

Supporting Information

for Adv. Sci., DOI 10.1002/advs.202205272

Mesenteric Adipose Tissue-Derived *Klebsiella variicola* Disrupts Intestinal Barrier and Promotes Colitis by Type VI Secretion System

Junli Gong, Jing Yu, Shengmei Yin, Jia Ke, Jinjie Wu, Chen Liu, Zhanhao Luo, Wai Ming Cheng, Yaozu Xie, Yuan Chen, Zhen He* and Ping Lan*

Supporting Information

Experimental Procedures

MAT bacteria cultivation: MAT (approximately 100 mg) was homogenized using Sample Freezing Grinder (Lu Ka, LUKYM-I) in 1 mL of sterile PBS. The samples were serially diluted and spread onto agar media, including brain heart infusion media (BHI, BD), BHI supplemented with vitamin K (0.5 mg/L), heme (5 mg/L), MacConkey agar (MAC, Oxoid), and tryptic soy agar (TSA, BD). The plates were incubated under aerobic conditions for 14-16 h or under anaerobic conditions at 37°C for up to 96 hours. Distinct bacterial colonies were selected and re-streaked for purification. The nearly full-length 16S rRNA gene was amplified using the 27F/1492R primer set for taxonomical assignment (**Table S2**). Amplicons were submitted to Rui Biotech (Guangzhou, CN) for Sanger sequencing. Each colony was identified by sequencing using the Basic Local Alignment Search Tool available on NCBI. The SILVA database was used for taxonomic hierarchy information reference.

DNA extraction, 16S rRNA gene sequencing and data analysis: DNA was extracted from MAT samples using the bead-beating method with a DNeasy Blood & Tissue Kit (QIAGEN, MD). The hypervariable V4 region of the 16S rRNA gene was amplified by PCR using dual barcode primers as previously described [46]. Briefly, amplicons were purified by AMPure XP (Beckman Coulter), and quantified with Quant-iT PicoGreen ds DNA Assay Kit (Thermo Fisher Scientific). Equal amounts of each amplified DNA were pooled together, which were subsequently qualified and quantified by Bioanalyzer 2100 using the High sensitivity DNA kit (Agilent) as well as the KAPA Library Quantification Kit for Illuminan (Kapa Biosystem). Mixtures with denatured amplicons and 20% PhiX Control v.3 were then sequenced on Hiseq 2500 (Illumina, 2×250 bp paired-end reads). Quantitative Insights into Microbial Ecology 2 (QIIME II) using reference parameters was used for demultiplexing and quality filter. Sequences having 100% similarity were clustered into amplicon sequence variant (ASV). 16S rRNA gene sequence variants were aligned to the Greengenes database (<u>http://greengenes.secondgenome.com</u>) for taxonomic assignment. The relative abundance of each ASV was calculated from the proportion of the sum of sequences in each sample.

Bacteria invasion assay: Murine preadipocyte 3T3L1 cells were seeded in 24-well cell culture plates at a density of 1×10^5 cells/well. Bacterial cells (*K. variicola* and *E. coli* DH5 α) were washed three times with PBS and re-suspended in DMEM without antibiotics. Bacteria were added to the cell plates at a multiplicity of infection (MOI) of 20 and incubated at 37°C in 5% CO₂ for 4 h. Then, the in-well co-cultured systems were washed thrice with warm PBS, followed by an incubation in DMEM (10% FBS) containing antibiotics (kanamycin and ampicillin at 100 ng/mL) at 37°C, 5% CO₂ for another 1 h to kill extracellular bacteria. Cells were then lysed with 0.5% Triton X-100 in PBS, and internalized bacteria were enumerated by plate counting.

Quantification of K. variicola in mice mesenteric adipose tissue and clinical sample: To determine the abundance of *K. variicola* in the clinical samples (mesenteric adipose tissue (MAT) and the intestine tissue) as well as mice MAT, absolute quantitative PCR (qPCR) was performed. Amplification was carried out in triplicate with SYBR Green qPCR in accordance with the manufacturer's protocol (Biomarker, CN). A standard curve was plotted using serially diluted bacterial DNA extracted from a known amount of *K. variicola* (e.g., 5×10^9 CFU). With this standard

curve for qPCR, the abundance of *K. variicola* in each sample was calculated according to the detected CT value. Specific qPCR primers for *K. variicola* were designed based on whole genome sequencing data of *K. variicola* (**Table S2**).

Growth Curves: Growth curves were monitored using an automatic biological growth reactor (RTS-1C, Unk Bio). Overnight cultures of *K. variicola*-vector and *K. variicola*-dcas-ClpV were diluted in 25 mL LB supplemented with kanamycin (50 μ g/mL) and spectinomycin (50 μ g/mL). Bacterial growth at OD₆₀₀ was measured every ten minutes (Rev. Spin period: five seconds, 220 rpm/min at 37 °C).

Immunofluorescence for Zonula occludens-1 (ZO-1): The mouse colonic tissue sections were freshly isolated and fixed with 10% formalin before embedding in paraffin wax. The whole staining was performed on paraffin-embedded sections (4 µm). After deparaffination with dimethylbenzene and rehydration with ethanol, the slides were immersed in boiling sodium citrate buffer (10 mM, pH=6.0) for 10 min to retrieve antigen. The slides were blocked with PBS containing 0.6% Triton X-100 for 15min, and then washed in PBST (0.1% Tween 20 in PBS) 3 times, each 5 min. The tissue samples were immune-stained with primary antibodies by incubating overnight at 4°C. Following incubation, the tissue sections were rinsed with PBST 3 cycles as previously described. After that, slides were incubated with Alexa Fluor 488 conjugated secondary antibodies for 30 min at room temperature. Tissues were mounted in Prolong antifade with DAPI reagent, then slides were covered by a coverslip and sealed the edges to prevent drying. Specimens were examined with Leica Laser Scanning confocal microscope. The quantification of ZO-1 was performed with Image J.

Transmission Electron Microscopy (TEM): Colon tissue (1 mm³) was collected from *K. variicola* ZSLY01, *E. fergusonii*, or PBS-treated C57BL/6 mice and fixed in electron microscopy fixatives (Servicebio, CN). Ultrathin sections were prepared using a Reichert Ultracut E ultramicrotome (Leica Microsystems). Digital images were obtained using TEM (Hitachi H-7000, equipped with an AMT CCD camera XR-41, Hitachi, Japan).

Figure Legend

Figure S1. Linear discriminant analysis effect size (LEfSe) analysis showing the differential distribution of microbiota in mesenteric adipose tissue (MAT) with high and low abundance of Enterobacteriaceae. High E: high abundance of Enterobacteriaceae. High E: high abundance of Enterobacteriaceae.

Figure S2. Genomic analysis and the invasion as well as pro-inflammatory capacity of *K. variicola* ZSLY01. (A) Functional analysis of genomic genes in *K. variicola* ZSLY01; (B) Genes involved in protecting against oxidative damage; (C) Invasion capacity of *K. variicola* ZSLY01 into 3T3L1 (mice preadipocytes). *E. coli* DH5α was employed as a control group. (D) The pro-inflammatory capacity of K. *variicola* ZSLY01 towards 3T3L1.

Figure S3. *K. variicola* exacerbate colitis in SPF mice without antibiotics treatment. (A) mice experiment design: SPF C57BL/6 male mice (n=4-5) were daily gavaged with *K. variicola* or PBS for 14 days. To induce colitis, 3% dextran sodium sulfate (DSS) instead of drinking water was given to mice from day 0 to day 7. (B) weight loss rate and (C) disease activity index (DAI) after 3% DSS treatment. (D-E) Representative colons and colon length. (F-H) Expression of pro-inflammatory cytokines (*TNF-a*, *IL-6*, *and IL-1β*) in the mice intestines. Error bars \pm SEM. *P<0.05; **P<0.01; Each dot represents an individual mouse; two-way ANOVA with Tukey's multiple comparison test (B&C); one-way ANOVA with Tukey's multiple comparison test (E); unpaired two-tailed Student's t-test (F-H).

Figure S4. Down-regulated expression of *ClpV* in *K. variicola* derived from mice and the comparable colonization ability between K.v-vetor and K.v-dcas-ClpV. K.v-vector, *K. variicola* transformated with empty plasmid; *K.v*-dcas-ClpV, *K.variicola* transformated with sgRNA containing plasmid. Error bars±SEM. *P<0.05; **P<0.01; ***P<0.001; unpaired two-tailed Student's t-test.

Figure S5. Detection of T6SS in the fecal microbiome of patients with CD (A) and that in the strains of *K. variicola* (B). The sequencing data of fecal microbiome of patients with CD is from a publicly available database (PRJEB15371). K.v ZSLY 01, *K. variicola* ZSLY 01; K.v ZSLY 02, *K. variicola* ZSLY 02; K.v ZSLY 03, *K. variicola* ZSLY 03; K.v ZSLY 04, *K. variicola* ZSLY 04; *P. distasonis, Parabacteroides distasonis*

Figure S6. Summary schema showing the proposed mechanism by which MAT-derived *K. variicola* promotes intestinal colitis

Figure S2

Figure S5

Α

Lane 1: K.v ZSLY01 Lane 2: K.v ZSLY02 Lane 3: K.v ZSLY03 Lane 4: K.v ZSLY04 Lane 5: *P. distasonis* Lane 6: Elution buffer

Figure S6

Table S1

Table S1. Clinical information of CD patients and non-CD controls involved inthis study

		(n=48)	(n=16)			
Gender	Male	30	7			
	Female	18	9			
Family history of IBD	Yes	0				
	No	48				
Median age at diagnosis (mi	in max.) (year)	31 (11-55)	60 (25-85)			
Median duration of disease (n	nin max.) (year)	7 (4-18)				
Active	Yes	24				
	No	24				
Limber ¹	Grade I	1				
	Grade II	25				
	Grade III	16				
	Grade IV	6				
Montreal classification ²	A1	5				
	A2	39				
	A3	4				
	B1	1				
	B2	12				
	B3	35				
	L1	7				
	L2	2				
	L3	39				
	р	31				
Indication for surgery	Strictures	12				
	Strictures & obstruction	4				
	Strictures & fistulae	15				
	Fistulae	6				
	Strictures & obstruction & fistulae	5				
	Fistulae & obstruction	3				
	Others	3				
Steroid	Yes	17				
	No	31				
Immunotherapy	Yes	32				
-	No	16				

¹Limberg score:

Grade I: wall thickening (hypoechoic wall thickening and partially obscured mural stratification) and absent mural flow

Grade II : wall thickening with intermittent (or "spot") increases in vascularity

Grade III : wall thickening with protracted stretches of increased vascularity

Grade IV: color flow Doppler signals in both the bowel wall and surrounding mesenteric fat

² Montreal classification:

- A1: below 16 y
- A2: between 17 and 40 y
- A3: above 40 y
- B1: non-stricturing, non-penetrating
- B2: stricturing
- B3: penetrating
- L1: ileal
- L2: colonic
- L3: ileocolonic
- p: perianal disease modifier

Table S2

Origin	Primers	Forward	Reverse		
IL-1β		GCTGAAAGCTCTCCACCTCA	GCTTGGGATCCACACTCTCC		
	IL-6	CTCTGCAAGAGACTTCCATCCA	GACAGGTCTGTTGGGAGTGG		
	TNF-α	GCCTCTTCTCATTCCTGCTTG	CTGATGAGGGAGGCCATT		
Mougo	ZO-1	TCATCCCAAATAAGAACAGAGC	GAAGAACAACCCTTTCATAAGC		
Niouse	Claudin1	TGCCCCAGTGGAAGATTTACT	CTTTGCGAAACGCAGGACAT		
	Occludin	TGAAAGTCCACCTCCTTACAGA	CCGGATAAAAAGAGTACGCTGG		
	Synpo	ATGGAGGGGTACTCAGAGGAG	CTCTCGGTTTTGGGACAGGTG		
	Gapdh	TGAAGCAGGCATCTGAGGG	CGAAGGTGGAAGAGTGGGAG		
IL-1β		CACCTCTCAAGCAGAGCACAG	GGGTTCCATGGTGAAGTCAAC		
Dot	IL-6	AAAGAGTTGTGCAATGGCAATTCT	CAGTGCATCATCGCTGTTCATACA		
Kat	TNF-α	ACTGAACTTCGGGGTGATTG	GCTTGGTGGTTTGCTACGAC		
	Gapdh	GGCATTGCTCTCAATGACAA	AGGGCCTCTCTCTTGCTCTC		
К. va	ariicola	TACTTGTTCGACACGCGGAA,	CAATGGGCAACGAAAACGGT		
0	Clp V	ATGGGATATGGATGCGCTGT	AGGTGAACACTGCGGATCTG		
16S rRNA		GTG STG CAY GGY TGT CGT CA	ACG TCR TCC MCA CCT TCC TC		
16S rRNA (V1-V9)27F/1492R		AGAGTTTGATCCTGGCTCAG	TACGACTTAACCCCAATCGC		
N20	-ClpV	CTGACTAGTCTCCATTGCGCGGGCA	ACAGCGTTTTAGAGCTAGAAATAG		

Table S2. Primer sequences used in this study.

1 Table S3

2

Table S3 The strains isolated from MATs of patients with CD and non-CD controls

Strains isolated from ≥ 2 specimens of															
patients with CD	Family	CD8	CD10	CD12	CD13	CD16	CD14	CD17	CD7	CD5	CD6	CD9	CD3	CD4	CD1
Achromobacter deleyi	Alcaligenaceae	0	1	0	1	1	1	1	0	0	0	0	0	0	0
Achromobacter pulmonis	Alcaligenaceae	1	1	1	1	1	1	0	0	0	0	0	0	0	0
Devosia riboflavina	Devosiaceae	1	0	0	1	1	1	1	0	0	0	0	0	0	0
Enterococcus durans	Enterococcaceae	1	0	0	0	0	0	0	1	0	0	0	0	0	0
Enterococcus faecalis	Enterococcaceae	0	0	0	0	0	0	0	0	0	0	0	1	1	1
Escherichia/Shigella	Enterobacteriaceae	1	0	1	0	0	0	0	0	1	1	1	0	0	0
Klebsiella sp.	Enterobacteriaceae	1	0	0	0	0	0	0	0	0	0	0	1	1	1
Ochrobactrum anthropi	Brucellaceae	1	1	1	1	0	1	1	0	0	0	0	0	0	0
Pseudacidovorax intermedius	Comamonadaceae	0	0	0	1	1	0	1	0	0	0	0	0	0	0
Pseudomonas alcaliphila	Pseudomonadaceae	1	1	1	1	1	1	0	0	0	0	0	0	0	0
Staphylococcus capitis	Staphylococcaceae	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Staphylococcus epidermidis	Staphylococcaceae	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Staphylococcus haemolyticus	Staphylococcaceae	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Staphylococcus hominis	Staphylococcaceae	0	1	1	0	0	0	0	0	0	0	0	0	0	0
Staphylococcus warneri	Staphylococcaceae	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Stenotrophomonas maltophilia	Xanthomonadaceae	1	0	0	0	1	0	1	0	0	0	0	0	0	0
Strains isolated from ≥ 2 specimens of		non-	non-	non-C	non-C	non-	non-C	non-	non-C	non-					
non-CD controls	Family	CD-1	CD-2	D-3	D-4	CD-5	D-6	CD-7	D-8	CD-9					
Staphylococcus capitisstrain JCM 2420	Staphylococcaceae	1	0	0	1	1	0	0	0	0					
Escherichia fergusoniiATCC 35469	Enterobacteriaceae	0	0	1	0	0	0	0	0	1					

Staphylococcus warneri strain AW 25	Staphylococcaceae	0	1	0	0	1	0	0	1	0
Staphylococcus epidermidis strain										
NBRC 100911	Staphylococcaceae	1	1	0	0	0	0	0	0	0
Staphylococcus hominisstrain DM 122	Staphylococcaceae	0	1	0	0	0	1	1	0	0
Staphylococcus haemolyticus strain										
JCM 2416	Staphylococcaceae	0	0	0	0	0	0	1	1	0

Table S4 The distribution of Klebsiella variicola in MAT from CD and non-CD

CD/non-CD patients СТ CFU/mg **Positive rate** 66537 23.55 A10 A12 Undetermined 0 0 A14 Undetermined A15 Undetermined 0 A16 26.87 7146 A17 34.25 50 A18 33.97 61 A20 Undetermined 0 A21 Undetermined 0 A23 33.83 67 A24 0 Undetermined A25 43 34.47 A27 0 Undetermined A29 0 Undetermined A3 Undetermined 0 A30 0 Undetermined A31 Undetermined 0 0 A32 Undetermined A33 207 32.14 **CD** patients 34.04% A34 Undetermined 0 A45 34.47 43 A47 Undetermined 0 A48 Undetermined 0 A5 Undetermined 0 0 A51 Undetermined A59 23 35.41 0 A6 Undetermined 0 A60 Undetermined 0 A61 Undetermined 14 A62 36.13 A63 31.96 234 A64 Undetermined 0 A65 33.89 64 Undetermined 0 A66 0 A67 Undetermined A68 33.37 91 A69 Undetermined 0 A7 Undetermined 0

	A70	Undetermined	0	
	A71	Undetermined	0	
A72		32.00	228	
	A73	29.98	883	
	A74	Undetermined	0	
	A75	Undetermined	0	
	A76	33.97	61	
	A8	Undetermined	0	
	A9	Undetermined	0	
	C11	Undetermined	0	
	C12	29.433	7185	
	C14	32.44	1243	
	C15	Undetermined	0	
	C16	Undetermined	0	
	C17	Undetermined	0	
	C18	31.452	2212	
	C19	Undetermined	0	22.22%
man CD mation to	C20	33.614	627	
non-CD patients	C21	Undetermined	0	22.22%
	C22	Undetermined	0	
	C23	Undetermined	0	
	C24	Undetermined	0	
	C25	Undetermined	0	
	C26	Undetermined	0	
	C27	Undetermined	0	
	C28	Undetermined	0	
	C29	Undetermined	0	

Table S5 The distribution of Klebsiella variicola in the mucosal biopsies from CDand non-CD

CD/non-CD patients		СТ	CFU/mg	Positive rate	
	Ac1	34.29	122		
	Ac2	34.42	112		
	Ac3	Undetermined	0		
CD notionts	Ac4	33.45	215	42 750/	
CD patients	Ac5	38.15	9	43.75%	
	Ac6	Undetermined	0		
	Ac7	Undetermined	0		
	Ac8	Undetermined	0		

	Ac9	Undetermined	0	
	Ac10	Undetermined	0	
	Ac11	Undetermined	0	
	Ac12	Undetermined	0	
	Ac13	Undetermined	0	
	Ac14	27.27	13718	
	Ac15	35.13	69	
	Ac16	37.53	14	
	Cc1	36.37	30	
	Cc2	Undetermined	0	
	Cc3	Undetermined	0	
non CD nationts	Cc4	Undetermined	0	12 500/
non-CD patients	Cc5	Undetermined	0	12.30%
	Cc6	Undetermined	0	
	Cc7	Undetermined	0	
	Cc8	Undetermined	0	

Table S6 Genes assigned to type VI secretion system

			Gene		
#GeneID	start	end	length		KEGG_annotation
					K11901 8.41309e-106 kpt:VK055_1132 hypothetical
	892204	892695	491	+	protein; K11901 type VI secretion system protein
GE00840					ImpB (A)
					K11901 1.95084e-85 kvd:KR75_19315 type VI
	909497	909928	431	+	secretion protein; K11901 type VI secretion system
GE00860					protein ImpB (A)
					K11900 0 kvd:KR75_19320 EvpB family type VI
	910030	911574	1544	+	secretion protein; K11900 type VI secretion system
GE00861					protein ImpC (A)
	011504	012027	1242		K11893 0 kpk:A593_21455 hypothetical protein;
GE00862	911584	912927	1343	+	K11893 type VI secretion system protein ImpJ (A)
					K11892 1.44184e-165 kva:Kvar_2972 type IV / VI
	912924	913613	689	+	secretion system protein, DotU family; K11892 type
GE00863					VI secretion system protein ImpK (A)
					K11903 7.81129e-118 kps:KPNJ2_03095 hypothetica
	915318	915809	491	+	l protein; K11903 type VI secretion system secreted
GE00865					protein Hcp (A)
					K11907 0 kpe:KPK_3063 clpV; type VI secretion
	916074	918728	2654	+	ATPase, ClpV1 family; K11907 type VI secretion
GE00866					system protein VasG (A)

					K11904 0 kva:Kvar_2968 Rhs element Vgr protein;
	918721	921099	2378 -	+	K11904 type VI secretion system secreted protein
GE00867					VgrG (A)
					K11891 0 kva:Kvar_2958 ImcF domain-containing
	931757	935185	3428 -	+	protein; K11891 type VI secretion system protein
GE00879					ImpL (A)
					K11910 0 kpt:VK055_1092 impA-related N-terminal
	935182	936774	1592 -	+	family protein; K11910 type VI secretion system
GE00880					protein VasJ (A)
					K11896 0 kvd:KR75_19380 type VI secretion protein
	936854	938608	1754 -	+	ImpG; K11896 type VI secretion system protein
GE00881					ImpG (A)
	038572	030657	1085	1	K11895 0 kpk:A593_21565 hypothetical protein;
GE00882	930372	939037	1005	т	K11895 type VI secretion system protein ImpH (A)
					K11906 1.5951e-126 kva:Kvar_2954 type VI
	939635	940177	542	+	secretion lipoprotein; K11906 type VI secretion
GE00883					system protein VasD (A)
	187580	187719			K11911 0 kpe:KPK_2057 ImpA domain-containing
	107500	107715	1385 -	-	protein; K11911 type VI secretion system protein
GE01790	0	1			VasL (A)
	187721	187765			K11905 1.25542e-101 kvd:KR75_24595 type VI
	107721	4	443 -	-	secretion system lysozyme-like protein; K11905 type
GE01791	1				VI secretion system protein (A)
	187765	187819			K11906 3.97974e-126 kpu:KP1_3367 hypothetical
	7	3	536 -	-	protein; K11906 type VI secretion system protein
GE01792		U			VasD (A)
	187817	187922	1046	_	K11895 0 kpk:A593_00820 type VI secretion protein;
GE01793	4	0			K11895 type VI secretion system protein ImpH (A)
	187922	188098	1763 -	_	K11896 0 kpn:KPN_02250 hypothetical protein;
GE01794	0	3			K11896 type VI secretion system protein ImpG (A)
	188111	188451			K11891 0 kpk:A593_00830 type VI secretion protein
	8	3	3395 -	-	VasK; K11891 type VI secretion system protein
GE01795					ImpL (A)
	189478	189748			K11904 0 kpt:VK055_0186 vgrG2; valine-glycine
	5	4	2699 -	-	repeat protein G; K11904 type VI secretion system
GE01804					secreted protein VgrG (A)
	189964	190030			K11892 9.64329e-157 kpe:KPK_2042 type IV/VI
	7	0	653 -	-	secretion system protein, DotU family; K11892 type
GE01806					VI secretion system protein ImpK (A)
	190029	190163	1340 -	_	K11893 0 kpk:A593_00885 hypothetical protein;
GE01807	7	7	-		K11893 type VI secretion system protein ImpJ (A)
	287631	287682	506	+	K11903 2.23457e-123 kpx:PMK1_00572 hcpA_1;
GE02708	8	4	200		Secreted protein hcp; K11903 type VI secretion

	GE04306	460409 3	460457 8	485	+	system secreted protein Hcp (A) K11903 1.5935e-109 ror:RORB6_16040 type VI secretion system effector; K11903 type VI secretion system secreted protein Hcp (A)
13						
14						
15						
16	Т	able S7.	Six repres	entative	e ge	enes of T6SS in K. variicola ZSLY01

		PCR	
	Gene	product	
#GeneID	length	length	KEGG_annotation
			K11903 7.81129e-118 kps:KPNJ2_03095 hypothetical
	491 bp	170 bp	protein; K11903 type VI secretion system secreted protein
GE00865			Нср
			K11907 0 kpe:KPK_3063 clpV; type VI secretion
	2654 bp	910 bp	ATPase, ClpV1 family; K11907 type VI secretion system
GE00866			protein VasG
	0279 ha	262 ha	K11904 0 kva:Kvar_2968 Rhs element Vgr protein;
GE00867	2578 Up	502 Up	K11904 type VI secretion system secreted protein VgrG
			K11904 0 kpt:VK055_0186 vgrG2; valine-glycine repeat
	2699 bp	212 bp	protein G; K11904 type VI secretion system secreted
GE01804			protein VgrG
			K11903 2.23457e-123 kpx:PMK1_00572 hcpA_1;
	506 bp	298 bp	Secreted protein hcp; K11903 type VI secretion system
GE02708			secreted protein Hcp
			K11903 1.5935e-109 ror:RORB6_16040 type VI secretion
	485 bp	295 bp	system effector; K11903 type VI secretion system
GE04306			secreted protein Hcp