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I. CONSTITUTIVELY LINEAR MEDIA RECTIFY TOWARDS CONTRACTION

In this section, we consider only geometrical nonlinearities and set out to prove the inequality in Eq. (3). Firstly,
the elastic energy density E is written with the Green-Lagrange strain tensor ε = (η + ηT + ηTη)/2, which depends
quadratically on the displacement gradient ηij = ∂ui/∂xj . We further define the symmetric part of the displacement
gradient Uij = (ηij + ηji)/2 which corresponds to the linearized strain. The stress tensor which naturally derives from
E describes the surface force measured in the initial space with respect to the initial area: dF0/da = ∂E/∂ε, it is
known as the second Piola-Kirchhoff stress. Then in order to find the Cauchy stress measured fully in the target space:
σ = dF/dA, we need to transform the surface force and the area as

dF = (1 + η) dF0 and da =
1 + ηT

det(1 + η)
dA, (S1)

which ultimately gives the formula for the Cauchy stress in the main text [1]. Then, given the quadratic energy density
E = κε2

ii/2 + µ(ε2
ij − ε2ii/d), the stress-strain relation displays a linear stress term σL proportional to U, and a term

which includes the geometrical nonlinearities σG:

σL =
(
κ− 2µ/d

)
Uii 1 + 2µU,

σG =
(
κ− 2µ/d

)(
η2
ij/2− U2

ii

)
1 + µ

(
4U2 + ηηT

)
+ 2
(
κ− 2µ/d− µ

)
UiiU +O

(
η3
)
.

(S2a)

(S2b)

Secondly, given the force balance equation fi = −∂σij/∂Xj , the difference between the local and active coarse-grained
stresses can be integrated by part to read

σ̄a − σ̄l =
1

V

∫
Ω

σ dV =
1

V

∫
Ω

σ det(1 + η) dv, (S3)

where dv is the volume element in the initial space. Equation (S3) is known as the mean stress theorem [2, 3]. Due to
this relation, writing S = σ det(1 + η) and decomposing S = SL + SG as we did σ in Eq. (S2), the pressure difference
reads Pa − Pl = −

∫
Sii/(V d). Due to our fixed boundary condition, the integral of the trace of the linear term

SL = σL vanishes and the trace of the nonlinear term is expressed in a closed form as

SGii =
κ

2

(
dη2
ij + 4ε2

ii

)
+ 4µ

(
ε2
ij − ε2

ii/d
)
. (S4)

Here, κ and µ are both positive for mechanical stability. Thus, for d ≥ 2, the geometrical term SGii always gives a
positive (contractile) contribution to the active stress. Indeed, using the eigenvalues λi ∈ R of the symmetric matrix ε,
we can rewrite ε2

ij − ε2
ii/d =

∑
i<j(λi − λj)2/d, which is always non-negative. As a result SGii is a sum of squares that

is also non-negative, implying the inequality of Eq. (3): Pa − Pl 6 0.
Finally, we present an alternative derivation of this relation that highlights its frame indifference. The integrand of

Eq. (3) can be rewritten using the deformation gradient Λ = 1 + η and the right Cauchy-Green deformation tensor
C = ΛTΛ = 1 + 2ε. Indeed, since

S = Λ
∂E

∂ε
ΛT, where

∂E

∂ε
=
κ

2
(Cii − d)1 + µ

(
C− Cii1/d

)
, (S5)

we can write

Sii =
κ

2

[
(Cii − d)2 + dCii

]
+ µ

[
C2
ij − C2

ii/d
]
. (S6)

We see that the right-hand side Eq. (S6) is a sum of squares plus a term ∝ Cii = d+ 4ηii + 4η2
ij . Since ηii is integrated

to zero due to the fixed boundary condition, the term in Eq. (S6) also gives a contractile contribution to Pa − Pl.
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II. ELASTIC MODULI IN GRANULAR MEDIA NEAR JAMMING

Here, we derive typical values of κ1 and µ1 for granular media near the jamming transition. Let us consider a large
equilibrium packing of bidisperse frictionless spherical grains in a 2D box with volume fraction φ. The grains interact
through a harmonic potential V ∼ k δ2, where k is a spring constant, and δ the overlap divided by the sum of the two
bead diameters, see Fig. S1. For volume fractions slightly above the jamming transition φc ≈ 0.84, granular media
display a strongly nonlinear elastic behavior. Indeed, multiple simulations and experiments [4, 5] have shown that
while the bulk modulus goes to a finite limit in φ+

c and can thus be approximated by a constant, the shear modulus
scales with φ− φc and vanishes at the transition. This can be expressed as

K/k ∼ K0 and G/k ∼ G0(φ− φc)p, for 0 < φ− φc � 1, (S7)

where K0, G0 ≈ 0.2 and p ≈ 0.5. Based on this model, we impose an isotropic compression characterized by a
displacement gradient tensor ηij = −η0δij/d on our granular material initially at φc, where 0 < η0 � 1. This results in
a new volume fraction φ0 ∼ φc(1 + η0). We then compute the elastic moduli κ and µ, and their nonlinear corrections
κ1 and µ1 around this value of φ0. Let the bulk strain ηii = −η0 + δη, where |δη| � η0, corresponding to a volume
fraction φ ∼ φ0 − φcδη. Then similarly to Eq. (6), the moduli are expressed as K ∼ κ(1 + κ1δη) and G ∼ µ(1 + µ1δη),
where the parameters are derived from Eq. (S7):

κ/k ∼ K0, κ1 = 0,

µ/k ∼ G0(φ0 − φc)p, µ1 ∼ −
p φc

φ0 − φc
.

(S8)

Therefore, while κ1 vanishes, µ1 diverges at the transition and scales as (φ0 − φc)−1. And close to the transition,
around e.g. φ0 − φc = 0.001, 0.01 or 0.1, we find respectively µ1 ≈ −400, −40 or −4 as in the main text.

III. COARSE-GRAINED STRESSES IN THE CIRCULAR GEOMETRY

In this section, we present the analytical calculations leading to the expressions of the coarse-grained stresses σ̄ in
Eq. (9) and of the rectification coefficient α of Eq. (10) of the main text. We first rewrite the coarse-grained stresses in
the initial space where the calculations will be easier to handle in Sec. III A. Then in Sec. III B we present the Ansatz
for the displacement field that allows us to solve the force balance condition. In Sec. III C, we show the expressions of
the coarse-grained pressures and shear stresses with the stress and displacement fields. We finally display the detailed
expressions of the coarse-grained stresses σ̄ in the circular geometry as well as the expression of α in Sec. III D.

A. Rewriting the coarse-grained stresses in the initial space

In order to calculate the coarse-grained stresses, we need to express them in the initial configuration, where the
force density φ = f/ det(1 + η) is related to the first Piola-Kirchhoff stress tensor τ = (1 + η)∂E∂ε . The force balance
equation thus reads φi = −∂jτij and the coarse-grained stresses can be rewritten as

σ̄aij =
1

V

∮
∂Ω

τikXj dak and σ̄lij = − 1

V

∫
Ω

φiXj dv, (S9)

where da is the outward-directed area element in the initial space. As before in Sec. I, we distinguish the linear term
τL (which is the same in the initial and target spaces τL = σL), from the nonlinear term τNL = τG + τC . This

δ

FIG. S1. Overlap between two interacting beads in a granular simulation.
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last equality distinguishes the geometrical and constitutive nonlinearities. Given the non-harmonic energy density of
Eq. (4), up to second order, the terms read

τL =
(
κ− 2µ/d

)
Uii 1 + 2µU,

τG =
(
κ− 2µ/d

)
η2
ij 1/2 + µηTη +

(
κ− 2µ/d

)
Uii η + 2µηU +O

(
η3
)
.

τC = 3
(
κ′ − 2µ′/d

)
U2
ii 1/2 + µ′U2

ij 1 + 2µ′Uii U +O
(
η3
)
.

(S10a)

(S10b)

(S10c)

B. Ansatz for the displacement field

In the initial space, the material is subjected to zero body force except at rin, where the stress is discontinuous. The
fixed boundary at rout and the imposed displacement at rin additionally impose boundary conditions on the stress and
displacement fields, resulting in the following system of equations:

∇ · τT = 0, for r ∈ [0, rin) ∪ (rin, rout)

u = 0, at r = 0 and r = rout

u = rin [e0 + e2 cos(2θ)] r̂, at r = rin

. (S11)

We solve this system perturbatively by expanding u,η, τ in the small scalar quantity

η ∼ |e0|+ |e2|. (S12)

The displacement gradient is hence written η = ηL + ηNL +O
(
η3
)

where the L and NL superscript refer to linear and
quadratic (nonlinear) terms in η. This allows us to write the stress tensor as

τ = τL
(
ηL
)

+ τL
(
ηNL

)
+ τNL

(
ηL
)

+O
(
η3
)
, (S13)

where τL
(
ηL
)

is of order 1, while the next two are of order 2. The linear displacement field uL is the solution of

∂iτ
L
ji(η

L) = 0. This is solved by decomposing uL in the following Fourier modes due to the form of the imposed
displacement:

uLr /rin = e0ζ0(r) + e2ζ2(r) cos 2θ,

uLθ /rin = e2ω2(r) sin 2θ.

(S14a)

(S14b)

Here ζ0(r), ζ2(r), ω2(r) are sums of rk, with k ∈ {−3,−1, 1, 3} and coefficients depending on the boundary conditions.
Then, at the first nonlinear order, uNL is the solution of the linear equation ∂iτ

L
ji(η

NL) = −∂iτNL
ji (ηL) which is solved

by expanding uNL as

uNL
r /rin = e2

2ξ0(r) + e0e2ξ2(r) cos 2θ + e2
2ξ4(r) cos 4θ,

uNL
θ /rin = e0e2π2(r) sin 2θ + e2

2π4(r) sin 4θ,

(S15a)

(S15b)

where the ξi(r), πi(r) are again sums of rk with k odd between −7 and +5. As a consequence, we obtain in Sec. III D
the strain and stress fields up to second order in η.

C. Calculations of the coarse-grained stresses

We compute the coarse-grained active stress σ̄a and local stress σ̄l in the circular geometry by integrating the
stresses in the material as in Eq. (S9). The coarse-grained stresses are expressed in Cartesian coordinates, while the
stress field is more easily expressed in polar coordinates. In the following (and in this subsection only), we denote
Cartesian indices x, y with Greek letters (µ, ν) and polar indices r, θ with Latin letters (i, j, k). The change-of-basis
matrix between these two systems reads R =

(
cos θ − sin θ
sin θ cos θ

)
. In the circular geometry of Fig. 1 where the active unit
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produces a discontinuity in the stress at rin in the initial configuration, the coarse-grained stresses are expressed as
follows:

σ̄aµν =
1

πr2
out

∮
∂Ω

Rµi τik Rνj Xj dak =
1

π

∫ 2π

0

dθ Rµi τir(rout, θ)Rνr,

σ̄lµν =
1

πr2
out

∫
Ω

Rµi ∂kτik Rνj Xj dV =
1

π

r2
in

r2
out

∫ 2π

0

dθ Rµi

[
τir(r

+
in, θ)− τir(r

−
in, θ)

]
Rνr

[
1 +

ur(rin, θ)

rin

]
,

(S16a)

(S16b)

where ∂kτik denotes the stress divergence expressed in polar coordinates. Then, introducing β = (rout/rin)2, the active
pressure and shear stress rescaled so as to compensate for dilution read

β(σ̄axx + σ̄ayy) = −2Pa =
β

π

∫
τrr(rout, θ),

β(σ̄axx − σ̄ayy) = −2Sa =
β

π

∫ [
τrr(rout, θ) cos 2θ − τθr(rout, θ) sin 2θ

]
,

(S17a)

(S17b)

with similar expressions for the local pressure and shear stress:

−2Pl =
1

π

∫ [
τrr(r

+
in, θ)− τrr(r

−
in, θ)

] [
1 +

ur(rin, θ)

rin

]
,

−2Sl =
1

π

∫ {[
τrr(r

+
in, θ)− τrr(r

−
in, θ)

]
cos 2θ −

[
τθr(r

+
in, θ)− τθr(r

−
in, θ)

]
sin 2θ

}[
1 +

ur(rin, θ)

rin

]
.

(S18a)

(S18b)

D. Full expressions of the coarse-grained stresses

In Eqs. (9-10), we consider small displacements with two independent parameters e0, e2 � 1. In the weakly nonlinear
formalism, the simplest possible rectification requires that the term in e0 be similar (and of opposite sign) to the term

in e2
2. In this regime, given ε� 1, the displacement parameters read e0 = ε ẽ0 and e2 =

√
ε ẽ2. As a result Px = εP̃x

and Sx =
√
εS̃x for x ∈ {l, a}, where the tildes denote quantities of order one. Then to lowest order in ε, Eq. (9) can

be rewritten as

P̃x = Axẽ0 +Bxẽ
2
2 +O(ε),

S̃x = Cxẽ2 +O(ε),

(S19a)

(S19b)

implying that the “∼” symbols of Eq. (10) denote equalities to lowest order in ε. The rectification behavior thus

depends on the ratio P̃l/(αS̃2
l ), i.e. on ẽ0/ẽ

2
2. We further display the complete expressions of the coefficients in Eq. (9)

obtained after finding the strain field through force balance (see Sec. III B) and integrating the resulting stress via
Eq. (S10), as in (S17) and (S18). In order to make sense of the cumbersome expressions of the Ax, Bx and Cx, we
introduce several quantities: X = (3− ν)2(1 + β2) + 2(3− 6ν − ν2)β,

a0 = 1215− 1863ν + 756ν2 − 126ν3 + 87ν4 − 43ν5 + 6ν6

+ (81− 2457ν + 2412ν2 − 594ν3 + 265ν4 + 155ν5 − 22ν6)β

+ (1782− 3798ν + 6216ν2 − 3948ν3 + 326ν4 − 286ν5 + 28ν6)β2

− (918 + 1170ν − 2616ν2 + 1044ν3 + 54ν4 − 262ν5 + 12ν6)β3

+ (459 + 45ν + 132ν2 − 918ν3 + 515ν4 − 71ν5 − 2ν6)β4

− (891− 1755ν + 1188ν2 − 294ν3 − 13ν4 + 17ν5 − 2ν6)β5,

a1 = 1863− 756ν − 54ν2 + 12ν3 + 7ν4 + (1377− 1260ν + 102ν2 − 108ν3 − 31ν4)β

+ (1782− 1368ν + 804ν2 + 168ν3 + 54ν4)β2 + (162− 504ν − 132ν2 − 24ν3 − 46ν4)β3

+ (243 + 108ν + 18ν2 − 84ν3 + 19ν4)β4 − (243− 324ν + 162ν2 − 36ν3 + 3ν4)β5,
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a2 = 2511− 4104ν + 4023ν2 − 1416ν3 + 173ν4 − 48ν5 + 13ν6

+ (1377− 8352ν + 6369ν2 − 2568ν3 − 77ν4 + 104ν5 − 53ν6)β

+ (6966− 16128ν + 17430ν2 − 6480ν3 + 1890ν4 − 176ν5 + 82ν6)β2

+ (2754− 9216ν + 6162ν2 − 1392ν3 − 794ν4 + 240ν5 − 58ν6)β3

+ (2187− 3672ν + 3843ν2 − 1896ν3 + 545ν4 − 128ν5 + 17ν6)β4

− (243− 189ν2 + 72ν3 + 9ν4 − 8ν5 + ν6)β5,

and

b0 = 81− 270ν + 234ν2 − 36ν3 + 13ν4 − 6ν5 + (135− 378ν + 366ν2 − 196ν3 − 29ν4 + 22ν5)β

+ (162− 708ν + 1116ν2 − 464ν3 + 82ν4 − 28ν5)β2 + (126− 564ν + 540ν2 − 168ν3 − 106ν4 + 12ν5)β3

+ (45− 222ν + 426ν2 − 188ν3 + 17ν4 + 2ν5)β4 + (27− 162ν + 198ν2 − 100ν3 + 23ν4 − 2ν5)β5,

b1 = 27− 18ν + 3ν2 + (189 + 18ν − 11ν2)β + (174 + 12ν + 14ν2)β2

+ (138− 12ν − 6ν2)β3 + (39 + 6ν − ν2)β4 + (9− 6ν + ν2)β5,

b2 = 243− 270ν + 84ν2 − 34ν3 + 9ν4 + (189− 522ν + 404ν2 + 58ν3 − 33ν4)β

+ (510− 1356ν + 568ν2 − 84ν3 + 42ν4)β2 + (474− 612ν + 312ν2 + 100ν3 − 18ν4)β3

+ (159− 486ν + 244ν2 − 10ν3 − 3ν4)β4 + (153− 210ν + 116ν2 − 30ν3 + 3ν4)β5.

In the end, we find

Al = Aa =
4κβ

(1 + ν)(β − 1)
,

Bl = −κβ (3− ν)a0 + (1− ν)2(1 + ν)a1 κ1 + (1− ν)a2 µ1

(3− ν)2(1 + ν)(β − 1)2X2
,

Ba = −κβ b0 + (1− ν)2(1 + ν)b1 κ1 + (1− ν)b2 µ1

(1 + ν)(β − 1)2X2
,

Cl = Ca = 4µβ
2(3 + ν) + (3− ν)(β + β2)

(β − 1)X
.

(S20a)

(S20b)

(S20c)

(S20d)

As expected from the linear elasticity analysis of Sec. I, the coefficients in front of the linear e0 and e2 terms are
identical for the local and boundary stresses, but discrepancies appear in the e2

2 terms. This leads us to define
α = (Ba −Bl)/C2

l .

IV. BEHAVIOR OF α AND RECTIFICATION SATURATION RADIUS r∗

To help better understand the lengthy expression of the rectification coefficient α = (Ba − Bl)/C2
l in subsection

III.D, we hereby discuss its dependence on the system size rout. As is apparent from Fig. 2(a), α increases with
increasing rout for relatively small systems, then saturates as the size of the system goes to infinity. Indeed, away from
the high-stress region close to the active unit, the stress decrease causes the nonlinearities to become negligible in
front of the linear terms. Therefore, we examine the radius r∗ at which stress propagation switches from nonlinear
to linear. To this end we define the system size parameter β = (rout/rin)2. In the limit β →∞, Eq. (S20) leads to
α(β) = α∞ + α1/β +O(β−2), where

µα∞ = −
(
κ1 + 3

2

)
(1− ν2) +

(
µ1 + 3

2

)
(5− 2ν + ν2)

4
,

µα1 =

(
κ1 + 3

2

)
(15− 6ν − 8ν2 + 6ν3 − 7ν4) +

(
µ1 + 3

2

)
(111− 36ν + 50ν2 − 20ν3 + 7ν4)

4(3− ν)2
.

(S21)

We introduce the value of the parameter β such that α is within 10% of its large-size limit through
∣∣∣α(β10)−α∞

α∞

∣∣∣ = 0.1.

The square-root of β10, corresponding to the ratio of the radii, lies between 4 and 9, except for insignificant values
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FIG. S2. The rectification saturation radius r∗ is generally of the order of rin. Contour plot of
√
β10 = r∗/rin when κ1 and µ1

are varied for several values of Poisson’s ratio ν. Except in the small white regions,
√
β10 < 9. In these white regions, |α| tends

to take negligible values.

rout
rin

2 4 6 8 10

5

0

-5

κ1

-5 0 5 -5 0 5 -5 0 5 -5 0 5 -5 0 5
µ1

FIG. S3. Rectification happens mostly near the active unit. Additional plots to Fig. 2(a) showing the stabilization of the graphs
as the system size increases for a Poisson’s ratio ν = 1. The blue and yellow lines at constant |α|µ stay quite still between
rout/rin = 8 and 10. The behavior is similar for ν = 0.

of α, see Fig. S2. Fig. S3 also illustrates this behavior by showing the stabilization of the lines at constant α as the
system size increase. Therefore, defining the rectification saturation radius r∗ such that β10 = (r∗/rin)2, increasing
rout past r∗ ∼ 10rin has little influence on the value of Pa −Pl, i.e. on the rectification effect. This indicates that the
propagation is nonlinear only up to r∗. In the study of stress propagation from multiple active units, one thus needs to
compare this r∗ to the typical spacing between two active units.

V. THE RECTIFICATION DIAGRAM

Let us give further explanation to the shadings of the rectification diagram of Fig. 2(b), corresponding to different
rectification regimes. In the circular geometry of Fig. 1, provided that α and Pl have different signs, a change of sign
of Pa due to rectification can appear for all values of the local pressure Pl as long as the local shear stress |Sl| is large
enough. Indeed, in Eq. (10) the sign switching of the active pressure Pa (e.g. Pa < 0 while Pl > 0) requires

|α|S2
l & |Pl|. (S22)

This sets the boundary between the regions with light shading and the regions with intermediate shading. Then, the
extreme case where all active stress components switch sign (e.g. Pa ± Sa < 0 while Pl ± Sl > 0) happens for

|Sl| . |Pl| . |α|S2
l − |Sl|, (S23)

i.e. for |Pl| and |Sl| both larger than 2/|α|. This extreme case corresponds to the dark regions of Fig. 2(b).
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VI. FINITE-ELEMENT SIMULATIONS

This section provides further details on the finite element simulations used to produce Fig. 3 of the main text.
Sec. VI A describes our simulation methods. In Sec. VI B, we discuss rectification in two additional fully nonlinear
models.

A. Methods

We solve the set of equations (S11) via simulations with the finite element software Fenics [6] version 2019.2.0.dev0.
We use a mesh with maximal size l = 0.01 for rin = 1 and rout = 2, and another one with l = 0.1 for rout = 10. They
were both created with Gmsh version 4.4.1. In all figures, the error bars correspond to the differences between two
meshes at l and l/10, which gives roughly 5% of Sl or Pl for all points. The meshes are created without enforcing
rotational symmetry, which results in small non-zero values for the non-diagonal coefficients that should be zero in a
continuum system (e.g., σ̄lxy), as shown in Eq. (8). However, we find that these values are smaller than 5% of the
diagonal coefficients in all simulations. In the geometry of Fig. 1, if we apply too large a deformation at rin, we come
into contact with the fixed boundary at rout, which poses some numerical issues. Therefore, we can only perform
accurate simulations up to about η = |e0|+ |e2| ∼ 0.6.

B. Additional data

In the main text, we studied two models with clear buckling and anti-buckling behaviors, which lead to a readily
observable reversal of the active pressure sign, due to rectification. We also studied a standard neo-Hookean model of
rubber in which this behavior is less pronounced. Here, we study another model which can mimic the shear-stiffening
behavior of fiber networks. Consistent with analytical predictions, this system displays a smaller propensity for
rectification, and we show that the predictions of Eq. (10) remain valid up to intermediate stress values.

In the fully nonlinear model with the elastic energy density of Eq. (11), we introduced the parameters a, b such
that κ1 = 1/2 − 3a and µ1 = −3/2 − b. In Fig. 3, we showed the good agreement between the weakly nonlinear
predictions of Eq. (10) and finite-element simulations for the bucklable and anti-bucklable models obtained by setting
(a, b) = (−1/6,−5/2) and (3/2, 5/2) to obtain (κ1, µ1) = (1, 1) and (−4,−4) respectively. As well as for the neo-
Hookean model, obtained by setting a = b = 0 in Eq. (11), which has κ1 = 1/2, µ1 = −3/2. In Fig. S4(a), we show
thqt the agreement between the simulations with the neo-Hookean model and Eq. (10) remains quantitative in the
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FIG. S4. Additional plots of the coarse-grained stresses are in agreement with Eq. (10) up to intermediate stresses and in a
large scale of parameters. (a) Rubber-like neo-Hookean model [a = b = 0 in Eq. (11)]. For Pl = 0.1κ, the predictions at ν = 0.8
and rout/rin = 10 remain quantitatively accurate. (b-c) Fiber-like shear-stiffening model of Eq. (S24) with c = 10, following the
predictions up to the point where stresses diverge (when η ∼ 1/

√
c). For both plots, ν = 0.1 and rout/rin = 2.
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FIG. S5. Investigation of the Pa ∼ Pl relationship of Eq. (10) for Sl = 0. The predictions at zero shear stress (i.e.
|Sl|, |Sa| < 0.01κ) remain reasonably accurate up to a few Pl/κ. (a-d) In the neo-Hookean case, the nonlinear terms are such
that Pa < Pl and become increasingly significant as ν and rout/rin increase. Specifically, the agreement deteriorates from panel
(a) to panels (b) and (c), to panel (d). (e) In the shear-stiffening case these nonlinear terms are first decreased up to c ∼ 2-5 [see
Eq. (S24)] and then increased in the opposite direction (such that Pa > Pl).

small stress regime for all considered values of the Poisson’s ratio ν and the ratio of the boundary radius to the active
unit radius rout/rin.

We then investigate a variant of the neo-Hookean model which has the shear-stiffening behaviorG ∝ σ3/2
xy characteristic

of fiber networks under large strains. Its elastic energy density reads [7, 8]

E =
κ

2
(J − 1)

2
+
µ

2c

[
1− c

(
I/J − 2

)]−1

, (S24)

where J = det(1 + η) and I = Tr(1 + 2ε). Here, the shear strain threshold for the stiffening behavior corresponds to
a fraction of 1/

√
c, the strain at which the shear stress diverges. This is such that the neo-Hookean model is recovered

for c = 0. This model still has κ1 = 1/2, µ1 = −3/2, which corresponds to the same tendency to rectify towards
contraction as in the neo-Hookean case. Indeed, c only affects higher order nonlinearities. As shown in Fig. S4(b,c)
where c = 10, we recover Eq. (10) at small stress. But due to the shear stress divergence at finite shear strain in
Eq. (S24), our predictions fail when Sl/κ & 1/

√
c.

We finally compare the dependence of Pa with Pl at zero shear stress with the weakly nonlinear prediction Pa ∼ Pl.
As displayed in Fig. S5, we recover the prediction for small stresses, but higher order nonlinearities induce significant
deviations for Pl/κ outside of [−0.3, 1]. In the end, we see that the predictions of Eq. (10) relating the active and local
stress components fail when either the local pressure or the local shear stress become comparable to the bulk modulus
κ. Our weakly nonlinear predictions additionally fail close to stress divergences, i.e. when the nonlinearities become
too significant compared to the linear terms.
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