learning-based method — CHEbyshev Spectral HyperlInk
pREdictor (CHESHIRE) — to predict missing reactions of genome-scale metabolic models (GEMs) purely from
the metabolic network topology. The authors claim that the method outperforms other topology-based methods
in 108 high-quality GEMs. Actually, the authors correctly state in the abstract that they offer ”compelling
evidence that CHESHIRE outperforms other topology-based methods,” as this kind of method can only be
compared by simulation experiments, and the results of the comparison still depend strongly on the tested
conditions.

The manuscript does a perfect job of describing the problem, the current procedures, and the challenges of
the gap-filling process.

Response: We thank Reviewer #2 for reviewing our manuscript and the overall positive assessment of our
work. Next, we address each of her/his comments in order.

Point 2.1. The gap-filling process involves adding reactions in a metabolic model to have the model consistent
with observed phenotypes, such as growth assays (on various substrates), metabolite production, and true-
positive and true-negative predictions in knock-out experiments. In general, there are two main approaches
to introducing reactions that improve model consistency: (1) optimization-based approaches that seek to
maximize model consistency with observed phenotypes (production or consumption of specific metabolites,
growth, etc.) by introducing, from a given database, a min number of reactions (although one can identify
multiple alternative minimal or great sets of reactions), and (2) network topology methods of which, the latest
and improved methods use ML methodologies. Both of these approaches use precisely the same starting
inputs: an initial draft model and a reference database of reactions used for gap-fill.

The network topology methods first introduce many reactions, depending on the technique and user-defined
parameters. They then use a set of phenotypic data to test if the gap-filled model can simulate these
phenotypes. However, there are still many reactions that are now part of the model for which there is no
genetic or physiological justification for their presence. In the optimization-based approach, the phenotypic
data are used in advance. The methods guarantee that the reactions added to the model are necessary (even
as an alternative) for simulating the observed phenotype. In this process, no reaction is added, which does not
contribute to the observed phenotype. In general, both methods could provide the result, the computational
effort could be comparable, and they both involve a manual curation process, as the last process in the
topology-based approach is a manual curation. If the authors agree with the above statements, then we would
agree that some of their statements about the lack of manual curation and the no need for phenotypic data in
ML network-topology-based methods are strong, and they can be misleading.

Response: We thank Reviewer 2 for this critical comment. Indeed, both network topology-based and
optimization-based methods use a draft model and a reaction database for gap-filling. However, topology-
based methods, including CHESHIRE, are fully unsupervised, i.e., automatically introducing many reactions
without the need of knowing any genetic, physiological, or phenotypic data. By contrast, optimization-based
methods are supervised and requires experimental data to start with. Although the two approaches address
the same problem, it is not fair to compare a supervised method and an unsupervised method. In fact,
when phenotypic data is available, we recommend using optimization-based methods which, as the reviewer
mentions, only add a minimal number of reactions necessary for simulating the phenotype. The biggest
advantage of our method, compared to optimization-based methods, is the rapid prediction of phenotypes
as well as reactions potentially missing from the draft model in the absence of any experimental data (see
our response to Point 1.16 from Reviewer 1). This advantage does comes with a cost, i.e., it may introduce
many unjustified reactions, which eventually needs manual curation to trim the false-positives if the ultimate
goal is to build a high-quality GEM. Since the manual curation step is not part of our pipeline (or any other
topology-based methods), our statements of the lack of manual curation and the no-need for phenotypic data
remains technically valid. We admit that this statement might be confusing without a detailed explanation
and comparison of the topology-based approach and the optimization-based approach. To avoid misleading
readers, we have updated the corresponding text in the revised manuscript (see Page 15-16, Line 279-291):

“Optimization-based GEM gap-filling has been long considered as a process of fitting a GEM to
observed data [44]. This problem is typically formulated by a mixed-integer linear programming that
minimizes the number of added reactions under the constraint that the observed phenotypes are
satisfied. Therefore, the majority of GEM gap-filling methods falls short of predicting metabolic gaps in
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both network connections and functions without knowing experimental phenotypes a priori. FastGapFill,
as one of a few exceptions, fits a specific task of gap-filling to resolve dead-ends and blocked reactions
[21]. Previous studies [24, 45, 46] have shown that FastGapFill exhibits a poor performance in filling
artificially introduced gaps. Although gap-filling with experimental data is critically important, it is limited
to understanding the gene-reaction-phenotype mappings in conditions where the data was collected.
The environmental conditions are combinatorially complex; as a theoretical tool, the primary purpose of
GEMs is to rapidly offer theoretical predictions of metabolic activities over a large array of environmental
conditions where data has not been collected.”

Point 2.2. Another major issue appears to exist in the comparison between the optimization-based methods
and the CHESHIRE method (and the topology-based methods), the conclusions, and the statements about
the results of the comparison.

It is unclear if the authors performed the CarveMe reconstruction themselves or if they used the models in
the CarveMe database. Even if the authors used the CarveMe workflow and reconstructed the so-called draft
models, did they use only the growth as a phenotype for gap-fill within the CarveMe workflow, or did they use
the fermentation data to obtain the draft? I assume that the authors used only the growth as a phenotype
for gap-fill, which is the default procedure for the published methodology of CarveMe. In this case, I would
argue that the CarveMe draft models did not ”know the experimental phenotypes a priori.” In this respect,
their performance is very good since no reaction is added except for a minimal set for growth. To perform
a fair comparison, the authors should compare the models from their method with models derived using the
optimization gap-fill method in CarveMe, which uses the fermentation data as input in advance, since the
author claim that their method does better than the optimization-based methods that use the phenotypic data
as a priori knowledge. It is also unclear if the authors used the same (extracellular) media as in the CarveMe
protocol. The definition of media is crucial for model reconstruction and validation, and the topology methods
do not consider it. The authors here do not clearly define it and justify the one they use.

Response: We thank Reviewer #2 for these great questions. We apologize for not explaining the comparison
of topology- and optimization-based approaches adequately; the reviewer had an impression that we claimed
that our method is superior to optimization-based methods. However, we were not intended to claim this.
As we have explained in our response to Point 2.1, topology-based approaches are unsupervised (without
phenotypic data as input) and optimization-based approaches are supervised (require phenotypic data as
input). Therefore, their performances are not comparable. Instead, our manuscript focused on the comparison
between CHESHIRE and other topology-based approaches such as NHP and C3MM.

We also apologize for not being very clear about the details of our modeling approach. The reviewer is correct.
We generated the CarveMe models using the standard pipeline and only used growth phenotype for gap-
filling. The reviewer is also correct that the CarveMe models does not know the experimental phenotype as
a prior. When we compared the CHESHIRE-predicted models to the draft models, both models include the
minimum set of reactions added by CarveMe for gap-filling the growth phenotype. Even though CarveMe-
added reactions might by accident help fill other phenotypic gaps in the validation set, these reactions were
equally added to all models and the comparison of their performances remains fair. We have added these
details in Supplementary Information (see Section 6.1, Line 447-449):

“All draft GEMs were reconstructed using the standard CarveMe [31] or ModelSEED [34] pipelines.
Only growth phenotypes were used for the built-in gap-filling algorithm in each pipeline.”

In general, the environment in the simulations was designed to mimic the culture media used in the
experiments. We have performed four different phenotypic tests in the revised manuscript: two tests (amino
acid secretions and substrate utilization) used M9 minimal medium whose composition can be found in the
CarveMe media database. The culture media composition used in the other two tests were obtained from
other sources. In the revised SI, we have added a detailed description of different culture media used in the
external validation (see Supplementary Information Section 6.2, Lines 469-489):

“6.2. Culture Media Compositions. The culture media compositions used for growth simulations were
determined to reproduce the experimental conditions under which phenotypes were measured. While
the dataset of fermentation product test result from multiple experiments whose culture media can vary,
we followed the same strategy as described in Zimmermann et al. [28] and assumed that all experiments
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were performed under the same growth medium. We further adopted the fermentation test medium
composition and their maximally allowed fluxes developed in the same study (accessible from https:

// github. com/ Waschina/ gapseqEval ). For the amino acid secretion test, M9 minimal medium (with
glucose) was used. Glucose has a maximum uptake rate of 10 mmol/gDW/h and all other compounds
in the medium were unconstrained. For the substrate utilization test, GEMs were also constrained to the
same M9 minimal medium, where the default sources of carbon, nitrogen, sulfur and phosphorus are
glucose, ammonia, sulfate, and phosphate, respectively. For Shewanella oneidensis, the default carbon
source is DL-lactate. To simulate growth on each substrate in Biolog arrays, the default source with the
same type of the substrate (i.e., carbon, nitrogen, sulfur, and phosphorus) in the M9 minimal medium
was replaced with the substrate. The maximum uptake rate for all Biolog substrates is 10 mmol/gDW/h
and all other compounds in the M9 medium are unconstrained. We downloaded the M9 recipe from the
github repository of CarveMe (accessible from https: // github. com/ cdanielmachado/ carveme ). For
gene essentiality test, the culture media compositions were available from the same github repository:
M9 minimal medium (with glucose) for E. coli, M9 minimal medium (with succinate) for P. aeruginosa, LB
medium for B. subtilis and S. oneidensis, and complete medium (all compounds with exchange reactions
are allowed to be uptaken) for M. genitalium. All compounds in the culture media were unconstrained.”

Point 2.3. Finally, I think that some major issues reduce the significance and broader impact of the manuscript.

First, the improvement of the method relative to other ML, network-topology-based methods is insignificant
and only provided as evidence. A larger set of models and phenotypes should be used to test that at least
improvement is consistent and quantitatively better.

Response: We thank Reviewer #2 for this critical comment. In the revised manuscript, we have shown
clear evidence that CHESHIRE outperforms other existing topology-based methods in both internal validation
and external validation over different collections of GEMs, validation strategies, and metabolic phenotypes
(see Fig. R8 and Fig. R9, corresponding to Fig. 2 and Fig. 3 respectively in the revised manuscript).
The statistical significance has been assessed by the two-sided paired-sample t-test for commonly used
performance evaluation metrics, including AUROC/AUPRC, precision, recall and F1 scores.

We agree with the reviewer that a broader test is needed to assess the consistency of improvement. In
the revised manuscript, we have expanded both internal and external validations. For internal validation, we
have added comparisons of CHESHIRE and the existing topology-based methods (NHP and C3MM) to fill
artificially introduced gaps on 818 AGORA models of gut bacteria [1] (see Fig. R1, corresponding to Fig. S4
in Supplementary Information). We have updated the corresponding text in the revised manuscript (see Page
9, Lines 159-161):

“We also performed the same type of internal validation on a larger set of metabolic networks, i.e., 818
AGORA models from the Virtual Metabolic Human database [8], and observed similar results (Fig. S4).”

For external validation, we have showed that the improvement of CHESHIRE on filling the gaps of fermentation
products can be generalized to amino acid secretions (see Fig. R9, corresponding to Fig. 3 in the revised
manuscript). We have added the results of this new test in the revised manuscript (see Page 13, Lines 230-
240):

“The fermentation test comprises nine metabolites that are very close to central carbon pathways. To
test if CHESHIRE can fill other types of gaps, we assessed CHESHIRE for predicting secretions of
amino acids, substrate utilization for growth, and gene essentiality. The dataset of amino acid secretions
measures production profiles of 20 amino acids for 25 bacterial GEMs (Table S2, Supplementary
Information Section 4.5). This dataset is highly unbalanced with 478 positive phenotypes and 22
negative phenotypes. Similar to the fermentation test described above, CHESHIRE-200 outperforms
Random-200 (F1 score: P < 10−5, two-sided paired-sample t-test), and NHP-200 shows no
improvement at all (Fig. 3f-i, Fig. S5). In particular, CHESHIRE increases the correct predictions of
67 amino acid secretions that are knowledge gaps in draft GEMs. Despite the significant improvement,
the recall remains very low at about 20%, suggesting many remaining false-negative gaps.”

Since the reviewer also mentions growth and gene-knockout phenotypes in Point 2.6, we have tested the
performance of CHESHIRE on 5 GEMs whose substrate utilization and gene essentiality data are publicly
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available. It turns out that CHESHIRE, as well as the existing topology-based method NHP, struggle with filling
the gaps and no improvement is observed beyond the draft models (see Fig. R5, corresponding to Fig. S7
in the Supplementary Information). It is important to note, CHESHIRE is the first method, among all existing
topology-based methods, that has been rigorously tested over different collection of GEMs and metabolic
phenotypes. Existing topology-based methods such as NHP were only tested using an internal validation
strategy on artificially introduced gaps but not on real biological data. We have updated the corresponding
texts in the revised manuscript:

“Each of the substrate utilization and gene essentiality tests contains 5 GEMs (Table S3, Supplementary
Information Section 4.6 and 4.7). The utilization of various carbon-, nitrogen-, phosphorus-, and
sulfur-substrates for growth were tested using Biolog phenotype arrays [38] in high-throughput manner.
Essential genes were identified using gene knockout experiments and a gene is essential if its deletion
is lethal and causes cell death. When tested on both datasets, CHESHIRE, however, fails to fill gaps
in nearly all 5 GEMs, except for the growth phenotypes of Bucillus subtilis where CHESHIRE-200
increases the F1 score of CarveMe draft model from 0.58 to 0.87 (Fig. S7). Notably, NHP fails in
all the tests, including the growth phenotypes of B. subtilis.” (see Page 13-14, Lines 241-248)

“Most importantly, CHESHIRE has been validated on realistic biological datasets. To our best
knowledge, such benchmark has not been performed for previous topology-based gap-filling methods.
We showed that CHESHIRE significantly improves the phenotypic predictions of fermentation products
and amino acids secretions over a total of 49 draft GEMs reconstructed from a mostly used automatic
reconstruction pipeline CarveMe [11]. Despite the success, we found that substrate utilization and
gene essentiality are gap-filling resistant cases for CHESHIRE and, broadly, the topology-based gap-
filling methods. Even in this worst scenario, CHESHIRE shows better performance than the competitive
method NHP in the prediction of substrate utilization for B. subtilis. Since only 5 GEMs were used in
each of the two tests, a comprehensive assessment of CHESHIRE over a larger GEM collection may be
more informative of how much CHESHIRE struggles with these tasks.” (see Page 16-17, Lines 301-311)

Point 2.4. Second, the models derived from the CHESHIRE method have an order of 500 reactions which
might have no physiological relevance. I am afraid that the community and the users of these models would
like to have some justification for the excessive (useless) number of reactions. How could the authors trim
these reactions without going through a manual curation? Unless they suggest a manual curation, which goes
against the main claimed advantage of their method (no need for manual curation). Although, as we discussed
above, the network-topology methods still involve much effort in manual curation.

Response: We thank Reviewer #2 for this valuable comment. The reviewer is correct that adding 500
reactions may be too much and risk of incorporating false positives. This point is essentially the same
as Point 1.11 raised by Reviewer 1. Please see our response to Point 1.11 for details. Briefly, we have
successfully reduced the number of added reactions from 500 to 200 by using a combination of confidence
scores (indicating the confidence of a candidate reaction being present) and similarity scores (indicating
the averaged similarity between a candidate reaction and those in the draft models) to rank the candidate
reactions. The similarity score helps us automatically trim reactions, without going through a manual curation.
We have updated our approach for ranking reactions in the revised manuscript (see Page 11, Lines 189-197):

“Briefly, CHESHIRE is trained on the entire reaction set of a draft GEM, and candidate reactions (taken
from a reaction pool, e.g., the BiGG database [30]) are ranked based on both confidence and similarity
scores. The confidence score, returned by CHESHIRE, quantifies the probability of a candidate reaction
being present in the GEM. The similarity score measures the maximum correlation between a candidate
reaction and all existing reactions in the GEM. Given our rationale that dissimilar reactions are more
likely to be functionally complementary to the existing ones, all candidate reactions whose confidence
scores ≥ 0.9995 are ranked by their similarity scores (least similar to most similar). The top 200
reactions are added to the draft GEM to produce a gap-filled GEM (Supplementary Information Section
6.1).”

We agree with the reviewer that manual curation is needed as a downstream step of CHESHIRE to further
trim false positives. The similarity score we introduced here is an automatic curation process based on a
reasonable assumption. While we successfully reduced the number of reactions derived from CHESHIRE to
200, it is still a heavily manual task to further trim the remaining reactions. This task usually need domain

12



knowledge, which is beyond the scope of topology-based gap filling. We have updated the corresponding text
in the revised manuscript to emphasize this point (see Page 17, Lines 312-323):

“Although CHESHIRE advances phenotypic predictions, the use of a universal pool and the top 200
reactions risk of adding reactions that do not exist (false positives). Correct predictions of phenotypes
do not necessarily mean correct inference of missing reactions. It is likely that different enzymes
carry the same metabolic functions (e.g., fermentation metabolism) from different substrates. While
adding reactions is expedited by increasingly advanced machine learning methods, it is still a heavily
manual task to trim reactions that are wrongly added. This challenge, termed as content removal, has
been recognized as one of the two fundamental bottlenecks for GEM quality improvement [47]. This
bottleneck is largely overlooked and highly time-consuming: a significant amount of time is required to
identify which reactions should be removed. Initial community-driven efforts have been made to mitigate
this challenge, including building new GEM quality standards such as MEMOTE [48] and developing
novel frameworks for GEM quality assessment and improvement.”

Point 2.5. Third, the phenotypic data comprises nine metabolites that are very close to central carbon
pathways. The methods should be tested for various produced metabolites (or phenotypes that involve
metabolites) distributed across different classes of metabolites (amino acids, lipids, secondary metabolites,
terpenoids, etc.). These compounds are in complex pathways, and the gap-filling of these pathways is a very
challenging problem for any gap-filling method.

Response: We thank Reviewer #2 for this valuable comment. We agree with the reviewer that gap-filling
compounds in complex pathways are very challenging. To challenge CHESHIRE, we contacted an European
team to request a collection of 25 bacterial genomes with amino acid secretion profiles they recently published
on Current Biology [6]. On this new dataset, CHESHIRE greatly improves the predictions of amino acid
secretions against the control approach (by adding random reactions) as well as the existing topology-based
method NHP (see Fig. R9f-i, corresponding to Fig. 3f-i in the revised manuscript). We are not aware of similar
large-scale public datasets of paired genomes and phenotypes for other complex compounds mentioned by
the reviewer. Gap-filling for these compounds will be challenging though and even impossible if any reaction
of their biosynthetic pathways is missing from the universal BiGG database [2]. One such example is valeric
acid (5-carbon short-chain fatty acid) whose biosynthetic pathway (odd-chain elongation) is incomplete in the
current BiGG version. We have updated the corresponding text in the revised manuscript (see Page 13, Lines
230-240):

“The fermentation test comprises nine metabolites that are very close to central carbon pathways. To
test if CHESHIRE can fill other types of gaps, we assessed CHESHIRE for predicting secretions of
amino acids, substrate utilization for growth, and gene essentiality. The dataset of amino acid secretions
measures production profiles of 20 amino acids for 25 bacterial GEMs (Table S2, Supplementary
Information Section 4.5). This dataset is highly unbalanced with 478 positive phenotypes and 22
negative phenotypes. Similar to the fermentation test described above, CHESHIRE-200 outperforms
Random-200 (F1 score: P < 10−5, two-sided paired-sample t-test), and NHP-200 shows no
improvement at all (Fig. 3f-i, Fig. S5). In particular, CHESHIRE increases the correct predictions of
67 amino acid secretions that are knowledge gaps in draft GEMs. Despite the significant improvement,
the recall remains very low at about 20%, suggesting many remaining false-negative gaps.”

Point 2.6. Finally, the models derived from the CHESHIRE, and similar methods, should be tested for their
performance against growth assays and knock-out experiments, using the metrics used in these studies and
model testing and validation (such as the overall accuracy and the Matthews Correlation Coefficient). These
essential metrics will also evaluate the number of (mainly) false-positive predictions due to the large number
of reactions introduced in the network.

Response: We thank Reviewer #2 for this critical comment. This comment overlaps with Point 1.5 from
the Review 1: see our response to Point 1.5 for the additional performance tests and results. Briefly,
we have tested CHESHIRE and NHP for their performances against nutrient utilization (growth assay) and
gene essentiality (knock-out experiments) data. Although both methods struggle with the tests (see Fig. R5,
corresponding to Fig. S7 in the revised Supplementary Information), CHESHIRE, not NHP, greatly improves
the F1 score over the draft model in the Biolog test of a single bacterium Bacillus subtilis.
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Additionally, we have showed overall accuracy and Matthew’s correlation coefficient, as recommended by
the reviewer, for predictions of fermentation products and amino acid secretions. As shown in Fig. R2
(corresponding to Fig. S5 in the revised Supplementary Information), CHESHIRE still outperforms NHP in
terms of those two metrics.

Point 2.7. The final suggestion in the discussion, about the use of CHESHIRE and similar methods for
database reduction also used from the optimization methods, is very valuable and could have a broader
impact. But it will require a specific and well-designed investigation.

Response: We thank Reviewer #2 for this excellent suggestion. We fully agree with the reviewer that reducing
the size of the reaction database is of critical importance to all gap-filling methods, including CHESHIRE. As
the reviewer clearly pointed out, this requires a specific and well-designed investigation. During the revision
process, we have made initial efforts towards this goal by splitting the BiGG universal database into genus-
specific reaction pools (see Supplementary Information Section 4.3 for details). However, this strategy fails
to gap-fill the fermentation products (see Fig. R4). Since each genus-specific pool was built by aggregating
GEMs that belong to the same genus, it is possible that all models within a genus may share the same missing
reactions whose gap-filling requires introduction of new reactions from distantly related genera. Given the
broad impacts of database reduction, we have discussed several reduction strategies in the revised manuscript
(see Page 17-18, Lines 324-341):

“Alternative to content removal, the number of false positives can be reduced by limiting the database
size for candidate reactions. Though at its infancy, database reduction is a valuable technology that
has broad utility for both optimization- and topology-based methods. There are many possible routes of
database reduction. First, a universal database can be split into genus-, species-, or even phylogroup-
specific databases by aggregating all reactions in GEMs that belong to individual taxa. Despite the
pioneering efforts in AGORA models, we are still lacking a large-scale database of high-quality GEMs
that cover a wide range of taxonomic diversity. Second, GapSeq [12] points out a promising direction to
use genomic information for reducing a universal database to a small subset of reactions supported by
gene annotations. By lowering the threshold for sequence homology, comparing protein domains and
sequence signatures, and mapping content to distantly related organisms, more genes and candidate
reactions can be annotated [47]. Finally, we should not ignore the possibility that gaps may be filled by
altering the directionality of reactions without adding new ones. The current version of CHESHIRE does
not consider reaction directionality and thus cannot fill gaps caused by wrong directions. A systematic
integration of available thermodynamic data with GEMs will reduce the number of gaps and thus the
total number of incorrectly introduced reactions. This deserves dedicated efforts, and we leave it as a
future work.”

Finally, we thank Reviewer #2 again for reviewing our manuscript and her/his very insightful and constructive
comments, which have helped us significantly improve the quality of our manuscript. We hope our responses
above have addressed all her/his concerns in a satisfactory manner.

14



Response to Reviewer #3

Point 3.0 Chen, Liao and Liu present a method to predict missing reactions in genome-scale metabolic
networks (GEMs) through deep learning based on CHEbyshev Spectral Hyperlink pREdictor (CHESHIRE).
This method is based on network topology: given a metabolic network represented as metabolite-reaction
incidence matrix, it learns the network structure, and then for a given reaction provides a score indicating how
likely this reaction is part of the input network. The authors demonstrate the better performance of their method
compared to the other deep learning-based and topology-based gap filling methods on an “internal” validation
dataset, where the removed reactions are known, and an “external” validation dataset, where the missing
reactions are not known. For the latter, the performance metric is the predicted fermentation phenotype of 9
metabolites, which is compared to experimentally determined phenotypes. The authors also provide biological
interpretations of the gap-filled reactions that help to recapitulate the experimentally determined phenotype.

In general, the method is promising, and the application of deep learning in genome-scale metabolic modelling
will be interesting for a broader audience interested in machine learning applications in biology, mathematical
modelers, and system biologists. However, there is a number of issues that need to be clarified or addressed
in order to assess the utility of this method for gap filling of metabolic networks in biological applications.

Response: We thank Reviewer #3 for reviewing our manuscript and her/his positive assessment on the broad
application of our method. Next, we address each of her/his comments in order.

Point 3.1. Major comments:
1) From Figure 1d,e and model architecture and training description on pages 7 and 8 it does not become
fully clear how the model is trained and what exactly the input data is. On page 5, it is written that CHESHIRE
takes a metabolic network and a pool of candidate reactions as input, and produces confidence scores for the
candidate reactions as output. However, the input on Figure 1d only depicts metabolic network, and misses
the candidate reactions.

Response: We thank Reviewer #3 for this critical comment. We apologize for not describing CHESHIRE
clearly in the previous version of our manuscript. In the revised manuscript, we have improved Fig. 1,
which now highlights both the training and prediction phases of CHESHIRE (attached as Fig. R7). In the
training phase, CHESHIRE takes the incidence matrix of the metabolic network and a decomposed graph
built from the metabolic network (with negative reactions) as input. After learning the model parameters
(from backpropagation), CHESHIRE takes the incidence matrix of the original metabolic network and a
decomposed graph built from candidate reactions from a reaction pool and outputs confidence scores for
candidate reactions. We have updated the corresponding texts in the revised manuscript:

“CHESHIRE only requires a metabolic network for training and outputs confidence scores for candidate
reactions from a reaction pool.” (see Page 5, Lines 79-81)

“CHESHIRE takes the incidence matrix of the hypergraph and a decomposed graph (built from the
hypergraph of existing or candidate reactions) as input. The former contains boolean values indicating
the presence or absence of each metabolite in each reaction. The latter consists of fully connected
subgraphs (each subgraph represents a reaction with all its metabolites connected) formed by positive
and negative reactions during training and by candidate reactions during prediction (Fig. 1c and d).
Positive reactions are those existing in the metabolic network, while negative reactions are fake (do not
exist) and created for model-balancing purposes (often referred to as negative sampling). Note that only
positive reactions are used to construct the incidence matrix.” (see Page 6, Lines 93-101)

Point 3.2. On page 7, it is written that the pooling step computes reaction features, does this mean for
reactions from the incidence matrix? How will the reaction features be computed for the pool of candidate
reactions? Is incidence matrix also created for them?

Response: We thank Reviewer #3 for this critical comment. The incidence matrix of the metabolic network
is only used in feature initialization to generate initial metabolite features. The pooling step computes reaction
features for reactions represented by fully connected subgraphs in the decomposed graph (during both training
and prediction). Candidate reaction features are computed in the same manner as the training reactions,
i.e., for each candidate reaction (represented by a fully connected subgraph in the decomposed graph),
aggregating the feature vectors of its metabolites (represented by nodes in the subgraph). Therefore, the
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incidence matrix of candidate reactions is not needed. We have updated the corresponding text in the revised
manuscript (see Page 7, Lines 109-112):

“For pooling (i.e., integrating node- or metabolite-level features into hyperlink- or reaction-level
representation), we utilize graph coarsening methods to compute a feature vector for each reaction
(represented by a fully connected subgraph in the decomposed graph) from the feature vectors of its
metabolites.”

Point 3.3. 2) Importantly, what is the loss function that is optimized during the training step?

Response: We thank Reviewer #3 for this critical comment. We apologize for not describing the loss function
clearly. CHESHIRE uses the same loss function as proposed in [7], which is defined as

Loss =
1
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Sf )− Se

)
,

where E is the set of positive hyperlinks, F is the set of negative hyperlinks, and σ(·) = log(1 + exp (·)) is
the logistic function. The loss function maximizes the hyperlink scores from the positive hyperlink set E to be
higher than the average score of the hyperlink scores in the negative hyperlink set F [8]. The definition of
the loss function can be found in Supplementary Information Section 3.3. We didn’t include it in the main text
because we want to improve the readability of the main text to typical life scientists.

Point 3.4. On page 8, it is written that the input model is enhanced with negative reactions (“fake” reactions
added in the same amount as real reactions). Are these negative reactions also included as input, and is the
model provided with the information on which reactions are true, and which are false? It seems like this is a
crucial step in model training, but it is not described neither in Figure 1e nor explicitly in the text.

Response: We thank Reviewer #3 for this critical comment. Negative reactions are also included as the
input of CHESHIRE from the decomposed graph during the training phase, as mentioned in our response to
Point 3.1. CHESHIRE is also provided with the information on which reactions are true, and which are false
for updating its parameters. This information has been reflected in the Fig. R7e (corresponding to Fig. 1e
in the revised manuscript). To make this point clear, we have updated the corresponding text in the revised
manuscript (see Page 7, Lines 116-119):

“In the training phase, the resulting scores are compared to the target scores (one for positive reactions
and zero for negative reactions) with a loss function for updating the model parameters (Fig. 1e,
Supplementary Information Section 3.3).”

Point 3.5. 3) On page 9, it is written that positive and negative reactions from each model are split into
60% training (metabolic network to be gap-filled) and 40% testing (unseen candidate reactions). Has these
procedure been repeated multiple times for different splits in 60% and 40%?

Response: We thank Reviewer #3 for raising this question. Yes, we randomly split the positive and negative
reactions into 60% training and 40% testing for 10 times. We have updated the corresponding text in the
revised manuscript (see Page 8, Lines 133-134):

“For both types, metabolic reactions in a given GEM were first split into a training set and a testing set
over 10 Monte Carlo runs.”

Point 3.6. And what about validation, how were the model parameters tuned during the training phase? Was
subset of the 60% used for optimization of model parameters?

Response: We thank Reviewer #3 for this critical comment. We used a universal hyperparameter set for each
hyperlink prediction method in internal validation. And, all 60% of the reactions were used for training without
creating a subset for tuning/optimizing hyperparameters.

16



The universal hyperparameter sets are chosen empirically before testing. For example, in CHESHIRE, the two
hidden dimensions are set to 256 and 128, the learning rate is set to 0.01, the Chebyshev filter size is set to
3, and the dropout probability is set to 0.1. Universal hyperparameters can provide a conservative estimate
of the algorithm performance. As a matter of fact, the performance of CHESHIRE (and NHP, NVM) with a
pre-selected universal hyperparameter set is close to that using grid search in our case. We have performed
a comparison test on several randomly selected BiGG models. For the universal hyperparameter setting, we
have randomly split the total reactions into 60% training and 40% testing for 10 times. For the grid search
setting, we have randomly split the total reactions into 60% training, 20% validation, and 20% testing for 10
times. The universal hyperparameters and grid search ranges for CHESHIRE can be found in Table R3. The
test results (with metric AUROC) can be found in Table R4, where the performances of the two settings are in
fact very close. We also observed similar results for NHP and NVM since both share a similar architecture with
CHESHIRE. Lastly, C3MM has only one hyperparameter, which is the latent space dimension. It was fixed
to 30 in the original paper [9]. Thus, we also used 30 in our simulation. We have updated the corresponding
texts in the revised Supplementary Information:

“The key hyperparameters of CHESHIRE are the encoder feature dimension, the graph convolutional
feature dimension, the Chebyshev filter size, the dropout probability, and the learning rate. We used a
universal hyperparameter set for CHESHIRE during internal and external validations. We found that the
performance of CHESHIRE with a pre-selected universal hyperparameter set is close to that obtained
by grid search. This implies that CHESHIRE is not sensitive to these hyperparameters. Therefore, we
decided to use a universal hyperparameter set for all the GEMs (which can also save a great amount of
computational resources). The encoder feature dimension, the graph convolutional feature dimension,
the Chebyshev filter size, the dropout probability, and the learning rate are set to 256, 128, 3, 0.1, and
0.01, respectively.” (see Supplementary Information Section 3.5, Lines 293-301)

“We intended to fairly compare CHESHIRE with other approaches including NHP, C3MM, and NVM
during internal validation. Similar as CHESHIRE, NHP and NVM are also not sensitive to their
hyperparameters. We set the Node2Vec feature dimension to 256, which is consistent with the encoder
dimension in CHESHIRE. The walk length and the number of walks per node were set to 80 and 10
in Node2Vec (default values in the Node2Vec Python package [32]), respectively. Additionally, we set
the feature dimension of the graph neural network in NHP to 128, which is also consistent with the
dimension of CSGCN in CHESHIRE. The learning rate of NHP and NVM is set to 0.01. For C3MM,
we used the same latent space dimension 30 as used in the C3MM paper [10].” (see Supplementary
Information Section 5.1, Lines 389-397)

Point 3.7. 4) On page 8, it is written that negative reactions are not mandatory for algorithm testing. But in
this section, reactions from the model (40%) are provided for testing, so if only positive reactions will be in the
candidate pool, what is the point of assessing performance without negative reactions?

Response: We thank Reviewer #3 for pointing this out and we apologize for this confusion. We did include
negative reactions in the candidate reaction pool for evaluating the performance of predicting missing reactions
during the first type of internal validation. We have included a schematic plot of this validation process (see
Fig. R8a, corresponding to Fig. 2a in the revised manuscript) and updated the corresponding text in the revised
manuscript (see Page 8, Lines 138-141):

“In the first type of internal validation, the training and testing sets of positive reactions and their derived
negative reactions were combined and used for training and testing, respectively. For fair comparison,
we also introduced negative reactions to the testing set of C3MM.”

Point 3.8. 5) For internal validation, providing 40% of model reactions and artificially created negative
counterparts as candidate reaction pool seems to be over-optimistic, since in real application the pool of
candidate reactions will be much bigger and much less balanced in terms of positive and negative classes (as
is the case with external validation). Since all the models used for internal training are curated BiGG models,
it would be interesting to see how CHESHIRE and other methods perform if the candidate reaction pool is not
coming from the same model with some negative reactions added, but agnostically use BiGG database pool
as for external validation, and demonstrate whether CHESHIRE is able to identify original reactions.
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Response: We thank Reviewer #3 for this critical comment. We totally agree with the reviewer that using the
candidate reaction pool consisting of artificially created negative counterparts is over-optimistic. In addition
to the first type of internal validation (as mentioned), we have followed the reviewer’s suggestion by utilizing
real candidate reactions to perform internal validation. We consider two types of reaction pools here, which
are genus-specific reaction pools and the entire BiGG universal reaction pool. The former has a relatively
small size (200-800 reactions depending on models) per GEM, while the latter has almost 17,000 reactions.
A schematic plot of this validation is provided in the updated Fig. 2a (attached as Fig. R8a in this letter).
The results of this validation can be found in the updated Fig. 2f-m (attached as Fig. R8f-m). CHESHIRE
achieves the best performance over the other three methods when adding the top 25, top 50, top 100, and
top N reaction with the highest confidence scores for both types of reaction pools (here N is the number of
artificially removed reactions). We have updated the corresponding text in the revised manuscript:

“In the second type of internal validation, every step remains the same except that the testing set was
not mixed with its derived negative reactions but with real reactions from a universal database.” (see
Page 8, Lines 141-143)

“To perform the second type of internal validation, we tested CHESHIRE on the same BiGG GEMs
(with 90% training and 10% testing) with genus-specific and the universal BiGG reaction pools
(Supplementary Information Section 4.2 and 4.3). The former has a relatively small size (200-800
reactions) per GEM, while the latter has almost 17,000 reactions. Since the number of reactions with
similar biochemistry mechanisms and thus nearly identical confidence scores scale up with the size of
candidate reaction pool, a loose threshold of 0.5 may still predict hundreds or thousands of candidates
as missing reactions. Instead of using a fixed cutoff threshold, we added the top 25, 50, 100, and
N reactions with the highest confidence scores (N is the number of artificially removed reactions).
We found that CHESHIRE achieves the highest recovery rate at the four cutoffs for both types of
reaction pools (Fig. 2f-m). Notably, by adding the top 25 reactions from the genus-specific reaction
pools, CHESHIRE identifies more than 40% (on average) artificially removed reactions, significantly
outperforming the other three methods (Fig. 2f; P < 10−16, two-sided paired-sample t-test). While the
performance of CHESHIRE declines when more reactions were added, it is still significantly better than
the second-best method C3MM at the top N cutoff (Fig. 2i; P < 0.05). Furthermore, as expected, using
the entire BiGG universal reaction pool would undermine the performances of recovery rate for all the
methods. CHESHIRE nevertheless accomplishes the best performance compared to NHP and NVM
(Fig. 2j-m; P < 10−16).” (see Page 9-10, Lines 162-178)

Point 3.9. 6) For external validation, the best results were achieved when 500 reactions were added with
CHESHIRE, but 500 gap-filled reactions are quite a lot given that models usually have 1500-2000 reactions.
Manual gap filling processes are usually adding much fewer reactions (10-100).

Response: We thank Reviewer #3 for this critical comment. The reviewer is correct that CHESHIRE added
many more reactions than manual gap-filling processes. However, manual gap-filling typically requires genetic
or phenotypic data to guide the process. By contrast, CHESHIRE does not require experimental data as a
priori knowledge. It is unfair to directly compare the number of reactions added by CHESHIRE and manual
gap-filling methods. We agree with the reviewer that adding 500 reactions may be too much and risk of
incorporating false positives. This comment is essentially the same as Point 1.11 raised by Reviewer 1 and
Point 2.4 raised by Reviewer 2. Please see our responses to both comments for details. Briefly, we have
successfully reduced the number of added reactions from 500 to 200 by using a similarity score (indicating
the averaged similarity between a candidate reaction and those in the draft models) to automatically trim the
candidate reactions. We have updated our approach for ranking reactions in the revised manuscript (see Page
11, Lines 189-197):

“Briefly, CHESHIRE is trained on the entire reaction set of a draft GEM, and candidate reactions (taken
from a reaction pool, e.g., the BiGG database [30]) are ranked based on both confidence and similarity
scores. The confidence score, returned by CHESHIRE, quantifies the probability of a candidate reaction
being present in the GEM. The similarity score measures the maximum correlation between a candidate
reaction and all existing reactions in the GEM. Given our rationale that dissimilar reactions are more
likely to be functionally complementary to the existing ones, all candidate reactions whose confidence
scores ≥ 0.9995 are ranked by their similarity scores (least similar to most similar). The top 200
reactions are added to the draft GEM to produce a gap-filled GEM (Supplementary Information Section
6.1).”
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Point 3.10. How did the author assess false positives added in CHESHIRE-500? E.g., how many fermentation
products were added, which were not observed experimentally?

Response: We thank Reviewer #3 for this critical comment. To assess the false positives added in the top 200
CHESHIRE-predicted reactions, we have counted the number of fermentation products and amino acids that
are added by CHESHIRE but not observed experimentally. For the test of fermentation products, CHESHIRE
adds a phenotype (draft models predicted a negative phenotype) in 27 simulations (a combination of model
and metabolite), where 15 are true positives and 12 are false positives. For the test of amino acids, all 67
simulations that predicted a gain of phenotype are true positives (0 false positives). These results suggest that
the risk of introducing false-positive phenotypes may depend on the model and phenotype. We have updated
the corresponding text in the revised manuscript (see Page 14-15, Lines 266-272):

“To assess the false positives added by CHESHIRE-200, we counted the number of fermentation
products and amino acids that were added by CHESHIRE but not observed experimentally. For the
fermentation test, CHESHIRE adds a phenotype in 27 simulations (i.e., combinations of genome and
metabolite), where 15 are true positives and 12 are false positives. For the amino acid test, all 67
simulations that predicted a gain of phenotype are true positives. These results suggest that the risk of
introducing false positive phenotypes may depend on the model and phenotype.”

Point 3.11. Is CHESHIRE biased towards scoring specific types of reactions higher than others (e.g. transport
reactions, reactions involving cofactors, etc?) It would be interesting to analyze what types of reactions are
scored highest, and whether there is statistical overrepresentation of certain types (e.g. with procedures
similar to pathway enrichment analysis).

Response: We thank Reviewer #3 for this excellent suggestion. We evaluated the types of reactions that are
scored higher than the others. For each annotated enzymatic functional class (e.g., hydratase), we plotted the
distributions of the ranks of all reactions whose enzymes belong to this class across all gap-filled GEMs. Then
we ranked these functional classes by the distribution median (see Fig. R6, corresponding to Fig. S8 in the
revised SI). For the majority of functional classes, there is a huge variability of the ranks among all its reactions,
suggesting that the reactions with higher scores are context (GEM)-dependent and cannot be predicted from
enzymatic functional class as a priori knowledge. Still, catalase, hydratase, dinucleosidetriphosphatase,
cyclase, and laminaribiase ranked the top for the models in the fermentation product test, while the top
five functional classes for the models in the amino acid test are dinucleosidetriphosphatase, hydratase,
urease, cyclase, and phosphotransacetylase. Combining the two datasets reveals that reactions catalyzed by
dinucleosidetriphosphatase, hydratase, and cyclase are typically scored higher on average. Despite addition
of a single transport reaction has been shown to fill the gap of fermentation products and amino acids (see
Fig. R9, corresponding to Fig. 3 in the revised manuscript), the median ranking of transport reactions is >700
and there is no overall bias towards transport reactions. We have updated the corresponding text in the revised
manuscript (see Page 15, Lines 272-277):

“We further assessed whether these false positives may be linked to the bias of CHESHIRE to
score specific types of reactions higher than the others. For nearly all enzymatic functional classes
(Supplementary Information Section 6.5), we found a huge variability in the rankings of reactions
catalyzed by enzymes that belong to each individual class (Fig. S8). Relatively, reactions catalyzed
by dinucleosidetriphosphatase, hydratase, and cyclase are scored higher on average.”

In the revised manuscript, we explicitly acknowledged the limitation that CHESHIRE risks of adding false
positives in the 200 reactions and discussed future solutions for trimming reactions that are wrongly added.
Please see our responses to Point 2.4 and Point 2.7 for details.

Point 3.12. Minor comments:
7) On page 5, it is written that the main limitation of C3MM is that it cannot predict unseen reactions, since it
includes all candidate reactions obtained from a universal reaction pool. However, it seems like CHESHIRE
has exactly the same limitation, as it requires candidate reactions as input and provides their scoring. This
limitation should be explicitly stated and discussed.

Response: We thank Reviewer #3 for this critical comment. We admit that the term “unseen reactions” is
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misleading and have removed it from the revised manuscript. The main limitation of C3MM is that the model
has to be re-trained when dealing with a new reaction pool (since C3MM requires all candidate reactions to
be present during training). On the other hand, CHESHIRE (and NHP, NVM) do not have this limitation. It only
requires a metabolic network for training. After learning the model parameter, CHESHIRE can be applied to
any reaction pool and return confidence scores for candidate reactions without re-training the model. We have
updated the corresponding text in the revised manuscript (see Page 5, Lines 69-72):

“C3MM has an integrated training-prediction process, which includes all candidate reactions (obtained
from a reaction pool) during training. Hence, it has limited scalability (i.e., it cannot handle large reaction
pools), and the model has to be re-trained for each new reaction pool.”

Point 3.13. 8) Page 15, it is written that “lactate consumption is preferred over production as it increases
maximum growth rate”. How is growth rate included into the CHESHIRE pipeline, so that the authors can
make this suggestion?

Response: We thank Reviewer #3 for this valuable comment. CHESHIRE per se does not compute growth
rate. Given a draft or gap-filled GEM, optimization of its growth rate (or biomass production rate) is an essential
intermediate step for the prediction of fermentation products (see Supplementary Information Section 6.3 for
details). By optimizing growth, the influx of nutrients from the environment is determined and the quantitative
nutrient utilization patterns impact the prediction results. Anaerobutyricum hallii has lactate dehydrogenase
and can theoretically produce or use lactate for growth (the culture medium contains lactate). For the draft
model, growth optimization favors lactate production because growth rate does not increase by utilizing lactate.
For the draft model with 200 reactions predicted by CHESHIRE, growth optimization, however, favors lactate
consumption which increases the growth rate. We have explained how growth optimization determines lactate
consumption/production in the revised manuscript (see Page 14, Lines 255-261):

“For example, the draft GEM of Anaerobutyricum hallii has lactate dehydrogenase and can theoretically
produce or use lactate for growth when lactate is present in the culture medium. The draft model predicts
lactate production, since lactate utilization is dispensable for maximal biomass production. However,
this prediction contradicts experimental data. CHESHIRE-200 fills this gap by adding two NAD(P)H-
mediated redox reactions (Fig. 3k) that enable maximization of growth rate by consuming lactate.”

Point 3.14. Are the reports that the bacteria under study (Anaerobutyricum hallii) can consume lactate?

Response: We thank Reviewer #3 for this comment. Yes, our prediction of lactate consumption is
supported by previous reports [10, 11]. We have cited experimental evidences of lactate consumption by
Anaerobutyricum hallii in the revised manuscript (see Page 14, Lines 261-263):

“Supported by previous reports of lactate consumption [42, 43], this example shows that CHESHIRE
can identify missing reactions that have consequences on distant fermentation pathways via a global
and systematic effect.”

Point 3.15. 9) Figure 1, CHESHIRE schematic should include details about input candidate reaction pools
and whether positive/negative labels are provided as well.

Response: We thank Reviewer #3 for pointing this out. We have updated Fig. 1 to indicate the candidate
reaction pool (during prediction) and true labels (during training) (attached as Fig. R7).

Point 3.16. 10) Page 28, legend to Figure 1 g: “We identified gaps of intact draft GEMs by comparing model
predictions with phenotypic data” – this sentence should be rephrased for clarity. I guess what is meant that
the CHESHIRE predictions of filled gaps were assessed by comparing the gap-filled model performance to
the original model in terms of fermentation reactions (phenotypic data), or something like that.

Response: We thank Reviewer #3 for this comment. Yes, we meant gap-filled GEMs by CHESHIRE have
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better performance than draft GEMs in terms of phenotypic prediction. We have rephrased that sentence in
the revised manuscript (see Page 10-11, Lines 183-186):

“Compared to internal validation that tests the predictions by using artificially removed reactions as
the ground truth, external validation tests whether gap-filled GEMs by CHESHIRE has improved
performance compared to draft GEMs in terms of their predictions of phenotypic data (Fig. 3a,
Supplementary Information Section 6).”

Point 3.17. 11) Figure 3 b-i, why are performance metric separated for NHP and CHESHIRE? It seems like
all the methods could be put together on the four plots (AUROC, Recall, Precision, F1 Score).

Response: We thank Reviewer #3 for this valuable comment. We have combined the results of NHP and
CHESHIRE in one plot for a performance metric. Please see the updated Fig. 3b-i (attached as Fig. R9b-i).

Point 3.18. 12) Page 14, it is written that mean performance significantly increase. If the word “significant” is
used, the p-value and the name of the statistical test should be provided as well.

Response: We thank Reviewer 3 for pointing this out. We have added the p-value and the name of the
statistical test. We have updated the corresponding text in the revised manuscript:

“To the contrary, CHESHIRE-200 increases the mean performances significantly (Fig. 3b-e, Fig. S5)
and, in particular, the F1 score for 11 of the 24 draft GEMs (P < 0.01, two-sided paired-sample t-test).”
(see Page 12, Lines 214-217)

“Finally, we demonstrated that the improved performance is not simply due to more reactions by showing
a significantly better performance of CHESHIRE-200 than that of Random-200 (P < 0.05, two-sided
paired-sample t-test).” (see Page 12, Lines 220-222)

“ Similar to the fermentation test described above, CHESHIRE-200 outperforms Random-200 (F1 score:
P < 10−5, two-sided paired-sample t-test), and NHP-200 shows no improvement at all (Fig. 3f-i,
Fig. S5).” (see Page 13, Lines 235-237)

Point 3.13. 13) Typos:
a. Page 1 Abstract: ”spctral“
b. Page 4 ”involving → involved“
c. Page 5 ”scalibility“

Response: We thank Reviewer #3 for pointing out those typos, which have been corrected in the revised
manuscript.

Finally, we thank Reviewer #3 again for reviewing our manuscript and her/his very insightful and constructive
comments, which have helped us significantly improve the quality of our manuscript. We hope our responses
above have addressed all her/his concerns in a satisfactory manner.
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Tables

BiGG Model Recon3D iCHOv1 iLB1027 lipid iCHOv1 DG44 RECON1
# Metabolites 5,835 4,456 2,172 2,751 2,766
# Reactions 10,600 6,663 4,456 3,942 3,741

Table R1: Statistics of the five largest BiGG models.

BiGG Model Recon3D iCHOv1 iLB1027 lipid iCHOv1 DG44 RECON1
C3MM 2,871.36 1,456.44 636.37 441.51 444.37
NHP 321.38 175.88 91.14 86.18 86.28

CHESHIRE 211.15 109.55 63.30 45.04 42.83

Table R2: Comparison of running time (in second) of CHEHISRE, NHP, and C3MM on the five largest models from the
BiGG database. The running time obtained is for the first type of internal validation in a Mactonish machine with Apple M1
Pro chip and 32 GB memory. This table is added as Table S4 of the revised Supplementary Information.
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Hyperparameter Universal Grid Search Range
Embedding Dimension 256 {64, 128, 256}
Embedding Dimension 128 {64, 128, 256}
Chebyshev Filter Size 3 {2,3,4}

Dropout Probability 0.1 {0.1, 0.2}
Learning rate 0.01 {0.01, 0.001}

Table R3: Universal hyperparameter set and grid search range in the comparison test for CHESHIRE.

BiGG Model iAF1260b iAB RBC 283 iYS854 iYO844 iSB619
Universal 0.8335 0.7972 0.8583 0.8935 0.8459

Grid Search 0.8439 0.7991 0.8639 0.8902 0.8518

Table R4: Average AUROC on the five randomly selected BiGG models under two settings using CHESHIRE.
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Figures
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Fig. R1: Internal validation using artificially introduced gaps on AGORA GEMs of gut bacteria. a-d. Boxplots of the
performance metrics (AUROC, Recall, Precision, and F1 score) calculated on 818 AGORA GEMs (each dot represents a
GEM) for CHESHIRE vs. NHP, C3MM, and NVM. Two-sided paired-sample t-test: ***P < 10−18. This figure is the same
as Supplementary Information Fig. S4.
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Fig. R2: External validation evaluated using overall accuracy and Matthew’s correlation coefficients. (a, b) The
fermentation metabolite test (24 bacterial GEMs). (c, d) The amino acid test (25 bacterial GEMs). Each dot represents
a GEM. CarveMe: CarveMe-reconstructed GEMs; NHP-200: draft models plus 200 NHP-predicted missing reactions;
CHESHIRE-200: draft models plus 200 CHESHIRE-predicted missing reactions; Random-200: draft models plus 200
randomly selected reactions (performance averaged over 3 Monte Carlo runs). Two-sided paired-sample t-test: n.s., not
significant; *P < 0.05; **P < 0.01; ***P < 10−5. This figure is the same as Supplementary Information Fig. S5.
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Fig. R3: The fermentation metabolite test (external validation) using ModelSEED-reconstructed draft GEMs. a-d. Boxplots
of the performance metrics (AUPRC, Recall, Precision, and F1 score) calculated on 24 bacterial GEMs for CHESHIRE-
200 (draft models plus 200 CHESHIRE-predicted missing reactions) vs. ModelSEED (ModelSEED-reconstructed GEMs),
NHP-200 (draft models plus 200 NHP-predicted missing reactions), and Random-200 (draft models plus 200 randomly
selected reactions; performance averaged over 3 Monte Carlo runs). Two-sided paired-sample t-test: n.s., not significant;
*P < 0.05; **P < 0.01; ***P < 10−5. This figure is the same as Supplementary Information Fig. S6.
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Fig. R4: Testing CHESHIRE’s performance with genus-specific BiGG reaction pools on the fermentation metabolite
production. CarveMe: draft models reconstructed from the CarveMe pipeline; CHESHIRE-200: draft CarveMe models
plus 200 reactions predicted by CHESHIRE. Each dot in a boxplot represents a GEM. ns: non-significant as determined
by the two-sided paired-sample t-test. See Supplementary Information Section 4.3 for details of constructing the genus-
specific reaction pools.
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Fig. R5: Performance evaluation of CHESHIRE on filling the gaps in (a) growth phenotype and (b) gene essentiality. Each
dot in a boxplot represents a GEM. CarveMe: draft models reconstructed from the CarveMe pipeline; CHESHIRE-200:
draft models plus 200 missing reactions predicted by CHESHIRE; NHP-200: draft models plus 200 missing reactions
predicted by NHP; Random-200: draft models plus 200 reactions after randomization. n.s.: non-significant as determined
by the two-sided paired-sample t-test. This figure is the same as Supplementary Information Fig. S7.
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Fig. R6: Reaction rankings categorized by enzymatic functional classes. Each dot represents a specific reaction and all
dots for each boxplot represent all reactions catalyzed by enzymes of a specific functional class. Panel a was drawn using
reaction rankings from GEMs in the fermentation product test and panel b was drawn using reaction rankings from GEMs
in the amino acid test. This figure is the same as Supplementary Information Fig. S8.
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Fig. R7: CHESHIRE workflow. a. Schematic representation of a metabolic network. b. Hypergraph representation
of the metabolic network. The hypergraph is undirected where each hyperlink connects metabolites that participate the
same reaction. c. Negative sampling of the metabolic network. Solid and dashed boxes represent positive and negative
reactions (e.g., N1, N2), respectively. d. Decomposed graph of the metabolic network, where each reaction (either positive
or negative) is treated as a fully connected subgraph (solid and dashed lines represent positive and negative reactions,
respectively). e. The architecture of CHESHIRE during training. The deep neural network takes the incidence matrix
and the decomposed graphs as the input, and consists of an encoder layer, a Chebyshev spectral graph convolutional
layer with K filters (resulting in K channels), a pooling layer with two pooling functions, and a final scoring layer. The
output confidence scores are compared to the target scores for updating model parameters. The gray dots represent the
hidden neurons. f. The architecture of CHESHIRE during prediction. The neural network takes the incidence matrix and
a decomposed graph built from candidate reactions as input and outputs confidence scores for candidate reactions based
on the trained model parameters. This figure is the same as Fig. 1 in the revised manuscript.
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Fig. R8: Internal validation using artificially introduced gaps. a. Flowchart of internal validation. Two types of internal
validation were performed. The former mixes artificially removed positive reactions and their derived negative reactions as
candidate reactions, while the latter uses artificially removed positive reactions and real reactions from a universal reaction
database as candidate reactions. b-e. Boxplots of the performance metrics (AUROC, Recall, Precision, and F1 score)
calculated on 108 BiGG GEMs (each dot represents a GEM) for CHESHIRE vs. NHP, C3MM, and NVM. f-i. Reaction
recovery rate of CHESHIRE vs. NHP, C3MM, and NVM with genus-specific reaction pools for gap-filling the BiGG GEMs
by adding the top 25, 50, 100, and N reactions with the highest confidence scores (N is the number of artificially removed
reactions). j-m. Reaction recovery rate of CHESHIRE vs. NHP and NVM with the entire BiGG universal reaction pool for
gap-filling the BiGG GEMs by adding the top 25, 50, 100, and N reactions with the highest confidence scores. For f-m,
only the BiGG models with over 100 reactions were tested, and C3MM was only validated on the genus-specific reaction
pools due to the issue of scalability. Each data point represents the mean statistic over 10 Monte Carlo runs. Boxplot:
central line represents the median, box limits represent the first and third quartiles, and whiskers extend to the smallest and
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**P < 10−4; ***P < 10−16. This figure is the same as Fig. 2 in the revised manuscript.
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Fig. R9: External validation by predicting metabolic phenotypes. a. Flowchart of external validation. The predicted phenotypes from
CHESHIRE-gapfilled GEMs are validated by comparison to experimental observation. For phenotypes correctly predicted by gap-filled
GEMs but missed by draft GEMs, we also identify the causal reactions from CHESHIRE-predicted set that improve the phenotypic
prediction using Mixed Integer Linear Programming (MILP). b-i. Performance (AUPRC, Recall, Precision, and F1 score) of CHESHIRE
and NHP in filling gaps in (b-e) 24 bacterial GEMs for fermentation metabolite production and (f-i) 25 bacterial GEMs for amino acid
secretions. NVM was not included here due to its poor performance in internal validation. C3MM was not considered either, because
it requires infeasible computational time for such a large candidate reaction pool (with almost 17,000 reactions). “CarveMe” represents
the draft models reconstructed from CarveMe. “NHP-200” and “CHESHIRE-200” represent draft models plus 200 reactions predicted by
NHP and CHESHIRE, respectively. For “Random-200”, 200 randomly selected reactions from the universal BiGG database were added
to the draft models. Boxplot: central line represents the median, box limits represent the first and third quartiles, and whiskers extend to
the smallest and largest values or at most to 1.5× the interquartile range, whichever is smaller. Two-sided paired-sample t-test: n.s., not
significant; *P < 0.05; **P < 0.01; ***P < 10−5. j-m. Examples of CHESHIRE-predicted reactions (red arrows) that causally gap-fill the
observed phenotypes of acetate production (j), lactate production (k), and amino acid secretions (l and m). Abbreviations of cofactors:
adenosine triphosphate (ATP); adenosine diphosphate (ADP); adenosine phosphate (AMP); phosphate (Pi); inorganic pyrophosphate
(PPi); Coenzyme A (CoA); oxidized/reduced nicotinamide adenine dinucleotide (NAD+/NADH); oxidized/reduced nicotinamide adenine
dinucleotide phosphate (NADP+/NADPH). This figure is the same as Fig. 3 in the revised manuscript.

33



Reviewers' Comments: 

 

Reviewer #1: 

Remarks to the Author: 

Remarks to the Author: 

The authors have sufficiently improved their paper, in response to the comments made. I enjoyed 

reading it. 

although there are some major concerns remained with the methodology itself. the main concern 

would be the number of reactions that must be added to a network to fill its gaps (previously 500 

reactions - reduced to 200 reactions after the first revision). in this regard, there are several available 

gap-filling approaches that are capable of filling networks gaps by adding less than 50 reactions 

regardless of network size and the species, But all are template based and computationally expensive. 

current approach would be highly beneficial when it comes to reconstructing GEMs for non-model 

organisms lacking a previous template for gap-filling. The following comments may help to improve 

the methodology to some extent. 

 

1- a downstream workflow to assess the necessity of reactions that are added to networks to fill its 

gaps. this could be made by running a simple reaction essentiality analysis (both for Biomass objective 

function and targeted fermentation metabolites) on a set of 200 reactions that are added to the 

network. this may infer some of the mentioned reactions are not essential either for growth or for 

enhancing prediction on fermentation profile and thus may result in a reduced number of gap 

reactions. 

2- given that NADH and NADPH are the main redox cofactors of catabolic and anabolic pathways 

respectively, it might be helpful to consider a weighting score for reactions with different cofactors as 

further selection criteria, this may potentially help to reduce the number of added reactions by 

reducing the number of redundant reactions. 

3- checking the directionality of CHESHIRE-200 is a simple and doable analysis and may help to make 

the number of gaps fall into a reasonable range (less than 100). this could be done by checking 

whether any two reactions within CHESHIRE-200 have the same stoichiometry but different 

directionality. any two reactions that meet these conditions could be merged into a bi-directional 

reaction. 

 

 

 

Reviewer #2: 

Remarks to the Author: 

I appreciate the comprehensive response of the authors. They have addressed my concerns. 

 

 

 

Reviewer #3: 

Remarks to the Author: 

Chen, Liao and Liu present a revised manuscript describing a method to predict missing reactions in 

genome-scale metabolic networks (GEMs) through deep learning based on CHEbyshev Spectral 

Hyperlink pREdictor (CHESHIRE). In this revised version, the authors provide a more thorough 

explanation of the method and its inputs, outputs and limitations; expand the validation datasets, and 

investigate the types of reactions and models for which the method works better or worse. This 

revised manuscript is a substantial improvement over the previous version, and my comments and 

concerns raised before have been addressed in a satisfactory manner. It is important to note that the 

authors now better clarified the difference between their approach and supervised optimisation-based 

gap filling approaches. Although unsupervised addition of hundreds of reactions is rather questionable 

for biological applications, I find that the application of graph neural networks in genome-scale 

metabolic modelling will be of high interest to a broader audience working on machine learning 



applications in biology, mathematical modelers, and system biologists, and could serve as a stepping 

stone for further development of methods and applications in this field. 



Response to Reviewer #1

Point 1.0. The authors have sufficiently improved their paper, in response to the comments made. I enjoyed
reading it. although there are some major concerns remained with the methodology itself. the main concern
would be the number of reactions that must be added to a network to fill its gaps (previously 500 reactions
- reduced to 200 reactions after the first revision). in this regard, there are several available gap-filling
approaches that are capable of filling networks gaps by adding less than 50 reactions regardless of network
size and the species, But all are template based and computationally expensive. current approach would be
highly beneficial when it comes to reconstructing GEMs for non-model organisms lacking a previous template
for gap-filling. The following comments may help to improve the methodology to some extent.

Response: We thank Reviewer #1 for reviewing our manuscript again. Next, we address each of her/his
remaining comments in order.

Point 1.1. 1- a downstream workflow to assess the necessity of reactions that are added to networks to fill
its gaps. this could be made by running a simple reaction essentiality analysis (both for Biomass objective
function and targeted fermentation metabolites) on a set of 200 reactions that are added to the network. this
may infer some of the mentioned reactions are not essential either for growth or for enhancing prediction on
fermentation profile and thus may result in a reduced number of gap reactions.

Response: We are grateful to the reviewer for suggesting this improvement. Our draft CarveMe or ModelSeed
models were generated using standard pipelines and we employed growth phenotype for gap-filling within the
CarveMe or ModelSeed workflow. This decision was made because CHESHIRE was not designed for gap-
filling growth phenotype and, as such, cannot guarantee the growth of gap-filled GEMs, which is necessary
for all metabolic phenotype simulations. Given that the draft GEMs can grow before CHESHIRE-guided gap-
filling procedure starts, none of the candidate reactions will be essential for the growth phenotype. Moreover,
the identification of essential reactions for gap-filled metabolite production is a built-in function of CHESHIRE.
Essentially, CHESHIRE-200 screened for 236 secretable metabolites and assessed whether the addition of
200 reactions enabled the production of any metabolites that could not be produced by the draft GEMs before
gap-filling. The essential reactions for any potential metabolic gaps were also reported by CHESHRIE (see
README page of our Github repository: https://github.com/canc1993/cheshire-gapfilling). We have
updated the corresponding text in the revised manuscript (see Page 17-18, Line 323-328):

“In this study, we have taken initial steps towards further reduction of the number of CHESHIRE-
predicted reactions. First, CHESHIRE-200 conducted a comprehensive search of 236 metabolites to
identify metabolic phenotypes that can be potentially gap-filled by adding 200 reactions (Supplementary
Information Section 6.3). The tool also provides information on the essential reactions for each potential
gap, allowing users to focus on the most promising reactions without being overwhelmed by all the 200
reactions.”

Point 1.2. 2- given that NADH and NADPH are the main redox cofactors of catabolic and anabolic pathways
respectively, it might be helpful to consider a weighting score for reactions with different cofactors as further
selection criteria, this may potentially help to reduce the number of added reactions by reducing the number
of redundant reactions.

Response: We thank Reviewer #1 for this excellent suggestion. We have taken the initial steps towards
exploring the possibility of prioritizing reactions based on the cofactors they involve. For each draft GEM,
we focused on 15 different cofactors and ranked them by the number of reactions they are involved in the
GEM. Then we tested whether excluding reactions containing any cofactor or those with the least prevalent
cofactors can improve the gap-filling performance in the two datasets we introduced for external validation. We
did not observe a consistent trend regarding the performance change when reactions involving rare cofactors
are excluded: our approach improved performance in one dataset and decreased it in the other (compare
CHESHIRE-100, CHESHIRE-100-Top3, CHESHIRE-100-Top2, CHESHIRE-100-Top1, and CHESHIRE-100-
NoCF in Fig. R1b,d). However, when candidate reactions are not allowed to contain any cofactor, we were
able to reduce the number of reactions to 100 while maintaining significant performance improvement between
gap-filled and draft GEMs (compare CHESHIRE-100-NoCF and CarveMe in Fig. R1b,d). Further reduction
of the number of reactions to 50 does not yield any significant improvement for both datasets (compare
CHESHIRE-100-NoCF and CarveMe in Fig. R1a,c). Our preliminary analysis suggests that further studies
on the distribution of potential gaps among different co-factor-based reactions may open up new avenues for
metabolic network gap-filling. We have added Fig R1 as Fig. S9 to the revised SI, and added a paragraph to
describe our approaches and findings in the revised main text (see Page 18, Line 328-337)
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“Moreover, we explored the feasibility of prioritizing reactions with different cofactors (e.g., NADH) based
on their prevalence in draft GEMs (Supplementary Information Section 6.1). We found that excluding
candidate reactions involving less prevalent cofactors led to improved performance for the secretion of
fermentation products, but decreased performance for the dataset of amino acid secretions (Fig. S9).
These contrasting trends suggest that the relationship between missing reactions and cofactors may
depend on the secreted products and their biosynthetic pathways. Importantly, the co-factor-based
strategy enabled CHESHIRE to reduce the number of added reactions to 100, while still significantly
improving gap-filled GEMs over draft GEMs. Thus, our preliminary analysis highlights a promising
future direction for metabolic network gap-filling.”

Point 1.3. 3- checking the directionality of CHESHIRE-200 is a simple and doable analysis and may help to
make the number of gaps fall into a reasonable range (less than 100). this could be done by checking whether
any two reactions within CHESHIRE-200 have the same stoichiometry but different directionality. any two
reactions that meet these conditions could be merged into a bi-directional reaction.

Response: We thank Reviewer #1 for this insightful comment. Unfortunately, all BiGG universal
reactions (which can be downloaded from http://bigg.ucsd.edu/data_access) are unique and bidirectional.
Therefore, reactions cannot be merged based on differences in their directionality. We have revised our
manuscript to emphasize this point (see Page 19, Lines 350-354):

“Neither the BiGG universal reaction database nor the current version of CHESHIRE considers reaction
directionality. Therefore, CHESHIRE cannot fill gaps caused by wrong directions or reduce the number
of added reactions by merging reactions with the same stoichiometry but different directionality. Further
studies are warranted to incorporate reaction directionality in the CHESHIRE framework. ”

Finally, we would like to point out that we changed our title to “Teasing out Missing Reaction in Genome-scale
Metabolic Networks through Hypergraph Learning.” The reason for the change is that our method, CHESHIRE,
is developed based on the hypergraph representation of metabolic networks. We believe that using the term
“hypergraph learning” more accurately reflects the methodology. Furthermore, the previous title ”Teasing
out Missing Reactions in Genome-scale Metabolic Networks through Graph Convolutional Networks” had two
“networks”, which could potentially cause confusion. We thank Reviewer #1 again for reviewing our manuscript
and her/his very insightful and constructive comments, which have helped us significantly improve the quality of
our manuscript. We hope our responses above have addressed all her/his concerns in a satisfactory manner.
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Response to Reviewer #2

Point 2.0. I appreciate the comprehensive response of the authors. They have addressed my concerns.

Response: We thank Reviewer #2 for reviewing our manuscript again.
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Response to Reviewer #3

Point 3.0. Chen, Liao and Liu present a revised manuscript describing a method to predict missing reactions
in genome-scale metabolic networks (GEMs) through deep learning based on CHEbyshev Spectral Hyperlink
pREdictor (CHESHIRE). In this revised version, the authors provide a more thorough explanation of the
method and its inputs, outputs and limitations; expand the validation datasets, and investigate the types of
reactions and models for which the method works better or worse. This revised manuscript is a substantial
improvement over the previous version, and my comments and concerns raised before have been addressed
in a satisfactory manner. It is important to note that the authors now better clarified the difference between
their approach and supervised optimisation-based gap filling approaches. Although unsupervised addition
of hundreds of reactions is rather questionable for biological applications, I find that the application of graph
neural networks in genome-scale metabolic modelling will be of high interest to a broader audience working
on machine learning applications in biology, mathematical modelers, and system biologists, and could serve
as a stepping stone for further development of methods and applications in this field.

Response: We thank Reviewer #3 for reviewing our manuscript again and thoroughly summarizing our work.
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Figures

Fig. R1: Comparison of CHESHIRE performance across various strategies for prioritizing cofactor-containing reactions
using the fermentation metabolite test (24 bacterial GEMs) [28] in panels (a, b) and the amino acid test (25 bacterial
GEMs) [29] in panels (c, d). The tested strategies include: CarveMe - GEMs reconstructed using CarveMe; CHESHIRE-
50/100/200 - draft models plus 50/100/200 CHESHIRE-predicted reactions (all cofactors allowed); CHESHIRE-50/100-
NoCF - draft models plus 50/100 CHESHIRE-predicted reactions that involve none of the 15 specified cofactors (see
Section 6.1); CHESHIRE-50/100-Top1/Top2/Top3 - draft models plus 50/100 CHESHIRE-predicted reactions that do not
involve any of the 15 specified cofactors or involve only the top 1/2/3 cofactors with the highest prevalence in the draft
GEMs. Two-sided paired-sample t-test: n.s., not significant; **P < 0.01; ***P < 10−5.
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Reviewers' Comments: 

 

Reviewer #1: 

Remarks to the Author: 

Dear Authors, 

 

I am grateful for your efforts to address my previous comments and for the significant improvements 

you have made to the manuscript. It is a pleasure to witness your commitment to enhancing the 

quality of your work. 

 

Your diligent work is a testament to your dedication to scientific rigor, and I congratulate you on this 

excellent contribution to the field. I am grateful for the opportunity to review your manuscript, and I 

eagerly anticipate its publication in Nature Communications. 



Response to Reviewer #1

Point 1.0. Dear Authors,

I am grateful for your efforts to address my previous comments and for the significant improvements you 
have made to the manuscript. It is a pleasure to witness your commitment to enhancing the quality of your 
work.

Your diligent work is a testament to your dedication to scientific rigor, and I congratulate you on this 
excellent contribution to the field. I am grateful for the opportunity to review your manuscript, and I eagerly 
anticipate its publication in Nature Communications.

Sincerely,

Response: We thank Reviewer #1 again for reviewing our manuscript and her/his very insightful comments, 
which have helped us a lot improve the quality of our work.
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