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Abstract

In this Supplementary Information document, we present extra material required for the
paper “Ataxic Speech Disorders and Parkinson’s Disease Diagnostics via Stochastic
Embedding of Empirical Mode Decomposition”. The organization of the Supplementary
Information is presented in the introduction and then different sections are presented.
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1 Introduction 1

In this Supplementary Information document we provide further materials required for 2

the understanding of the main paper. Note that, apart from the code for the three 3

system models implemented, at this Github page https://github.com/mcampi111, it 4

is possible to find a repository named “EMD-Stochastic-Embedding-for-PD-Speech” in 5

which further notebooks have been provided for some of the sections below presented. 6

The document is organised as follow: firstly, we provide evidence of why the Fisher 7

kernel is required in the implementation of this stochastic embedding. Traditional 8

kernel matrices will not be able to fit the speech signals and, therefore, an ad hoc kernel 9

structure is highly needed. This is presented in the first section. Afterwards, further 10

details of the considered dataset are provided. Section 4 presents the steps of the fitting 11

procedure required to extract the best models for the construction of the Fisher scores 12

in the testing procedure. Section 5 presents the steps required to implement the testing 13

procedure and how to implement the Gram Matrices for the GLRT test. 14

2 Gram Matrices and Covariance Matrices 15

Fig. 1 shows four different panels. The top panels present two randomly selected 16

segments for the raw data of two male voices with their associated empirical covariance 17

matrices (the bottom plots). Remark that the empirical covariance is computed as 18

s̃(t)i,ᵀs̃(t)i for the i-th segment. Each segment is made of 5000 samples corresponding 19

to approximately 0.13 seconds given that the signals were recorded at 44.1 kHz. The 20

top left panel is a segment of a male, healthy patient, while the the top right panel 21

represents a segment of a male, sick patient. Fig. 2, instead, represents two Gram 22

Matrices obtained by using the radial basis function kernel which are evaluated on a 23

uniform grid of points of length 5000 samples (as the covariance matrices). The length 24

scale hyperparameter was set to l = 0.1 for the left panel and l = 2 for the right panel. 25
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Fig 1. Raw speech segments (top plots) for two male voices wit the associated
empirical covariance matrices (bottom plots). In the top panels, the x-axis corresponds
to time. This is expressed in terms of number of samples, i.e. 5000 samples which is
equivalent to 0.13 seconds for a recording frequency of 441. kHz. The y-axis is the
amplitude of the considered speech segments. The bottom panels show the empirical
covariance matrices of the above segments. If the segment is denoted as s̃(t)i, then the
empirical covariance matrix is computed as s̃(t)i,ᵀs̃(t)i.

The plots for the empirical covariance matrices show that the underlying structures 26

of the original data are not trivial and that any classical stationary kernel as the radial 27

basis function would fail in detecting it efficiently. As a result, the authors decided to 28

employ the data driven kernel known as the Fisher Kernel. 29
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Fig 2. Gram Matrices of the radial basis function kernel evaluated on a uniform grid of
points of length 5000 with two hyperparameters for the length scale. The left panel
represent a Gram Matrix with l = 0.1. The right panel represent a Gram Matrix with
l = 2.

3 The King’s College Dataset 30

In this section, we provide further information about the King’s College Dataset 31

employed for the experiments within the main body of the paper. The Parkinson 32
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participants are labelled according to the following scores: the HYR score with a range 33

between 0 and 5 and then the UPDRS II-5 score and the UPDRS III-18 score. 34

The HYR score is known as the The Hoehn and Yahr Scale and was firstly published 35

in 1967 (see [1]) and is used to measure how Parkinson’s symptoms progress and the 36

level of disability. Stage 0 corresponds to less severe labelled as “ No signs of disease”, 37

while stage 5 the most severe given as “Needing a wheelchair or bedridden unless 38

assisted”. By considering the UPDRS II-5 score, the Parkinson’s participants are 39

classified in a range between 0 and 3 at maximum, particularly for the female patients, 2 40

are at a 0 stage level and 2 are at a 1 stage level. In the case of the sick male patients, 5 41

male patients are at a 0 stage level, 4 patients at 1 stage level, 2 patients at 2 stage level 42

and 1 patient at a 3 stage level. The top barplots of Fig. 3 represents a summary of the 43

described database. The barplots are separated by gender which is shown on the x-axis. 44

Note that the left barplot provides information about the healthy patients while the 45

right one about sick patients. The bottom barplots represent the number of ill patients 46

split according to their UPDRS II-5 score (which goes from 0 to 3 in the dataset). 47
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Fig 3. Barplots describing the participants of the considered case study. The upper
panel is divided in two separate barplots. The left show the number of healthy
participants of the datataset (controls) and the right one shows the number of sick
patients. The x-axis is split within both barplots between gender and the y-axis shows
the counts of the patients. The lower panel shows four different plots describing the sick
patients divided by UPDRS II-5 score. The left barplot shows the sick patients split by
gender with UPDRS II-5 score equal to 0. Then, from left to right, equivalent barplots
are presented with the UPDRS II-5 score increasing from 0 to 3, which is the maximum
assigned score for only one male patient. The x-axis is split between gender and the
y-axis shows the count of the patients.

4 The Fitting Procedure for The Estimation Model 48

Phase 49

In this section, the fitting procedure of the time series models is presented. Consider the
female case, for example. Denote the interpolated signals through a cubic spline for a
female Parkinsons’s voice as s̃(t)1 and for a healthy female voice as s̃(t)0, with
t ∈ [t0, . . . , tN ]. Hence, the 0 index refers to a female voice not affected by Parkinson’s,
while the 1 index refers to a female voice affected by it. An equivalent notation can be
considered for a male patient. The original voices are firstly split into segments of
length 5000. Therefore, the notation for one segment will become s̃(ti)0 and s̃(ti)1,
where i = 1, . . . , Nf are the indices referring to the segment number for one of the two
groups, i.e healthy or Parkinson female patients, respectively, and ti corresponds to an

March 26, 2023 4/12



input vector belonging to the following mesh

T =
[
t1, t2, . . . , tNf

]
= [[t1, . . . , t5000] , [t5001, . . . , t10000] , . . . , [tN−4999, . . . , tN ]]

Note that the same number of segments were randomly selected for the two classes of
healthy and sick patients. Select now the segments for the healthy female voice denoted
as s̃(ti)0, i = 1, . . . , Nf . The goal is to characterise their local structure through a
collection of scorings directly depending on the generative model inducing the data
generating process of such a speech type, i.e. healthy and female. To achieve this result,
one further splits each segment s̃(ti)0 into mini-batches of length 100 sample points
(corresponding to 2.2 ms). Therefore, one will have s̃(tji )0 with j = 1, . . . , 50 and
i = 1, . . . , Nf . We further redefine the mesh for the input variable set T referring to a
segment s̃(ti)0 as

ti = [t1i , . . . , t
50
i ]

= [[t1, . . . , t100]
i, [t101, . . . , t200]

i, . . . , [t4901, . . . , t5000]
i]

for i = 1, . . . , Nf . Note that, for each mini-batch s̃(tji )0, a set of ARIMA models given

in Table 1 will be fit without an intercept. Instead, for each mini-batch s̃(tji )1, only an
ARIMA(3,1,3) with intercept included will be fit. The main reason to do so is that a
mini-batch belonging to the sick patients hence s̃(tji )1 will have a much more complex
structure due to faster changes in the speech and, therefore, will require more
parameters to be efficiently detected. For a healthy mini-batch instead, all the models
given in the table will be fit. Remark that a general ARIMA model with parameters p
for the autoregressive model order, q for the moving-average model order and d
representing the number of differencing required to make the time series stationary, is
given as follows

α(B) (1−B)d s̃(tji )0 = β(B) w(tji )0

where B is a lag operator such that α(B) = 1− α1B − · · · − αpBp, 50

β(B) = 1 + β1B + · · ·+ βqB
q and w(tji )0 is white noise. The fitting procedure aims to 51

extract the Fisher score vector and hence deriving the Fisher kernel. 52
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ARIMA Model p q
M1 0 0
M2 1 0
M3 0 1
M4 1 1
M5 2 0
M6 2 1
M7 0 2
M8 1 2
M9 2 2
M10 3 0
M11 3 1
M11 3 2
M13 0 3
M14 1 3
M15 2 3

Table 1. Fitted ARIMA model for every sub-batch s̃(t)i,b0 with b = 1, . . . , 50. Note
that the sub-indices i and j corresponds to number of segments for the healthy and sick
patients, respectively, regardless the gender. Hence, for example, for the female case,
i, j = 1, . . . , Nf . The parameter d is omitted since it was set equal to 1 for each of the
model.

One has 15× 50×Nf fitted models in total for the healthy mini-batches, and the 53

intent is to identify the one that best describes the considered populations of segments, 54

hence the healthy female one. Note that an equivalent procedure will be carried for the 55

healthy male mini-batches. Instead, for the sick mini-batches, one will have 1× 50×Nf 56

fitted models. The same procedure is applied in the male case. 57

The fitting procedure for the healthy mini-batches is now introduced. Denote the
winning model as Mh?,i,j

0 , where h? is the h-th winning model across the 15 given in

Table 1 for each segment s̃(tji )0. To identify it, consider the Akaike information criterion

(AIC). Define AIC for every fitted model on every mini-batch s̃(tji )0 as follows

AICi,j,h0 = 2κi,j,h0 − 2L̂i,j,h0 ∀i, ∀j

where κi,j,h0 is the number of estimated parameters in the model and L̂i,j,h0 represents

the log-likelihood for model h computed for the mini-batch s̃(tji )0 over the input vector

tji defined as

L̂i,j,h0 = L(s̃(tji )0, t
j
i ; θ̂0) =

100∑
j=1

log `tji
(s̃(tji )0, t

j
i ; θ̂0)

Table 2 shows the AICs scores computed from the model fits obtained on all the 58

mini-batches for the healthy female population. The following step is to extract the best 59

model on every mini-batch amongst the 15 fitted models. By referring to Table 2, this 60

means that one model per row will be selected. 61
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Mini-batch M1 M2 .... M15

s̃(t)1,10 AIC1,1,1
0 AIC1,1,2

0
... AIC1,1,15

0

s̃(t)1,20 AIC1,2,1
0 AIC1,2,2

0
... AIC1,2,15

0

... ... ... ... ...

s̃(t)1,500 AIC1,50,1
0 AIC1,50,1

0
... AIC1,50,15

0

s(t)2,10 AIC2,1,1
0 AIC2,1,2

0
... AIC2,1,15

0

... ... ... ... ...

s̃(t)2,500 AIC2,50,1
0 AIC2,50,2

0
... AIC2,50,15

0

... ... ... ... ...

s̃(t)
Nf ,1

0 AIC
Nf ,1,1

0 AIC
Nf ,1,1

0
... AIC

Nf ,1,15

0

... ... ... ... ...

s̃(t)
Nf ,50

0 AIC
Nf ,50,1

0
AICNm,50,2

0
... AICNm,50,15

0

Table 2. Table summarising all the scorings collected for the mini-batches of the
female healthy population of patients, i.e. s̃(t)0. Note that an equivalent procedure will
be applied for the male case.

The best model Mh?
0 will be the one minimising the AIC and hence showing

AICh?,i,j
0 = min

h
AICi,j,h0 ∀ i, j

where h = 1, . . . , 15. Afterwards, the set of winners models for each s̃(tji )0 is identified
and given as{

Mh?,1,1
0 , . . . ,Mh?,1,50

0 ,Mh?,2,1
0 , . . . ,Mh?,2,50

0 , . . . ,M
h?,Nf ,1
0 , . . . ,M

h?,Nf ,50
0

}
The next step consists of selecting Nf winner models, hence one for every segment

s̃(ti)0 amongst its mini-batches s̃(tji )0 with j = 1, . . . , 50, and, therefore, the ones that
provides

AICh?,i,j
0 = min

j
AICh?,i,j

0 ∀ i

where i = 1, . . . , Nf . Hence, Nf winning models are selected fitted over the

mini-batches s̃(tji )0 as {
Mh?,1

0 ,Mh?,2
0 , . . . ,M

h?,Nf

0

}
Note that, in the above notation, the index of the mini-batches j is dropped since the 62

best model with respect to each segment i is selected. However, the reader should 63

remember that each selected model corresponds to the one fitted over the mini-batches 64

of length 100 samples. Hence, the best model for the segments i was selected amongst 65

the fitted models over the mini-batches j = 1, . . . , 50. In order to construct a weighted 66

Fisher score for the population of healthy female patients proposed in the texting 67

procedure, compute the proportion ρi0 reflecting the number of times a model Mh?,i
0 68

appeared within the set of winning models over the mini-batches as 69

ρi0 =

∣∣∣{Mh?,1,1
0 ,Mh?,1,2

0 , . . . ,Mh?,1,50
0 ,Mh?,2,1

0 , . . . ,M
h?,Nf ,50
0 ,

}
=Mh?,i

0

∣∣∣
Nf

∀ i (1)

Note that 0 ≤ ρi0 ≤ 1 for i = 1, . . . , Nf and
∑Nf

i=1 ρ
i
0 = 1. Therefore, from this fitting 70

model procedure, a set of Nf winning models and their associated proportion computed 71

as given above will be computed for the female healthy subjects. Remark that the same 72

practice will be applied for the case of the male healthy participants and a set of Nm 73

winning models will be extracted. 74

March 26, 2023 7/12



For the case of the sick female patients, the procedure goes exactly as the one 75

presented so far. However, the reader should bear in mind that, given the more 76

complexity of the speech signals associated with the presence of Parkison’s disease, then 77

only time series ARIMA model fitted to the mini-batches given as s̃(tij)1 for 78

j = 1, . . . , 50 and i = 1, . . . , Nf is a (3,1,3) ARIMA model with an intercept. Hence the 79

first step of model selection over the mini-batches will not be required. Furthermore, by 80

following such a procedure, the models for sick and healthy populations will be nested, 81

and the reference model will be the one of the sick patients indeed. In such a way, the 82

GLRT test will provide reliable results given the requirements of nested models. 83

Note that, the presented procedures consider the observed approximated original 84

signal, i.e. s̃(tij)0 and s̃(tij)1 with varying indices i and j depending on the different 85

families. The same procedures will be repeated on the IMFs, and the band-limited 86

IMFs and Fisher score vectors will be equivalently derived. Fig. 4 provides an overview 87

of the fitting procedure proposed for the healthy subjects. It starts with the healthy 88

patient voices on the left, presents the procedure to obtain the segments and then the 89

mini-batches. Afterwards, 15 ARIMA models as given in Table 1 are fitted to each 90

mini-batch. The following step selects the winning model over each mini-batch, and 91

then the model selection stage to then construct the Fisher score vectors is used in the 92

testing procedure. Indeed, the take out of the fitting procedure will be the winning 93

models for each population and their associated proportions. 94

The best model is chosen over the 50 mini-batches of a segment for every segment of 95

the healthy population (i.e. male or female). Then a collection of Fisher scores defined 96

in the following section will be given. The same procedure applies to the case of sick 97

patients; however, at the stage of the fit, there will be only one model considered. 98

The next step foresees the description of the testing procedure for the validation 99

model phase which will construct the GLRT test implemented with Fisher vectors for 100

detecting Parkinson’s disease. This is presented in the following sections. 101

Fig 4. Figure showing a diagram for the steps required for the testing procedure of the
model validation phase for the healthy subjects (controls).
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5 Testing Procedure for the Model Validation Phase 102

The testing procedure employed for the model validation phase of analysis is presented 103

in this section. In applying the validation analysis on the testing data, one uses the 104

models obtained from the training phase and evaluate them to the testing data to 105

calculate the test statistic for the GLRT. 106

In order to perform this evaluation there is a procedure undertaken which is 107

described in the remainder of this section. The objective is to obtain a unique Fisher 108

score computed by aggregating information coming from the set of Nf models for the 109

female case or Nm for the male case which are then subsequently used to conduct a 110

GLRT test with such a derived quantity. This will be done over the test mini-batches 111

for each participant that were not used in the training set of data. Consider the 112

following steps described for the female case as an example, the male case is analogous. 113

Consider a test segment denoted as s̃(ti)
ts, where the input variable ti corresponds 114

to a time index for the i-th segment of the interpolated speech of length 5000 samples. 115

This test segment is then further partitioned into what are termed mini-batches. In this 116

process, each s̃(ti)
ts is subsequently split into mini-batches of length 100 sample points 117

(corresponding to 2.2ms) and so this produces for each segment a collection of 118

mini-batches s̃(tji )
ts with j = 1, . . . , 50 and i = 1, . . . , Nf,test. 119

Based on the training stage, it will have produced Nf fitted models obtained from 120

the fitting procedure for both poluation samples, i.e. sick and healthy. Each of these 121

models is then evaluated on the constructed testing mini-batches. Note that there is no 122

re-fitting at this stage but just the evaluation of the testing data. Once that is obtained, 123

then the extraction of the Fisher score vectors is required. The procedure for the 124

computation of the Fisher score vector is given as follows. 125

Consider a test mini-batch denoted as s̃(tji )
ts. For simplicity of the notation and

without loss of generality, the index of the segment is dropped since the testing
procedure will be conducted at a mini-batch level. Hence, define the set of testing
mini-batches as s̃(tj)ts. Note that, there will Nf,t = Nf,test × 50 mini-batches per
participant in the female case. Hence the index j will vary as j = 1, . . . , Nf,t = 4450.
An equivalent reasoning applies in the male case where one will have
Nm,t = Nm,test × 50. The index for the extracted model from the fitting procedure will
be denoted as h0? = 1, . . . , Nf and h1? = 1, . . . , Nf , for the healthy and sick families,
respectively. Once evaluated the log-likelihood on the set of mini-batches of length 100
samples, then the Fisher scores for each model h0? and h1? will be computed for every
mini-batch j and will be given as follows:

U j

θ0 (100×κj,h0
?

0 )
= ∇θ0(L

j,h0
?

0 ) ∀ j, ∀h0?

U j

θ1 (100×κj,h1
?

1 )
= ∇θ0(L

j,h1
?

1 ) ∀ j, ∀h1?

Since the testing procedure will proceed equally on these two introduced Fisher scores,
the following notation is introduced

U j

θv (100×κj,hv
?

v )
= ∇θv(L

j,hv
?

v ) ∀ j, ∀hv?

where the index v = 0, 1. Note that the index j is in the right-hand side of the above
equation since the log-likelihood considered refers to model hv? evaluated on the
mini-batch j. Furthermore, the Fisher score is evaluated at each point of the sample, i.e.
the mini-batch j, where this score is a matrix (100× κi,j,h?

0 ), where 100 is the number of

samples of the mini-batch and κ
j,hv

?
0 is the number of parameters of the model evaluated

on that mini-batch given as

κ
j,hv

?
0 = p+ d+ 2
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To construct the Gram matrices required for the GLRT test, firstly the Fisher score is
centred as follows:

U j C

θv (100×κj,hv
?

v )
= Vᵀdiag


σ̂1,1 .. ..
.. σ̂1,1 ..
.. .. ..
.. .. σ̂κ,κ


−1

V ∀ j, ∀hv?

where

V =

[
U j

θv (100×κj,hv
?

v )
(t)− µ̂Uj

θv
(t)

]
µ̂Uj

θv

=

100∑
t=1

U j

θv (100×κj,hv
?

0 )
(t, :) ∀ j, ∀hv?

[
σ̂Uj

θv

]
s
=

√(
U i

θ0 (100×κi,hv
?

v )
(t, :) − µ̂Uj

θ0

(t, :)

)2

100
∀ j, ∀hv?

Note that µ̂Uj
θv

represents the sample mean and
[
σ̂Uj

θv

]
s
represent sample standard

deviation estimates of the Fisher score, respectively and are computed over the 100

samples of the mini-batch j linked to its log-likelihood Lj,h
v
?

v , for every MLE estimate.
For simplicity, in the notation of the sample mean and sample standard deviation
estimates, the dimensionality of the Fisher score is dropped. To avoid ambiguity, within
the standard deviation formulation, taken over the columns of the Fisher score, i.e. on
the 100 samples for each MLE estimate, and highlight that this calculus is done over the
column and not over the entire matrix, t(:) has been introduced. The following step
consists of summing up the evaluated Fisher score over the 100 samples for each
parameter and hence obtaining

U j, C

θv (1×κj,hv
?

v )
=

100∑
t=1

U j C

θv (100×κj,hv
?

v )
(t) ∀ j, ∀hv?

The left-hand side of the above Fisher score is now of dimension (1× κj,h
v
?

b ) and does
not depend on t anymore. This is because the gradients previously evaluated for each
parameter at the values t of the given mini-batch s̃(tij)

test are now summed up together
over the vector t and, therefore, a Fisher score vector evaluated at the MLE estimates is
now obtained. However, the important step in this construction is that these Fisher
scores are centered across the dimension t. Also, the centring indicator has been
dropped on the left-hand side, but the reader should bear in mind that these Fisher
vectors have been centered for computational stability reasons. Remark now that each
mode hv? corresponds to a winning model extracted from the fitting procedure and that
the models differ amongst them. They carry the same order in the case of sick patients,
i.e. always a (3,1,3) ARIMA model, but in the case of the healthy patients, these
models dfferet between them. Each Fisher score vector has, therefore, a different
dimension. To construct a unique Fisher score, the obtained Fisher score vectors are
modified by padding zeros within the vector up to the number of maximum possible
parameters, being 3 + 3 + 2 = 8. However, the vector will be ordered in terms of the
comprised parameter and formally given

T = [δ, α1, α2, α3, β1, β2, β3]

where, in order, δ is the intercept of the ARIMA fitted model, α1, α2, α3 are the AR
parameters and β1, β2, β3 the MA paramters. Define now a padding operator given as O
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given as

U
j,hv

?

θv (1×κ) = O

[
U j, C

θv (1×κj,hv
?

v )

]
∀ j, ∀hv?

such that it will return a Fisher vector zero-padded for the elements of T in
U i

θv (1×κj,hv
?

v )
that are not present. Hence, this new Fisher vector and will always be of

dimension (1× κ) with κ = 8. Note that, for the healthy category, the intercept position
will always be zero by construction. Note that the index for the model hv? is now on the
left-hand side. Now, at this point, one will have one Fisher score vector of dimension
(1× κ) for every population v = 0, 1, every mini-batch j = 1, . . . , Nf,t, every model hv?.
To aggregate the information related to every model evaluated on the testing data and
hence capturing structural properties provided by the Fisher vector, for every
mini-batch, all the Fisher vectors from every model will be summed up together as

Ũ j
θv

=

Nf∑
hv
?=1

ρ
hv
?
v U

j,hv
?

θv (1×κ) ∀j

where ρ
hv
?
v is the proportion computed in Eq. 1 since each Fisher score is weighted

according to the proportion of the winning times of that model. Note that in the fitting
procedure explanation this was denoted as ρiv and i = 1, . . . , Nf corresponded to the
number of models extracted on a mini-batch which provided the best fit and, therefore,
i and h? indicates the same quantity. Next, the Gram matrix for the mini-batch s̃(tji )v
will be defined as

K̃j
v (κ×κ) = Ũ

j ᵀ
θv
Ũ j
θv

for j = 1, . . . , Nf,t

To regularise the above matrix due to computational instability that could lead to issues
encountered with the inversion of such a matrix or the log-determinant, a covariance
shrinkage estimator was considered. The covariance shrinkage estimator of K̃j

v (κ×κ) is

given by
K̃j S
v (κ×κ) = (1− γ) K̃j

v (κ×κ) + γ Q Iκ κ

where γ is some shrinkage factor, Iκ is the identity matrix of dimension κ and the
matrix Q is given as

Q =
tr
[
K̃j
v (κ×κ)

]
κ

Once this is derived, then the GLRT test can be computed for every testing
mini-batch j for female case (as for the male ones) as follows:

L̂ = −(Ũ j
θ0
)
(
K̃j S

0

)−1

(Ũ j
θ0
)ᵀ − log

(
det
[
K̃j S

0

])
+(Ũ j

θ1
)
(
K̃j S

1

)−1

(U j
θ1
)ᵀ + log

(
det
[
K̃j S

1

])
In practice, the Generalised Likelihood Ratio Test is evaluated for Fisher score vectors 126

derived from the winning models of the testing set segments with the constructed Gram 127

matrices obtained through the fitting procedure. Fig. ?? in the main body of the paper 128

provides a diagram summarising the steps required for the testing procedure. It is 129

applied to one testing mini-batch and then will be repeated on each of the remaining 130

testing mini-batches. As presented, each model for the two categories of participants 131

will be evaluated on the given mini-batch. Afterwards, according to the steps 132

introduced above, the two Fisher score vectors will be derived by aggregating the 133

individual Fisher scores evaluated with the different model parameters and will provide 134

Ũ j
0 and Ũ j

1 . At that point, the Gram Matrices evaluated on that mini-batch can be 135
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computed, and the GLRT test will be then calculated. This process will be repeated for 136

each mini-batch and every patient. Results are provided in the main paper, where the 137

proportion of mini-batches failing to reject the null hypothesis, i.e. being sick, will be 138

shown. The GLRT test will be evaluated for system model one on the approximated 139

signal, while, for the other two system models, the same procedure will be conducted on 140

the first three IMFs. 141
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