Supplement of Multivariate Genome-wide Association Analysis by Iterative Hard Thresholding

April 12, 2023

1 Supplementary Materials

1.1 SNPs Discovered by the UKB Analysis

Tables [1](#page-1-0)[-5](#page-4-0) list the SNPs discovered by our 3-trait UK Biobank analysis. For our 18-trait analysis the selected SNPs are too numerous to list. However, all result can be accessed from our software page. Table [6](#page-5-0) lists the proportion of variance explained for the 18 traits. The reported effect sizes correspond to the predictors of the log-transformed and standardized traits. To compare against previous studies, we searched the NHGRI-EBI GWAS catalog [\[3\]](#page-13-0) using the R package gwasrapidd [\[4\]](#page-13-1). For each SNP discovered by IHT, we queried a 1Mb radius for other SNPs that have been previously associated with the given trait with p value < 5×10^{-8} . Each known association is defined by the most significant SNP in the gene or region associated with the trait. SNPs that have been mapped in the GWAS catalog are listed along with their genes. All 13 pleiotropic SNPs were previously known, and 158 out of 171 independent SNPs were previously known. Among the 13 newly discovered associations, three were with SBP and 10 were with DBP.

SNP	chr	pos	BMI	SBP	DBP	# prior report	mapped genes
rs1801131		11854476	0.0	0.009	0.008	41	MTHFR
rs17367504	1	11862778	0.0	0.02	0.019	41	MTHFR
rs16998073	$\overline{4}$	81184341	0.0	-0.023	-0.023	24	FGF5, PRDM8
rs1173727	5	32830521	0.0	0.016	0.017	19	LINC02120, NPR3
rs2307111	5	75003678	0.013	0.0	-0.01	34	POC ₅
rs6902725	6	152370868	0.0	-0.009	0.01	4	
rs11977526	7	46008110	0.0	0.013	-0.011	6	FTLP15, IGFBP3
rs2071518	8	120435812	0.0	-0.008	0.009	6	CCN ₃
rs11222084	11	130273230	0.0	-0.011	0.009	9	ZBTB44-DT
rs3184504	12	111884608	0.0	-0.011	-0.018	41	SH ₂ B ₃ , ATXN ₂
rs365990	14	23861811	0.0	0.008	-0.011	6	MYH6
rs7497304	15	91429176	0.0	-0.019	-0.018	14	FES
rs77870048	16	69965021	0.0	-0.011	0.01	20	WWP2

Table 1: 13 pleiotropic SNPs selected by IHT listed with their effect sizes and sorted by their position on the chromosomes. An effect size of 0 means the particular predictor was not selected. The field *prior reports* records the number of SNPs previously associated with BMI, SBP, or DBP (p value < 10^{-8}) that are within 1Mb of the given SNP. BMI = body mass index; SBP = systolic blood pressure; DBP = diastolic blood pressure.

covariate	BMI	SBP	DBP
intercept	0.0002	-0.0	0.0003
sex	0.1165	0.1639	0.1808
age	0.1073	-0.1395	0.6484
age^2	-0.0505	0.4581	-0.6131
PC ₁	-0.0287	-0.0066	-0.0074
PC2	0.0052	-0.0077	-0.0011
PC ₃	0.0174	0.0043	-0.0091
PC ₄	-0.0019	-0.0055	0.0015
PC ₅	0.0022	0.0137	0.0167
PC ₆	-0.0165	-0.0067	-0.0056
PC7	-0.003	-0.0038	-0.0078
PC ₈	-0.0014	-0.0015	-0.0014
PC ₉	0.0039	-0.0004	0.0017
PC10	0.0068	0.0005	0.0001

Table 2: Non-genetic covariates estimated by IHT listed with their effect sizes. These variables were not subject to sparsity projection. PC is short for principal component. BMI = body mass index, SBP = systolic blood pressure, and DBP = diastolic blood pressure.

Table 3: 38 SNPs associated with BMI independently of SBP and DBP listed with their effect sizes and sorted by their position on the chromosomes. The field *prior reports* records the number of GWAS Catalog associations w the given SNP.

SNP	chr	pos	β	# prior reports	mapped genes	SNP	chr	pos	β	# prior reports	mapped genes
rs3936009	$\mathbf{1}$	1585642	0.009			rs12673516	τ	40432219	0.01	\mathcal{F}	
rs1757915	-1	56615809	-0.009	$\overline{4}$	RPSAP20, LINC01755	rs2282978	τ	92264410	0.016	$\overline{4}$	CDK ₆
rs6684353		59638619	0.011	$\sqrt{2}$		rs2392929	τ	106414069	-0.027	5	LINC02577, CCDC71L
rs12069946	-1	67045928	-0.009	$\overline{2}$		rs2978456	8	42324765	-0.01		
rs2820441		219734960	0.009		LYPLAL1-AS1, ZC3H11B	Affx-32837790	8	95272605	-0.009	3	
rs1522484	$\mathfrak{2}$	19708967	0.016	3		rs35758124	8	141048964	-0.01	$\overline{2}$	
rs9306894	2	20878105	0.009	$\overline{4}$	GDF7	rs10757278	9	22124477	-0.01	3	CDKN2B-AS1
rs55654088	2	85499562	-0.01	$\overline{4}$		rs10986626	9	127948321	-0.009	5	
rs13002573	$\mathfrak{2}$	164915208	0.012	13	intergenic	rs12258967	10	18727959	0.009	10	CACNB ₂
rs560887	2	169763148	0.011		SPC25, G6PC2	rs1908339	10	75843100	0.01		
rs10497529	2	179839888	0.011	3	CCDC141	rs11191064	10	103367824	0.009	6	
rs1052501	3	41925398	0.02	6	ULK4	rs11598702	10	104897985	-0.011	17	
rs2498323	$\overline{4}$	3451109	-0.008	3	HGFAC	rs4980389	11	1892585	-0.009	14	LSP1
rs776590	$\overline{4}$	48591150	0.008	\overline{c}		rs573455	11	117267884	-0.014	6	CEP164
rs17084051	$\overline{4}$	55087581	-0.01	3	RPL22P13	rs10750441	11	130469044	0.01	3	BAK1P2, MIR8052
rs1229984	4	100239319	0.009		ADH1B	rs10770612	12	20230639	0.012	9	LINC02398
rs6842241	4	148400819	-0.008	$\mathbf{2}$	EDNRA, PRMT5P1	rs2681492	12	90013089	0.011	21	ATP2B1
rs4690974	$\overline{4}$	156393641	-0.01	$\overline{9}$	MTND1P22	rs12882307	14	36320639	0.009		
rs13116200	$\overline{4}$	169702511	-0.01	$\sqrt{2}$		rs4903064	14	73279420	-0.01	5	DPF3
rs7715779	5	32690199	0.007	12	NPR ₃	rs956006	15	62808539	0.009		TLN ₂
rs1173771	5	32815028	0.005	12	LINC02120, NPR3	rs34862454	15	75101530	-0.012	14	LMAN1L, CSK
rs1982192	5	71540604	0.009	Novel		rs3803716	16	24802325	0.008	3	
rs2303720	5	122682334	0.011	6	CEP120	rs4888372	16	75313485	0.01	6	RNU6-758P, BCAR1
rs11954193	5	158256118	0.01	13	EBF1	rs60675007	16	83018052	0.008	\overline{c}	
rs12198986	6	7720059	-0.008		BMP ₆	rs9889363	17	6524298	-0.011	6	
rs9349379	6	12903957	0.012	5	PHACTR1	rs185478092	17	40366653	-0.01	Novel	
rs385306	6	31681160	0.011	$\overline{7}$		rs3744760	17	43195981	-0.01	9	PLCD3
rs12191865	6	56014006	-0.014	3		rs17608766	17	45013271	-0.013	3	GOSR2
rs1012257	6	56089507	-0.009	$\mathbf{3}$		rs9909933	17	46280232	0.009		
rs9689048	6	73465420	0.009	Novel		rs35688424	17	60769406	-0.011	8	
rs2221389	6	159719183	-0.012			rs67882421	18	43129717	-0.012		
rs9505897	6	169646751	-0.01			rs12459507	19	2224387	-0.009	6	DOT1L
rs57301765	7	19052733	-0.014	2	TWIST1, HDAC9	rs34328549	19	7253184	0.007	8	INSR

Table 4: 66 SNPs associated with SBP independently of BMI and DBP listed with their effect sizes and sorted by their position on the chromosomes. The field *prior reports* records the number of GWAS Catalog associations w the given SNP. A novel SNP is not within 1Mb of any GWAS Catalog associations.

Table 5: 67 SNPs associated with DBP independently of BMI and SBP listed with their effect sizes and sorted by their positions on the chromosomes. The field *prior reports* records the number of GWAS Catalog associations with DBP (p value < ¹⁰−⁸) that are within 1Mb of the given SNP. A novel SNP is not within 1Mb of any GWAS Catalog associations.

Table 6: The estimated Proportion of phenotypic variance explained (PVE) for each of the 18 traits in the UK Biobank analysis.

1.2 IHT on LD-Pruned Genotypes

In Figure 1 of the main text, we compared the false positive counts of IHT, CCA, and mvLMM. Similar to Table 1 in the main text, we also computed the power for detecting independent and pleiotropic SNPs in these simulations. These results are presented in Figure [1.](#page-6-0)

1.3 Additional Simulation Studies for IHT

In the main text, our simulation study explores the situation where causal SNPs are shared roughly equally among all traits. This is a reasonable assumption because we expect most multivariate GWAS to be conducted on similar traits, which are expected to share a similar number of causal variants. However, in practice, researchers may confront both highly polygenic traits along with very non-polygenic traits.

Here we describe a simulation study with three traits, where each trait is perturbed by 10, 100, or 1000 causal SNPs, respectively. We use $n = 10,000$ unrelated subjects from the UK Biobank and restrict analysis to a genotype matrix constructed from 29,481 SNPs on chromosome 10. Traits $Y_{r\times 10000}$ are simulated just as in our main simulation study. We ignore the genetic relationship matrix since related subjects have been

Figure 1: Power comparison for independent (top 4) and pleiotropic (bottom 4) SNPs evaluated on LD-pruned genotypes that are in increasing linkage equilibrium. The x-axis corresponds to filtering the original NFBC chr1 genotypes at different pairwise correlation cutoffs, a smaller value means more aggressive pruning.

	Power	FDR
Trait 1 ($k = 10$)	0.417	0.408
Trait 2 ($k = 100$)	0.316	0.385
Trait 3 ($k = 1000$)	0.250	0.362
Overall	0.258	0.366

Table 7: Multivariate IHT analyzing three simulated traits of different polygenicity. The three traits have 10, 100, and 1000 causal SNPs.

filtered out. In summary,

$$
\mathbf{Y}_{3\times n} \sim \text{MatrixNormal}(\mathbf{B}_{3\times p}\mathbf{X}_{p\times n}, \Sigma_{3\times 3}, \mathbf{I}_{n\times n}).
$$

For the *r*th trait, $r \in \{1,2,3\}$, the effect sizes of the causal SNPs $j \in S_{r,\text{causal}}$ are Gaussian deviates $\beta_j \sim$ $N(0,0.1)$ with $|S_{1,causal}| = 10$, $|S_{2,causal}| = 100$, and $|S_{3,causal}| = 1000$. The causal SNP indices are chosen uniformly across the chromosome. The covariance between traits, $\Sigma_{3\times 3}$, is generated as in our main simulation.

Table [7](#page-7-0) reports the power and false discovery rate (FDR) for each trait separately, along with the overall power and FDR. Observe that FDR decreases as the number of causal SNPs *k* increases. Notably mIHT tends to select more SNPs than needed for a less polygenic trait if it is analyzed in unison with a highly polygenic trait. Obviously, this bias improves if we increase sample size or true effect sizes. Overall, these results suggest that one must be careful in analyzing multiple traits of vastly different polygenicity.

1.4 Loglikelihood

Consider multivariate linear regression with *r* traits under a Gaussian model. Up to a constant, the loglikelihood for the response vector y_i of subject *i* can be written

$$
\mathcal{L}_i(\mathbf{B}, \mathbf{\Gamma}) = \frac{1}{2} \log(\det \mathbf{\Gamma}) - \frac{1}{2} (\mathbf{y}_i - \mathbf{B} \mathbf{x}_i)^T \mathbf{\Gamma} (\mathbf{y}_i - \mathbf{B} \mathbf{x}_i)
$$

=
$$
\frac{1}{2} \log(\det \mathbf{\Gamma}) - \frac{1}{2} \text{tr}[\mathbf{\Gamma} (\mathbf{y}_i - \mathbf{B} \mathbf{x}_i) (\mathbf{y}_i - \mathbf{B} \mathbf{x}_i)^T],
$$

where **B** is the $r \times p$ matrix of regression coefficients, \mathbf{x}_i is the $p \times 1$ vector of predictors, and $\mathbf{\Gamma}$ is the $r \times r$ unstructured precision (inverse covariance) matrix. For *n* independent subjects, let **Y** be the $r \times n$ matrix with *i*th column y_i and let **X** be the $p \times n$ design matrix with *i*th column x_i . Then the loglikelihood for all subjects is

$$
\mathcal{L}(\mathbf{B}, \mathbf{\Gamma}) = \sum_{i=1}^{n} \left\{ \frac{1}{2} \log(\det \mathbf{\Gamma}) - \frac{1}{2} \text{tr}[\mathbf{\Gamma}(\mathbf{y}_i - \mathbf{B}\mathbf{x}_i)(\mathbf{y}_i - \mathbf{B}\mathbf{x}_i)^T] \right\}
$$

\n
$$
= \frac{n}{2} \log(\det \mathbf{\Gamma}) - \frac{1}{2} \text{tr}[\mathbf{\Gamma} \sum_{i=1}^{n} (\mathbf{y}_i - \mathbf{B}\mathbf{x}_i)(\mathbf{y}_i - \mathbf{B}\mathbf{x}_i)^T]
$$

\n
$$
= \frac{n}{2} \log(\det \mathbf{\Gamma}) - \frac{1}{2} \text{tr}[(\mathbf{\Gamma}(\mathbf{Y} - \mathbf{B}\mathbf{X})(\mathbf{Y} - \mathbf{B}\mathbf{X})^T].
$$

In subsequent sections we will present both full and block ascent IHT. The former updates B and Γ simultaneously. The latter alternates updates of B and Γ , holding the other parameter block fixed.

1.5 First Directional Derivative

Recall that the Hadamard's semi-directional derivative $[1, 2]$ $[1, 2]$ $[1, 2]$ of a function $f(x)$ in the direction **v** is defined as the limit

$$
d_{\mathbf{v}}f(\mathbf{x}) = \lim_{\substack{h \to 0 \\ \mathbf{w} \to \mathbf{v}}} \frac{f(\mathbf{x} + h\mathbf{w}) - f(\mathbf{x})}{h}.
$$

To calculate the directional derivative of the loglikelihood (eq 1 in main text), we perturb \bf{B} in the direction \bf{U} and Γ in the symmetric direction V. The sum and product rules then give

$$
d_{(\mathbf{U},\mathbf{V})} \text{tr}[\mathbf{\Gamma}(\mathbf{Y}-\mathbf{B}\mathbf{X})(\mathbf{Y}-\mathbf{B}\mathbf{X})^T]
$$

= tr[\mathbf{V}(\mathbf{Y}-\mathbf{B}\mathbf{X})(\mathbf{Y}-\mathbf{B}\mathbf{X})^T] - tr[\mathbf{\Gamma}(\mathbf{Y}-\mathbf{B}\mathbf{X})\mathbf{X}^T\mathbf{U}^T + \mathbf{\Gamma}\mathbf{U}\mathbf{X}(\mathbf{Y}-\mathbf{B}\mathbf{X})^T].

The directional derivative $d_{\bf V}$ log det($\bf \Gamma$) = tr($\bf \Gamma^{-1}$ $\bf V$) is derived in Example 3.2.6 of [\[2\]](#page-13-3). The trace properties $tr(CD) = tr(DC)$ and $tr(C^T) = tr(C)$ consequently imply

$$
d_{(\mathbf{U},\mathbf{V})}\mathcal{L}(\mathbf{B},\boldsymbol{\Gamma}) = \frac{n}{2}\text{tr}(\boldsymbol{\Gamma}^{-1}\mathbf{V}) - \frac{1}{2}\text{tr}[(\mathbf{Y}-\mathbf{B}\mathbf{X})(\mathbf{Y}-\mathbf{B}\mathbf{X})^T\mathbf{V}] + \text{tr}[\mathbf{X}(\mathbf{Y}-\mathbf{B}\mathbf{X})^T\mathbf{U}].
$$
 (1.1)

.

Because this last expression is linear in (U, V) , the loglikelihood is continuously differentiable.

1.6 Second Directional Derivative

Now we take the directional derivative of the directional derivative [\(1.1\)](#page-7-1) in the new directions \tilde{U} and \tilde{V} . This action requires the inverse rule $d_{\tilde{V}} \Gamma^{-1} = -\Gamma^{-1} \tilde{V} \Gamma^{-1}$ proved in Example 3.2.7 of [\[2\]](#page-13-3). Accordingly, we find

$$
d_{(\tilde{\mathbf{U}}, \tilde{\mathbf{V}})} \frac{n}{2} \text{tr}(\mathbf{\Gamma}^{-1} \mathbf{V}) = -\frac{n}{2} \text{tr}(\mathbf{\Gamma}^{-1} \tilde{\mathbf{V}} \mathbf{\Gamma}^{-1} \mathbf{V})
$$

We also calculate

$$
d_{(\tilde{\mathbf{U}}, \tilde{\mathbf{V}})}\left[-\frac{1}{2} \text{tr}[(\mathbf{Y} - \mathbf{B}\mathbf{X})(\mathbf{Y} - \mathbf{B}\mathbf{X})^T \mathbf{V}]\right] = \frac{1}{2} \text{tr}[(\mathbf{Y} - \mathbf{B}\mathbf{X})\mathbf{X}^T \tilde{\mathbf{U}}^T \mathbf{V}] + \frac{1}{2} \text{tr}[\tilde{\mathbf{U}}\mathbf{X}(\mathbf{Y} - \mathbf{B}\mathbf{X})^T \mathbf{V}]
$$

and

$$
d_{(\tilde{\mathbf{U}}, \tilde{\mathbf{V}})} tr[\mathbf{X}(\mathbf{Y}-\mathbf{B}\mathbf{X})^T \mathbf{\Gamma} \mathbf{U}] = tr[\mathbf{X}(\mathbf{Y}-\mathbf{B}\mathbf{X})^T \tilde{\mathbf{V}} \mathbf{U}] - tr(\mathbf{X}^T \tilde{\mathbf{U}}^T \mathbf{\Gamma} \mathbf{U} \mathbf{X}).
$$

Finally, setting the two directions equal so that $\tilde{V} = V$ and $\tilde{U} = U$ produces the quadratic form

$$
Q(\mathbf{U}, \mathbf{V}) = -\frac{n}{2} \text{tr}[\mathbf{\Gamma}^{-1} \mathbf{V} \mathbf{\Gamma}^{-1} \mathbf{V}] + \frac{1}{2} \text{tr}[(\mathbf{Y} - \mathbf{B} \mathbf{X}) \mathbf{X}^T \mathbf{U}^T \mathbf{V}] + \frac{1}{2} \text{tr}[\mathbf{U} \mathbf{X} (\mathbf{Y} - \mathbf{B} \mathbf{X})^T \mathbf{V}] + \text{tr}[\mathbf{X} (\mathbf{Y} - \mathbf{B} \mathbf{X})^T \mathbf{V} \mathbf{U}] - \text{tr}(\mathbf{X}^T \mathbf{U}^T \mathbf{\Gamma} \mathbf{U} \mathbf{X}).
$$
\n(1.2)

generated by the second differential.

1.7 Extraction of the Gradient and Expected Information

To extract the gradient from a directional derivative, we recall the identity $d_v f(x) = \nabla f(x)^T v$ for vectors v and **x** and the identity $tr(A^T B) = vec(A)^T vec(B)$ for matrices **A** and **B** [\[5\]](#page-13-4). The first identity shows that the directional derivative is the inner product of the gradient with respect to the direction v. The second displays the trace function as an inner product on dimensionally identical matrices. Thus, the matrix directional derivative is

$$
d_{\mathbf{V}}f(\mathbf{X}) = \text{vec}[\nabla f(\mathbf{X})]^T \text{vec}(\mathbf{V}) = \text{tr}[\nabla f(\mathbf{X})^T \mathbf{V}]. \tag{1.3}
$$

Inspection of the directional derivative (1.1) now leads to the gradient with blocks

$$
\nabla_{\mathbf{B}} \mathcal{L}(\mathbf{B}, \mathbf{\Gamma}) = [\mathbf{X}(\mathbf{Y} - \mathbf{B}\mathbf{X})^T \mathbf{\Gamma}]^T = \mathbf{\Gamma}(\mathbf{Y} - \mathbf{B}\mathbf{X})\mathbf{X}^T
$$
(1.4)

$$
\nabla_{\mathbf{\Gamma}} \mathcal{L}(\mathbf{B}, \mathbf{\Gamma}) = \frac{n}{2} \mathbf{\Gamma}^{-1} - \frac{1}{2} (\mathbf{Y} - \mathbf{B} \mathbf{X}) (\mathbf{Y} - \mathbf{B} \mathbf{X})^T.
$$
 (1.5)

Analogously, the quadratic form (1.2) implicitly defines the Hessian **H** through the identity

$$
Q(\mathbf{U}, \mathbf{V}) = tr \left\{ \left[vec(\mathbf{U})^T \quad vec(\mathbf{V})^T \right] \begin{pmatrix} \mathbf{H}_{BB} & \mathbf{H}_{BT} \\ \mathbf{H}_{TB} & \mathbf{H}_{TT} \end{pmatrix} \begin{bmatrix} vec(\mathbf{U}) \\ vec(\mathbf{V}) \end{bmatrix} \right\}
$$

$$
= -\frac{n}{2} tr \left[\mathbf{\Gamma}^{-1} \mathbf{V} \mathbf{\Gamma}^{-1} \mathbf{V} \right] + \frac{1}{2} tr \left[(\mathbf{Y} - \mathbf{B} \mathbf{X}) \mathbf{X}^T \mathbf{U}^T \mathbf{V} \right]
$$

$$
+ \frac{1}{2} tr \left[\mathbf{U} \mathbf{X} (\mathbf{Y} - \mathbf{B} \mathbf{X})^T \mathbf{V} \right] + tr \left[\mathbf{X} (\mathbf{Y} - \mathbf{B} \mathbf{X})^T \mathbf{V} \mathbf{U} \right] - tr(\mathbf{X}^T \mathbf{U}^T \mathbf{\Gamma} \mathbf{U} \mathbf{X}).
$$

Because $E(Y) = BX$, the expected information $J = E(-H)$ has the off-diagonal blocks $J_{B,\Gamma} = \mathbf{0}_{pr \times r^2}$ and $J_{\Gamma,B} = 0$ _{r²×*pr*}. Now the Kronecker product identity vec(ABC) = (C^T ⊗A) vec(B) implies

tr(
$$
\mathbf{X}^T \mathbf{U}^T \mathbf{\Gamma} \mathbf{U} \mathbf{X}
$$
) = tr($\mathbf{X} \mathbf{X}^T \mathbf{U}^T \mathbf{\Gamma} \mathbf{U}$)
\t= tr[($\mathbf{\Gamma} \mathbf{U} \mathbf{X} \mathbf{X}^T$)^TU]
\t= vec($\mathbf{\Gamma} \mathbf{U} \mathbf{X} \mathbf{X}^T$)^T vec(\mathbf{U})
\t= [($\mathbf{X} \mathbf{X}^T \otimes \mathbf{\Gamma}$) vec(\mathbf{U})]^T vec(\mathbf{U})
\t= vec(\mathbf{U})^T($\mathbf{X} \mathbf{X}^T \otimes \mathbf{\Gamma}$) vec(\mathbf{U}).

It follows that $J_{BB} = XX^T \otimes \Gamma$. Similarly,

$$
\begin{array}{rcl}\n\text{tr}(\mathbf{\Gamma}^{-1}\mathbf{V}\mathbf{\Gamma}^{-1}\mathbf{V}) & = & \left[(\mathbf{\Gamma}^{-1} \otimes \mathbf{\Gamma}^{-1}) \, \text{vec}(\mathbf{V}) \right]^T \text{vec}(\mathbf{V}) \\
& = & \text{vec}(\mathbf{V})^T [\mathbf{\Gamma}^{-1} \otimes \mathbf{\Gamma}^{-1}] \, \text{vec}(\mathbf{V}),\n\end{array}
$$

so that $J_{\Gamma\Gamma} = \Gamma^{-1}\otimes \Gamma^{-1}$. In summary, the expected information matrix takes the block diagonal form

$$
\mathbf{J} = \begin{pmatrix} (\mathbf{X}\mathbf{X}^T) \otimes \mathbf{\Gamma} & \mathbf{0} \\ \mathbf{0} & \mathbf{\Gamma}^{-1} \otimes \mathbf{\Gamma}^{-1} \end{pmatrix} . \tag{1.6}
$$

In our projected steepest ascent algorithm, the expected information matrix is never explicitly formed. It is implicitly accessed in the step-size calculation through the associated quadratic form $Q(\mathbf{B},\mathbf{\Gamma})$.

1.8 Full IHT Step Size

Let (B, Γ) be the matrix of regression coefficients and variance components obtained by horizontally contatentaing $\Gamma \in \mathbb{R}^{r \times r}$ to $\mathbf{B} \in \mathbb{R}^{r \times p}$. The next iterate in full IHT is the projection of the point

$$
\Delta_{m+1} = (\mathbf{B}_m, \mathbf{\Gamma}_m) + t_m \nabla \mathcal{L}(\mathbf{B}_m, \mathbf{\Gamma}_m) = (\mathbf{B}_m, \mathbf{\Gamma}_m) + t_m(\mathbf{C}_m, \mathbf{W}_m), \qquad (1.7)
$$

where $C_m = \nabla_B \mathcal{L}$ and $W_m = \nabla_{\Gamma} \mathcal{L}$ evaluated at (B_m, Γ_m) . The loglikelihood along the ascent direction is a function of the scalar t_m and can be approximated by the second-order expansion

$$
\mathcal{L}(\Delta_{m+1}) \approx \mathcal{L}(\mathbf{B}_m, \mathbf{\Gamma}_m) + t_m \text{tr}\left[(\mathbf{C}_m, \mathbf{W}_m)^T (\mathbf{C}_m, \mathbf{W}_m) \right] - \frac{t_m^2}{2} \text{tr}\left[(\mathbf{C}_m, \mathbf{W}_m)^T \mathbf{J} (\mathbf{B}_m, \mathbf{\Gamma}_m) (\mathbf{C}_m, \mathbf{W}_m) \right].
$$

The choice

$$
t_m = \frac{\text{tr}\left[(\mathbf{C}_m, \mathbf{W}_m)^T (\mathbf{C}_m, \mathbf{W}_m) \right]}{\text{tr}\left[(\mathbf{C}_m, \mathbf{W}_m)^T J (\mathbf{B}_m, \mathbf{\Gamma}_m) (\mathbf{C}_m, \mathbf{W}_m) \right]} = \frac{\| (\mathbf{C}_m, \mathbf{W}_m) \|^2_F}{\text{tr}(\mathbf{X}^T \mathbf{C}_m^T \mathbf{\Gamma}_m \mathbf{C}_m \mathbf{X}) + \frac{m}{2} \text{tr}(\mathbf{\Gamma}_m^{-1} \mathbf{W}_m \mathbf{\Gamma}_m^{-1} \mathbf{W}_m)}
$$

maximizes the approximation. If the support of the matrix (B, Γ) does not change under projection, then this IHT update is particularly apt.

1.9 IHT Projection

Recall that full IHT iterates according to

$$
(\mathbf{B}_{m+1},\mathbf{\Gamma}_{m+1}) = P_{S_k}(\boldsymbol{\Delta}_{m+1}),
$$

where ∆*m*+¹ is derived in equation [\(1.7\)](#page-10-0). Here *k* is a positive integer representing the sparsity level, which is assumed known. In practice *k* is found through cross-validation. The projection $P_{S_k}(\Delta)$ splits into separate projections for B and Γ. One can independently project each row of B to sparsity. Alternatively, one can require each row of B to have the same sparsity pattern if the same set of predictors plausibly contribute to all *r* traits. The Γ projection must preserve symmetry and positive semidefiniteness. Symmetry is automatic because the gradient of Γ is already symmetric. To project to positive semidefiniteness, one takes the singular value decomposition of Γ and project its eigenvalues λ to nonnegativity. One can even project Γ to the closest positive definite matrix with an acceptable condition number [\[6\]](#page-14-0).

1.10 The Block Ascent IHT

In block ascent we alternate updates of **B** and Γ . The exact update (eq 4 of main text) of Γ is particularly convenient, and we take advantage of it. Symmetry and positive semidefiniteness are automatically preserved. Inversion can be carried out via Cholesky factorization of Γ . This choice of Γ simplifies the step length

$$
t_m = \frac{\|\mathbf{C}_m\|_F^2}{\text{tr}(\mathbf{X}^T \mathbf{C}_m^T \mathbf{\Gamma} \mathbf{C}_m \mathbf{X})}.
$$

Note that the denominator of the step size does not require formation of the $n \times n$ matrix $X^T C_m^T \Gamma C_m X$. One can write $tr(\mathbf{X}^T \mathbf{C}_m^T \mathbf{\Gamma} \mathbf{C}_m \mathbf{X}) = tr(\mathbf{X}^T \mathbf{C}_m^T \mathbf{L} \mathbf{L}^T \mathbf{C}_m \mathbf{X}) = ||\mathbf{L}^T \mathbf{C}_m \mathbf{X}||_F^2$, where L is the Cholesky factor of Γ . The matrix $\mathbf{L}^T \mathbf{C}_m \mathbf{X}$ is fortunately only $r \times n$.

1.11 UK Biobank Runtime Script

Here is the script used to perform our UK Biobank analysis

```
#
# Parameter explanations
# MvNormal: Distribution of traits is multivariate normal
# q: number of cross-validation folds
# min_iter: iterate at least 10 times before checking for convergence
#
using MendelIHT, Random, LinearAlgebra
BLAS.set_num_threads(1)
Random.seed!(2022)
plinkfile = "ukb.merged.metabolic.subset.european.400K.QC"
phenotypes = "traits.reordered.standardized.csv"
covariates = "covariates.reordered.standardized.csv"
# cross validate 1000, 2000, ..., 10000
path = 1000:1000:10000
@time mses = cross_validate(plinkfile, MvNormal, path=path, q=3,
    covariates=covariates, phenotypes=phenotypes, min_iter=10,
    cv_summaryfile="cviht.summary.roughpath1.txt")
# cross validate 3100, 3200, ..., 4900
k_rough_guess = path[argmin(mses)]
```

```
path = (k\_rough\_guess - 900):100:(k\_rough\_guess + 900)@time mses = cross_validate(plinkfile, MvNormal, path=path, q=3,
    covariates=covariates, phenotypes=phenotypes, min_iter=10,
   cv_summaryfile="cviht.summary.roughpath2.txt")
# cross validate 4510, 4520, ..., 4690
k_rough_guess = path[argmin(mses)]
path = (k\_rough\_guess - 90):10:(k\_rough\_guess + 90)@time mses = cross_validate(plinkfile, MvNormal, path=path, q=3,
    covariates=covariates, phenotypes=phenotypes, min_iter=10,
    cv_summaryfile="cviht.summary.roughpath3.txt")
# cross validate 4671, 4672, ..., 4689
k_rough_guess = path[argmin(mses)]
path = (k\_rough\_guess - 9) : (k\_rough\_guess + 9)@time mses = cross_validate(plinkfile, MvNormal, path=path, q=3,
    covariates=covariates, phenotypes=phenotypes, min_iter=10,
   cv_summaryfile="cviht.summary.final.txt")
# run full IHT on k = 4678K = path[argmin(mses)]@time iht_result = iht(plinkfile, K, MvNormal,
    summaryfile = "iht.final.summary.txt",
    betafile = "iht.final.beta.txt",
    covariancefile = "iht.final.cov.txt",
    covariates=covariates, phenotypes=phenotypes, max_iter=2000)
```
2 Acknowledgements

This work is partially supported by National Institutes of Health grants T32-HG02536 (BC), R01-HG006139 (BC, KL, HZ), R35 GM141798 (KL, JS, HZ), R01-HG009120 (JS), K01DK106116 (JJZ), and R21HL150374 (JJZ); National Science Foundation grants DMS-1264153 (JS), DMS-2054253 (HZ, JZ), and IIS-2205441 (HZ, JZ); and a National Research Foundation of Korea (NRF) grant 2020R1A6A3A03037675 (SK) from the Korean government. The UCLA Institute for Digital Research and Education's Research Technology Group supplied computational and storage services through its Hoffman2 Shared Cluster.

3 Author Contributions

KL conceived the project. BC, JS, and KL devised the methods and simulations. BC, SK, and HZ wrote the software. JZ and AJ accessed and analyzed the UK Biobank data. BC wrote the initial draft of the paper. All authors reviewed and edited the draft.

4 Competing interests

The authors declare no competing interests.

5 Web Resources

Project name: MendelIHT.jl

Project home page: <https://github.com/OpenMendel/MendelIHT.jl>

Supported operating systems: Mac OS, Linux, Windows

Programming language: Julia (unit tests pass on Julia 1.6 and 1.7 but MendelIHT.jl should work with all Julia 1.x versions)

License: MIT

All outputs and commands needed to reproduce the following results are available at the MendelIHT site in the manuscript sub-folder. SnpArrays.jl is available at [https://github.com/OpenMendel/SnpArrays.](https://github.com/OpenMendel/SnpArrays.jl) [jl](https://github.com/OpenMendel/SnpArrays.jl). VCFTools.jl is available at <https://github.com/OpenMendel/VCFTools.jl>. BGEN.jl is available at <https://github.com/OpenMendel/BGEN.jl>

References

- [1] M. C. Delfour. *Introduction to Optimization and Semidifferential Calculus*. SIAM, 2012.
- [2] K. Lange. *MM Optimization Algorithms*, volume 147. SIAM, 2016.
- [3] J. MacArthur, E. Bowler, M. Cerezo, L. Gil, P. Hall, E. Hastings, H. Junkins, A. McMahon, A. Milano, J. Morales, et al. The new NHGRI-EBI catalog of published genome-wide association studies (GWAS Catalog). *Nucleic Acids Research*, 45(D1):D896–D901, 2017.
- [4] R. Magno and A.-T. Maia. gwasrapidd: an R package to query, download and wrangle GWAS Catalog data. *Bioinformatics*, 36(2):649–650, 2019.
- [5] J. R. Magnus and H. Neudecker. *Matrix Differential Calculus with Applications in Statistics and Econometrics , 2nd edition*. John Wiley & Sons, 2019.

[6] M. Tanaka and K. Nakata. Positive definite matrix approximation with condition number constraint. *Optimization Letters*, 8(3):939–947, 2014.