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1 Supplementary Materials

1.1 SNPs Discovered by the UKB Analysis

Tables 1-5 list the SNPs discovered by our 3-trait UK Biobank analysis. For our 18-trait analysis the selected

SNPs are too numerous to list. However, all result can be accessed from our software page. Table 6 lists the

proportion of variance explained for the 18 traits. The reported effect sizes correspond to the predictors of the

log-transformed and standardized traits. To compare against previous studies, we searched the NHGRI-EBI

GWAS catalog [3] using the R package gwasrapidd [4]. For each SNP discovered by IHT, we queried a

1Mb radius for other SNPs that have been previously associated with the given trait with p value < 5×10−8.

Each known association is defined by the most significant SNP in the gene or region associated with the trait.

SNPs that have been mapped in the GWAS catalog are listed along with their genes. All 13 pleiotropic SNPs

were previously known, and 158 out of 171 independent SNPs were previously known. Among the 13 newly

discovered associations, three were with SBP and 10 were with DBP.
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SNP chr pos BMI SBP DBP # prior report mapped genes
rs1801131 1 11854476 0.0 0.009 0.008 41 MTHFR
rs17367504 1 11862778 0.0 0.02 0.019 41 MTHFR
rs16998073 4 81184341 0.0 -0.023 -0.023 24 FGF5, PRDM8
rs1173727 5 32830521 0.0 0.016 0.017 19 LINC02120, NPR3
rs2307111 5 75003678 0.013 0.0 -0.01 34 POC5
rs6902725 6 152370868 0.0 -0.009 0.01 4
rs11977526 7 46008110 0.0 0.013 -0.011 6 FTLP15, IGFBP3
rs2071518 8 120435812 0.0 -0.008 0.009 6 CCN3
rs11222084 11 130273230 0.0 -0.011 0.009 9 ZBTB44-DT
rs3184504 12 111884608 0.0 -0.011 -0.018 41 SH2B3, ATXN2
rs365990 14 23861811 0.0 0.008 -0.011 6 MYH6
rs7497304 15 91429176 0.0 -0.019 -0.018 14 FES
rs77870048 16 69965021 0.0 -0.011 0.01 20 WWP2

Table 1: 13 pleiotropic SNPs selected by IHT listed with their effect sizes and sorted by their position on the
chromosomes. An effect size of 0 means the particular predictor was not selected. The field prior reports
records the number of SNPs previously associated with BMI, SBP, or DBP (p value < 10−8) that are within
1Mb of the given SNP. BMI = body mass index; SBP = systolic blood pressure; DBP = diastolic blood
pressure.

covariate BMI SBP DBP
intercept 0.0002 -0.0 0.0003
sex 0.1165 0.1639 0.1808
age 0.1073 -0.1395 0.6484
age2 -0.0505 0.4581 -0.6131
PC1 -0.0287 -0.0066 -0.0074
PC2 0.0052 -0.0077 -0.0011
PC3 0.0174 0.0043 -0.0091
PC4 -0.0019 -0.0055 0.0015
PC5 0.0022 0.0137 0.0167
PC6 -0.0165 -0.0067 -0.0056
PC7 -0.003 -0.0038 -0.0078
PC8 -0.0014 -0.0015 -0.0014
PC9 0.0039 -0.0004 0.0017
PC10 0.0068 0.0005 0.0001

Table 2: Non-genetic covariates estimated by IHT listed with their effect sizes. These variables were not
subject to sparsity projection. PC is short for principal component. BMI = body mass index, SBP = systolic
blood pressure, and DBP = diastolic blood pressure.
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SNP chr pos β # prior reports mapped genes SNP chr pos β # prior reports mapped genes
rs2815757 1 72764289 0.019 14 RPL31P12, NEGR1 rs17207196 7 75101065 0.016 9 POM121C
rs543874 1 177889480 -0.028 22 SEC16B, LINC01741 rs925946 11 27667202 -0.007 24 BDNF-AS
rs2820312 1 201869257 -0.014 9 LMOD1 rs6265 11 27679916 0.012 24 BDNF-AS, BDNF
rs62106258 2 417167 0.027 51 rs2049045 11 27694241 0.007 24 BDNF-AS, BDNF
rs11127485 2 632028 0.017 51 TMEM18, LINC01875 rs10835211 11 27701365 -0.011 24 BDNF-AS, BDNF
rs13393304 2 637830 0.008 51 TMEM18, LINC01875 rs7138803 12 50247468 -0.007 9 RPL35AP28, BCDIN3D
rs713586 2 25158008 -0.026 26 DNAJC27, ADCY3 rs7132908 12 50263148 -0.014 9 FAIM2
rs9821675 3 49902544 0.007 20 rs4776970 15 68080886 0.01 17 MAP2K5
rs1062633 3 49924940 0.012 20 rs16951304 15 68089618 0.008 17
rs957919 3 131629716 -0.015 17 rs2531995 16 4013467 0.016 17 ADCY9
rs61587156 3 185831583 0.017 9 rs72793809 16 28832382 -0.015 17
rs34811474 4 25408838 0.015 3 ANAPC4 rs4788190 16 29948401 0.019 16
rs10938397 4 45182527 -0.022 17 PRDX4P1, THAP12P9 rs4889490 16 30823047 0.014 20 ZNF629, Metazoa_SRP
rs13107325 4 103188709 -0.026 7 rs1421085 16 53800954 -0.05 56 FTO
rs2112347 5 75015242 0.009 22 SLC25A5P9, POC5 rs17782313 18 57851097 -0.011 47 RNU4-17P, MC4R
rs1422192 5 87959023 -0.015 20 rs10871777 18 57851763 -0.015 47 RNU4-17P, MC4R
rs2744962 6 34594440 -0.017 33 rs17773430 18 57963117 -0.014 45 MC4R
rs987237 6 50803050 -0.012 37 TFAP2B rs1800437 19 46181392 0.017 20 GIPR
rs9473932 6 50857995 -0.009 37 FTH1P5, RPS17P5 rs3810291 19 47569003 0.022 12 ZC3H4

Table 3: 38 SNPs associated with BMI independently of SBP and DBP listed with their effect sizes and sorted by their position on the
chromosomes. The field prior reports records the number of GWAS Catalog associations with BMI (p value < 10−8) that are within 1Mb of
the given SNP.
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SNP chr pos β # prior reports mapped genes SNP chr pos β # prior reports mapped genes
rs3936009 1 1585642 0.009 7 rs12673516 7 40432219 0.01 3
rs1757915 1 56615809 -0.009 4 RPSAP20, LINC01755 rs2282978 7 92264410 0.016 4 CDK6
rs6684353 1 59638619 0.011 2 rs2392929 7 106414069 -0.027 5 LINC02577, CCDC71L
rs12069946 1 67045928 -0.009 2 rs2978456 8 42324765 -0.01 1
rs2820441 1 219734960 0.009 1 LYPLAL1-AS1, ZC3H11B Affx-32837790 8 95272605 -0.009 3
rs1522484 2 19708967 0.016 3 rs35758124 8 141048964 -0.01 2
rs9306894 2 20878105 0.009 4 GDF7 rs10757278 9 22124477 -0.01 3 CDKN2B-AS1
rs55654088 2 85499562 -0.01 4 rs10986626 9 127948321 -0.009 5
rs13002573 2 164915208 0.012 13 intergenic rs12258967 10 18727959 0.009 10 CACNB2
rs560887 2 169763148 0.011 1 SPC25, G6PC2 rs1908339 10 75843100 0.01 4
rs10497529 2 179839888 0.011 3 CCDC141 rs11191064 10 103367824 0.009 6
rs1052501 3 41925398 0.02 6 ULK4 rs11598702 10 104897985 -0.011 17
rs2498323 4 3451109 -0.008 3 HGFAC rs4980389 11 1892585 -0.009 14 LSP1
rs776590 4 48591150 0.008 2 rs573455 11 117267884 -0.014 6 CEP164
rs17084051 4 55087581 -0.01 3 RPL22P13 rs10750441 11 130469044 0.01 3 BAK1P2, MIR8052
rs1229984 4 100239319 0.009 1 ADH1B rs10770612 12 20230639 0.012 9 LINC02398
rs6842241 4 148400819 -0.008 2 EDNRA, PRMT5P1 rs2681492 12 90013089 0.011 21 ATP2B1
rs4690974 4 156393641 -0.01 9 MTND1P22 rs12882307 14 36320639 0.009 1
rs13116200 4 169702511 -0.01 2 rs4903064 14 73279420 -0.01 5 DPF3
rs7715779 5 32690199 0.007 12 NPR3 rs956006 15 62808539 0.009 1 TLN2
rs1173771 5 32815028 0.005 12 LINC02120, NPR3 rs34862454 15 75101530 -0.012 14 LMAN1L, CSK
rs1982192 5 71540604 0.009 Novel rs3803716 16 24802325 0.008 3
rs2303720 5 122682334 0.011 6 CEP120 rs4888372 16 75313485 0.01 6 RNU6-758P, BCAR1
rs11954193 5 158256118 0.01 13 EBF1 rs60675007 16 83018052 0.008 2
rs12198986 6 7720059 -0.008 1 BMP6 rs9889363 17 6524298 -0.011 6
rs9349379 6 12903957 0.012 5 PHACTR1 rs185478092 17 40366653 -0.01 Novel
rs385306 6 31681160 0.011 7 rs3744760 17 43195981 -0.01 9 PLCD3
rs12191865 6 56014006 -0.014 3 rs17608766 17 45013271 -0.013 3 GOSR2
rs1012257 6 56089507 -0.009 3 rs9909933 17 46280232 0.009 7
rs9689048 6 73465420 0.009 Novel rs35688424 17 60769406 -0.011 8
rs2221389 6 159719183 -0.012 1 rs67882421 18 43129717 -0.012 4
rs9505897 6 169646751 -0.01 1 rs12459507 19 2224387 -0.009 6 DOT1L
rs57301765 7 19052733 -0.014 2 TWIST1, HDAC9 rs34328549 19 7253184 0.007 8 INSR

Table 4: 66 SNPs associated with SBP independently of BMI and DBP listed with their effect sizes and sorted by their position on the
chromosomes. The field prior reports records the number of GWAS Catalog associations with SBP (p value < 10−8) that are within 1Mb of
the given SNP. A novel SNP is not within 1Mb of any GWAS Catalog associations.
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SNP chr pos β # Prior reports mapped genes SNP chr pos β # Prior reports mapped genes
rs61776719 1 38461319 -0.015 Novel FHL3, RNU6-510P rs4754834 11 102017853 -0.009 1
rs12739904 1 59669488 -0.009 1 rs59317921 11 130270855 0.009 2 ZBTB44-DT
rs3766090 1 169269009 -0.01 Novel rs7975252 12 15270194 -0.009 1
rs61822997 1 176649785 -0.009 Novel rs7973748 12 20164705 0.011 10
rs665834 1 201748087 0.011 1 rs12581906 12 20468094 0.009 10
rs2275155 1 243493907 -0.013 6 rs17287293 12 24770878 0.01 Novel RN7SL38P, KNOP1P1
rs11690961 2 46363336 -0.012 1 PRKCE rs74340001 12 94769769 -0.01 1
rs10199082 2 56040099 -0.01 3 rs653178 12 112007756 -0.007 16 ATXN2
rs2692893 2 96756547 -0.012 5 rs12875271 13 110792743 0.011 3 RN7SL783P, COL4A1
rs17362588 2 179721046 -0.014 3 CCDC141 rs36033161 14 100123487 -0.009 Novel HHIPL1
rs12996836 2 183212028 -0.011 3 rs686861 15 48885005 -0.013 1 FBN1
rs1863703 2 219544388 0.009 3 rs11853359 15 71621524 0.011 2 THSD4
rs2624847 3 50174197 -0.009 3 SEMA3F-AS1 rs1378942 15 75077367 -0.012 10 CSK
rs3617 3 52833805 0.008 5 ITIH3 rs4886615 15 75131661 -0.008 10
rs9850919 3 169177924 0.009 5 MECOM-AS1, MECOM rs2277547 15 79082431 0.01 1
rs871606 4 54799245 -0.018 1 RPL21P44, LNX1 rs7174546 15 96637569 -0.009 2 RNU2-3P, NR2F2-AS1
rs1826909 4 100217743 -0.01 Novel rs67456613 16 30888295 -0.01 2
rs1047440 5 122681834 -0.014 3 rs72790195 16 83005335 -0.008 1
rs11949055 5 131576737 0.009 5 rs11078485 17 4141536 -0.009 2
rs1233708 6 28173219 0.013 2 rs72824497 17 15418019 0.009 1
rs11154022 6 121748542 0.01 3 GJA1, Y_RNA rs768168 19 15268533 -0.011 Novel
rs12110693 6 122158270 -0.012 3 OSTM1, HMGB3P18 rs997669 19 30304483 -0.01 2 CCNE1
rs9376740 6 143617983 -0.009 Novel rs755690 19 39167360 -0.01 1
rs58023137 6 169620760 -0.011 1 rs2876201 20 10429851 -0.009 6
rs194524 7 89861832 -0.012 Novel rs652661 20 10468779 0.015 6
rs13226502 7 100506381 -0.014 2 RPS29P15, RN7SL549P rs78309244 20 10766399 0.014 6
rs2469997 8 120353267 0.01 3 CCN3, MIR548AZ rs6046144 20 19477390 0.015 2
rs507666 9 136149399 0.012 2 rs76701589 20 39763115 0.009 3
rs3812595 9 139369062 -0.009 1 SEC16A rs2831969 21 30085640 0.009 Novel
rs183348357 10 18220414 -0.009 7 rs9982601 21 35599128 -0.009 1 LINC00310, KCNE2
rs3739998 10 30316072 0.005 1 JCAD rs2298336 21 39813287 0.01 1
rs2505083 10 30335122 0.007 1 JCAD rs112005532 21 39957981 0.012 1 ERG
rs7125196 11 61272565 0.01 5 PPP1R32, MIR4488 rs73167017 22 40779964 0.011 1 SGSM3, SGSM3-AS1, ADSL
rs2304500 11 89223931 -0.012 1 NOX4

Table 5: 67 SNPs associated with DBP independently of BMI and SBP listed with their effect sizes and sorted by their positions on the
chromosomes. The field prior reports records the number of GWAS Catalog associations with DBP (p value < 10−8) that are within 1Mb of
the given SNP. A novel SNP is not within 1Mb of any GWAS Catalog associations.
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Field ID Trait PVE
23723 Total Lipids in Lipoprotein Particles 0.0178
23724 Total Lipids in VLDL 0.0423
23725 Total Lipids in LDL 0.0245
23726 Total Lipids in HDL 0.0365
23782 Total Lipids in Chylomicrons and Extremely Large VLDL 0.0482
23789 Total Lipids in Very Large VLDL 0.0547
23796 Total Lipids in Large VLDL 0.0501
23803 Total Lipids in Medium VLDL 0.0332
23810 Total Lipids in Small VLDL 0.0432
23817 Total Lipids in Very Small VLDL 0.0370
23824 Total Lipids in IDL 0.0268
23831 Total Lipids in Large LDL 0.0250
23838 Total Lipids in Medium LDL 0.0230
23845 Total Lipids in Small LDL 0.0268
23852 Total Lipids in Very Large HDL 0.0515
23859 Total Lipids in Large HDL 0.0538
23866 Total Lipids in Medium HDL 0.0268
23873 Total Lipids in Small HDL 0.0136

Table 6: The estimated Proportion of phenotypic variance explained (PVE) for each of the 18 traits in the UK
Biobank analysis.

1.2 IHT on LD-Pruned Genotypes

In Figure 1 of the main text, we compared the false positive counts of IHT, CCA, and mvLMM. Similar to

Table 1 in the main text, we also computed the power for detecting independent and pleiotropic SNPs in these

simulations. These results are presented in Figure 1.

1.3 Additional Simulation Studies for IHT

In the main text, our simulation study explores the situation where causal SNPs are shared roughly equally

among all traits. This is a reasonable assumption because we expect most multivariate GWAS to be conducted

on similar traits, which are expected to share a similar number of causal variants. However, in practice,

researchers may confront both highly polygenic traits along with very non-polygenic traits.

Here we describe a simulation study with three traits, where each trait is perturbed by 10, 100, or 1000

causal SNPs, respectively. We use n = 10,000 unrelated subjects from the UK Biobank and restrict analysis

to a genotype matrix constructed from 29,481 SNPs on chromosome 10. Traits Yr×10000 are simulated just

as in our main simulation study. We ignore the genetic relationship matrix since related subjects have been
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Figure 1: Power comparison for independent (top 4) and pleiotropic (bottom 4) SNPs evaluated on LD-pruned
genotypes that are in increasing linkage equilibrium. The x-axis corresponds to filtering the original NFBC
chr1 genotypes at different pairwise correlation cutoffs, a smaller value means more aggressive pruning.
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Power FDR
Trait 1 (k = 10) 0.417 0.408
Trait 2 (k = 100) 0.316 0.385
Trait 3 (k = 1000) 0.250 0.362
Overall 0.258 0.366

Table 7: Multivariate IHT analyzing three simulated traits of different polygenicity. The three traits have 10,
100, and 1000 causal SNPs.

filtered out. In summary,

Y3×n ∼ MatrixNormal(B3×pXp×n, Σ3×3, In×n).

For the rth trait, r ∈ {1,2,3}, the effect sizes of the causal SNPs j ∈ Sr,causal are Gaussian deviates β j ∼
N(0,0.1) with |S1,causal|= 10, |S2,causal|= 100, and |S3,causal|= 1000. The causal SNP indices are chosen uni-

formly across the chromosome. The covariance between traits, Σ3×3, is generated as in our main simulation.

Table 7 reports the power and false discovery rate (FDR) for each trait separately, along with the overall

power and FDR. Observe that FDR decreases as the number of causal SNPs k increases. Notably mIHT tends

to select more SNPs than needed for a less polygenic trait if it is analyzed in unison with a highly polygenic

trait. Obviously, this bias improves if we increase sample size or true effect sizes. Overall, these results

suggest that one must be careful in analyzing multiple traits of vastly different polygenicity.

1.4 Loglikelihood

Consider multivariate linear regression with r traits under a Gaussian model. Up to a constant, the loglikeli-

hood for the response vector yi of subject i can be written

Li(B,Γ) =
1
2

log(detΓ)− 1
2
(yi −Bxi)

TΓ(yi −Bxi)

=
1
2

log(detΓ)− 1
2

tr[Γ(yi −Bxi)(yi −Bxi)
T ],

where B is the r× p matrix of regression coefficients, xi is the p× 1 vector of predictors, and Γ is the r× r

unstructured precision (inverse covariance) matrix. For n independent subjects, let Y be the r×n matrix with

ith column yi and let X be the p×n design matrix with ith column xi. Then the loglikelihood for all subjects

is

L(B,Γ) =
n

∑
i=1

{1
2

log(detΓ)− 1
2

tr[Γ(yi −Bxi)(yi −Bxi)
T ]
}

=
n
2

log(detΓ)− 1
2

tr
[
Γ

n

∑
i=1

(yi −Bxi)(yi −Bxi)
T
]

=
n
2

log(detΓ)− 1
2

tr[(Γ(Y−BX)(Y−BX)T ].
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In subsequent sections we will present both full and block ascent IHT. The former updates B and Γ simulta-

neously. The latter alternates updates of B and Γ, holding the other parameter block fixed.

1.5 First Directional Derivative

Recall that the Hadamard’s semi-directional derivative [1, 2] of a function f (x) in the direction v is defined as

the limit

dv f (x) = lim
h→0
w→v

f (x+hw)− f (x)
h

.

To calculate the directional derivative of the loglikelihood (eq 1 in main text), we perturb B in the direction U
and Γ in the symmetric direction V. The sum and product rules then give

d(U,V) tr[Γ(Y−BX)(Y−BX)T ]

= tr[V(Y−BX)(Y−BX)T ]− tr[Γ(Y−BX)XT UT +ΓUX(Y−BX)T ].

The directional derivative dV logdet(Γ) = tr(Γ−1V) is derived in Example 3.2.6 of [2]. The trace properties

tr(CD) = tr(DC) and tr(CT ) = tr(C) consequently imply

d(U,V)L(B,Γ) =
n
2

tr(Γ−1V)− 1
2

tr[(Y−BX)(Y−BX)T V]+ tr[X(Y−BX)TΓU]. (1.1)

Because this last expression is linear in (U,V), the loglikelihood is continuously differentiable.

1.6 Second Directional Derivative

Now we take the directional derivative of the directional derivative (1.1) in the new directions Ũ and Ṽ. This

action requires the inverse rule dṼΓ
−1 =−Γ−1ṼΓ−1 proved in Example 3.2.7 of [2]. Accordingly, we find

d(Ũ,Ṽ)

n
2

tr(Γ−1V) = −n
2

tr
(
Γ−1ṼΓ−1V

)
.

We also calculate

d(Ũ,Ṽ)

[
−1

2
tr[(Y−BX)(Y−BX)T V]

]
=

1
2

tr[(Y−BX)XT ŨT V]+
1
2

tr[ŨX(Y−BX)T V]

and

d(Ũ,Ṽ) tr[X(Y−BX)TΓU] = tr[X(Y−BX)T ṼU]− tr(XT ŨTΓUX).

Finally, setting the two directions equal so that Ṽ = V and Ũ = U produces the quadratic form

Q(U,V) = −n
2

tr[Γ−1VΓ−1V]+
1
2

tr[(Y−BX)XT UT V]+
1
2

tr[UX(Y−BX)T V] (1.2)

+ tr[X(Y−BX)T VU]− tr(XT UTΓUX).
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generated by the second differential.

1.7 Extraction of the Gradient and Expected Information

To extract the gradient from a directional derivative, we recall the identity dv f (x) =∇ f (x)T v for vectors v and

x and the identity tr(AT B) = vec(A)T vec(B) for matrices A and B [5]. The first identity shows that the direc-

tional derivative is the inner product of the gradient with respect to the direction v. The second displays the

trace function as an inner product on dimensionally identical matrices. Thus, the matrix directional derivative

is

dV f (X) = vec[∇ f (X)]T vec(V) = tr[∇ f (X)T V]. (1.3)

Inspection of the directional derivative (1.1) now leads to the gradient with blocks

∇BL(B,Γ) = [X(Y−BX)TΓ]T = Γ(Y−BX)XT (1.4)

∇ΓL(B,Γ) =
n
2
Γ−1 − 1

2
(Y−BX)(Y−BX)T . (1.5)

Analogously, the quadratic form (1.2) implicitly defines the Hessian H through the identity

Q(U,V) = tr
{[

vec(U)T vec(V)T
](HBB HBΓ

HΓB HΓΓ

)[
vec(U)

vec(V)

]}
≡ −n

2
tr
[
Γ−1VΓ−1V

]
+

1
2

tr
[
(Y−BX)XT UT V

]
+

1
2

tr
[
UX(Y−BX)T V

]
+ tr

[
X(Y−BX)T VU

]
− tr(XT UTΓUX).

Because E(Y) = BX, the expected information J = E(−H) has the off-diagonal blocks JB,Γ = 0pr×r2 and

JΓ,B = 0r2×pr. Now the Kronecker product identity vec(ABC) = (CT ⊗A)vec(B) implies

tr(XT UTΓUX) = tr(XXT UTΓU)

= tr[(ΓUXXT )T U]

= vec(ΓUXXT )T vec(U)

=
[
(XXT ⊗Γ)vec(U)

]T
vec(U)

= vec(U)T (XXT ⊗Γ)vec(U).

It follows that JBB = XXT ⊗Γ. Similarly,

tr(Γ−1VΓ−1V) =
[
(Γ−1 ⊗Γ−1)vec(V)

]T
vec(V)

= vec(V)T [Γ−1 ⊗Γ−1]vec(V),
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so that JΓΓ = Γ−1 ⊗Γ−1. In summary, the expected information matrix takes the block diagonal form

J =

(
(XXT )⊗Γ 0

0 Γ−1 ⊗Γ−1

)
. (1.6)

In our projected steepest ascent algorithm, the expected information matrix is never explicitly formed. It is

implicitly accessed in the step-size calculation through the associated quadratic form Q(B,Γ).

1.8 Full IHT Step Size

Let (B,Γ) be the matrix of regression coefficients and variance components obtained by horizontally conta-

tentaing Γ ∈ Rr×r to B ∈ Rr×p. The next iterate in full IHT is the projection of the point

∆m+1 = (Bm,Γm)+ tm∇L(Bm,Γm) = (Bm,Γm)+ tm(Cm,Wm), (1.7)

where Cm = ∇BL and Wm = ∇ΓL evaluated at (Bm,Γm). The loglikelihood along the ascent direction is a

function of the scalar tm and can be approximated by the second-order expansion

L(∆m+1) ≈ L(Bm,Γm)+ tm tr
[
(Cm,Wm)

T (Cm,Wm)
]
− t2

m

2
tr
[
(Cm,Wm)

T J(Bm,Γm)(Cm,Wm)
]
.

The choice

tm =
tr
[
(Cm,Wm)

T (Cm,Wm)
]

tr [(Cm,Wm)T J(Bm,Γm)(Cm,Wm)]
=

∥(Cm,Wm)∥2
F

tr(XT CT
mΓmCmX)+ m

2 tr(Γ−1
m WmΓ

−1
m Wm)

maximizes the approximation. If the support of the matrix (B,Γ) does not change under projection, then this

IHT update is particularly apt.

1.9 IHT Projection

Recall that full IHT iterates according to

(Bm+1,Γm+1) = PSk(∆m+1),

where ∆m+1 is derived in equation (1.7). Here k is a positive integer representing the sparsity level, which is

assumed known. In practice k is found through cross-validation. The projection PSk(∆) splits into separate

projections for B and Γ. One can independently project each row of B to sparsity. Alternatively, one can

require each row of B to have the same sparsity pattern if the same set of predictors plausibly contribute to

all r traits. The Γ projection must preserve symmetry and positive semidefiniteness. Symmetry is automatic

because the gradient of Γ is already symmetric. To project to positive semidefiniteness, one takes the singular

value decomposition of Γ and project its eigenvalues λ to nonnegativity. One can even project Γ to the closest

positive definite matrix with an acceptable condition number [6].
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1.10 The Block Ascent IHT

In block ascent we alternate updates of B and Γ. The exact update (eq 4 of main text) of Γ is particularly

convenient, and we take advantage of it. Symmetry and positive semidefiniteness are automatically preserved.

Inversion can be carried out via Cholesky factorization of Γ. This choice of Γ simplifies the step length

tm =
∥Cm∥2

F

tr(XT CT
mΓCmX)

.

Note that the denominator of the step size does not require formation of the n×n matrix XT CT
mΓCmX. One

can write tr(XT CT
mΓCmX) = tr(XT CT

mLLT CmX) = ∥LT CmX∥2
F , where L is the Cholesky factor of Γ. The

matrix LT CmX is fortunately only r×n.

1.11 UK Biobank Runtime Script

Here is the script used to perform our UK Biobank analysis

#

# Parameter explanations

# MvNormal: Distribution of traits is multivariate normal

# q: number of cross-validation folds

# min_iter: iterate at least 10 times before checking for convergence

#

using MendelIHT, Random, LinearAlgebra

BLAS.set_num_threads(1)

Random.seed!(2022)

plinkfile = "ukb.merged.metabolic.subset.european.400K.QC"

phenotypes = "traits.reordered.standardized.csv"

covariates = "covariates.reordered.standardized.csv"

# cross validate 1000, 2000, ..., 10000

path = 1000:1000:10000

@time mses = cross_validate(plinkfile, MvNormal, path=path, q=3,

covariates=covariates, phenotypes=phenotypes, min_iter=10,

cv_summaryfile="cviht.summary.roughpath1.txt")

# cross validate 3100, 3200, ..., 4900

k_rough_guess = path[argmin(mses)]
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path = (k_rough_guess - 900):100:(k_rough_guess + 900)

@time mses = cross_validate(plinkfile, MvNormal, path=path, q=3,

covariates=covariates, phenotypes=phenotypes, min_iter=10,

cv_summaryfile="cviht.summary.roughpath2.txt")

# cross validate 4510, 4520, ..., 4690

k_rough_guess = path[argmin(mses)]

path = (k_rough_guess - 90):10:(k_rough_guess + 90)

@time mses = cross_validate(plinkfile, MvNormal, path=path, q=3,

covariates=covariates, phenotypes=phenotypes, min_iter=10,

cv_summaryfile="cviht.summary.roughpath3.txt")

# cross validate 4671, 4672, ..., 4689

k_rough_guess = path[argmin(mses)]

path = (k_rough_guess - 9):(k_rough_guess + 9)

@time mses = cross_validate(plinkfile, MvNormal, path=path, q=3,

covariates=covariates, phenotypes=phenotypes, min_iter=10,

cv_summaryfile="cviht.summary.final.txt")

# run full IHT on k = 4678

K = path[argmin(mses)]

@time iht_result = iht(plinkfile, K, MvNormal,

summaryfile = "iht.final.summary.txt",

betafile = "iht.final.beta.txt",

covariancefile = "iht.final.cov.txt",

covariates=covariates, phenotypes=phenotypes, max_iter=2000)
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5 Web Resources

Project name: MendelIHT.jl

Project home page: https://github.com/OpenMendel/MendelIHT.jl

Supported operating systems: Mac OS, Linux, Windows

Programming language: Julia (unit tests pass on Julia 1.6 and 1.7 but MendelIHT.jl should work with all

Julia 1.x versions)

License: MIT

All outputs and commands needed to reproduce the following results are available at the MendelIHT site in the

manuscript sub-folder. SnpArrays.jl is available at https://github.com/OpenMendel/SnpArrays.

jl. VCFTools.jl is available at https://github.com/OpenMendel/VCFTools.jl. BGEN.jl is available

at https://github.com/OpenMendel/BGEN.jl
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