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eMethods

Data and participants

Physical, physiological and blood/urine-derived phenotypes and/or neuroimaging data were
integrated across multiple databases and studies. The data included from each study is
summarized below.

UK Biobank

The UK Biobank is a large-scale biomedical database and research resource containing genetic,
lifestyle and health information from approximately 500,000 participants’?. The UK Biobank
has approval from the North West Multi-centre Research Ethics Committee (MREC) to obtain
and disseminate data and samples from the participants
(http://www.ukbiobank.ac.uk/ethics/). Written informed consent was obtained from all
participants. Individuals aged between 37-74 years were recruited in 2006-2010 at 22
assessment centers from across the UK and underwent extensive physical and physiological
assessments, blood and urine sample assays, genome-wide genotyping and questionaries.
Multimodal brain imaging? was collected in 2014-2020 at three mirrored imaging centers
located at Manchester, Reading and Newcastle, respectively, in a subset of individuals aged
between 45-82 years (n~49,000).

Individuals with a lifetime diagnosis of one or more common neuropsychiatric disorders,
including schizophrenia (n=2,100, 1,184 males), bipolar disorder (n=5,853, 2,696 males),
depression (n=81,631, 27,923 males), generalized anxiety disorder (n=11,456, 3,841 males)
and dementia (n=6,503, 3,470 males), as well as individuals without any chronic major
medical conditions (healthy comparison individuals, HC, n=84,308, 39,255 males) were
included in the present study (Project ID 60698). Among them, a total of 18,280 (7,514 males)
and 17,185 (7,018 males) individuals had completed T1-weighted and diffusion magnetic
resonance brain imaging assessments respectively.

Diagnostic status and medical conditions were obtained through self-report (verbal interview
at assessment centers, UK Biobank Field ID: 20002) and health care records (primary care and
hospital inpatient) from the UK National Health Services. Specifically, summary inpatient
diagnoses (Field IDs: 41270; 41271) coded by distinct ICD (International Classification of
Diseases and Related Health Problems)-9 and/or ICD-10 (July 2020 release) and the primary
care data (Read Codes, Field ID: 42040) in relation to clinical events of diagnoses (November
2020 release) were used in this study. Diagnoses coded in Read were mapped to
corresponding ICD codes according to the lookup table (‘all_lkps_maps_v2.xlsx’)
(https://biobank.ndph.ox.ac.uk/showcase/showcase/auxdata/primarycare_codings.zip). Of
note, each disorder group was defined broadly with all causes and subtypes included. For
example, the dementia group included self-reported dementia/Alzheimer’s disease/cognitive
impairment (UK Biobank code: 1263); health care recorded ICD-9 and/or 10 coded various
types of dementia (e.g., Alzheimer’s diseases, vascular dementia, dementia in other diseases
classified elsewhere). eTables 5-9 list diagnostic codes related to each of the five disease
categories. In addition to the interview-based self-report and health care records, individuals
with a lifetime diagnosis of bipolar disorder, depression and generalized anxiety disorder
identified based on DSM (Diagnosis and Statistical Manual of Mental Disorders)-IV criteria
using the online Mental Health Questionnaire®* were also included. Individuals who had more
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than one diagnosis were grouped into multiple disorder groups. The majority of individuals
had a single neuropsychiatric diagnosis (77,185/91,636=84.23%) and the proportion of
individuals comorbid with 2 to 5 neuropsychiatric conditions was 14.26% (n=13,070), 1.42%
(n=1,305), 0.08% (n=74) and 0.002% (n=2), respectively. Pairwise comorbidity is most
common for depression and generalized anxiety disorder (9,166/13,070=70.13%), followed
by depression and bipolar disorder (3,475/13,070, 26.59%), depression and schizophrenia
(1,119/13,070=8.56%), bipolar  disorder and generalized anxiety  disorder
(960/13,070=7.35%), with small comorbidity rates (<5%) observed for other diagnosis pairs.
Comorbidity with 3 neuropsychiatric conditions was most common for bipolar disorder,
depression and generalized anxiety disorder (803/1,305=61.53%) and followed by
schizophrenia, bipolar disorder and depression (254/1,305=19.46%). Other patterns of
comorbidity were relatively rare.

Brain phenotypes

Brain gray matter and white matter phenotypes derived from T1-weighted magnetic
resonance imaging (MRI) and diffusion MRI (dMRI) were sourced from the UK Biobank?. The
image processing pipeline, artefact removal, cross-modality and cross-individual image
alignment, quality control and phenotype calculation are described in detail elsewhere® and
also in the UK Biobank brain imaging documentation
(https://biobank.ctsu.ox.ac.uk/showcase/showcase/docs/brain_mri.pdf).

Regional gray matter volume and cortical thickness estimates derived from T1-weighted MRI
using FreeSurfer 6° were used to map brain gray matter health. The Desikan-Killiany atlas’
was used for cortical parcellation. Regional microstructural measures of white matter tracts
including fractional anisotropy (FA) and mean diffusivity (MD) were derived from dMRI using
the JHU ICBM-DTI-81 white matter atlas®. FA maps were skeletonized and mapped onto
Montreal Neurological Institute standard space using tract-based spatial statistics (TBSS)°. All
regional measures were averaged across the left and right hemispheres, resulting in 76 gray
matter (eTable 1) and 54 white matter (eTable 2) phenotypes for further analyses. The same
set of MRI-derived gray and white matter phenotypes were derived from the other six
consortia studies (where available).

Body phenotypes

Physical, physiological and blood/urine-derived phenotypes known to associate with the
function and health status of 7 body systems, including the cardiovascular, pulmonary,
musculoskeletal, immune, renal, hepatic and metabolic systems were selected. Phenotypes
primarily sourced from the UK Biobank were supplied with the original Field IDs where
applicable. Phenotypes secondarily computed include: i) the average handgrip strength
across left and right hand; ii) the average heel bone mineral density across left and right heel;
iii) the average ankle spacing width across left and right ankle; iv) the total-to-HDL cholesterol
ratio; v) the FEV1 (forced expiration volume in 1-second)/FCV (forced vital capacity) ratio; and
vi) the waist-hip circumference ratio. This resulted in a total of 73 body phenotypes for further
analyses (eTable 3). The original UK Biobank data field IDs of variables were provided where
applicable.

ASRB

© 2023 American Medical Association. All rights reserved.



The Australian Schizophrenia Research Bank (ASRB)? is a comprehensive biobank of clinical,
neuroimaging and genetic data acquired in individuals with schizophrenia and healthy
comparison individuals. The study was approved by the Melbourne Health Human Research
Committee (Project ID: 2010.250). All participants provided written informed consent for the
analysis of their data. Participants were acquired from five sites in Australia, including
Melbourne, Sydney, Brisbane, Perth and Newcastle using identical recruitment and brain MRI
acquisition protocols. Diagnoses were confirmed using the Diagnostic Interview for Psychosis.
Exclusion criteria included any neurological disorder, history of brain trauma followed by a
long period of amnesia (>24 h), intellectual disability of intelligence quotient below 70,
current drug or alcohol dependence, as well as electroconvulsive therapy in the past 6 months.
The T1-weighted MRI and diffusion MRI of 323 (age range 20-66 years 95 males) individuals
with schizophrenia, and 183 (age range 18-66 years, 94 males) healthy comparison individuals
were included in the present study. Details of imaging acquisition and pre-processing are
described in detail elsewhere?’.

AIBL

the Australian Imaging, Biomarkers and Lifestyle Flagship Study of Ageing (AIBL)
(https://aibl.csiro.au/) is a study to discover which biomarkers, cognitive characteristics, and
health and lifestyle factors determine subsequent development of symptomatic Alzheimer’s
Disease. AIBL study methodology has been reported previously!>. The AIBL study was
approved by the institutional ethics committees of Austin Health, St Vincent's Health,
Hollywood Private Hospital and Edith Cowan University, and all volunteers gave written
informed consent before participating in the study. T1-weighted MRI brain images acquired
at baseline assessments for 58 (age range 55-85 years; 23 males) individuals diagnosed with
dementia, and 400 (age range 60-92 years, 156 males) healthy comparison individuals were
included in this study. AIBL data were acquired from four sites in Australia, including Perth,
Sydney, Adelaide and Melbourne. Consistent with the UK Biobank, MRI brain images were
processed using FreeSurfer 6, resulting in 76 gray matter phenotypes. AIBL does not have
dMRI data.

ADNI

The Alzheimer’s Disease Neurolmaging Initiative (http://adni.loni.usc.edu/) was launched in
2003 as a public-private partnership, led by Principal Investigator Michael W. Weiner, MD.
The primary goal of ADNI has been to test whether serial magnetic resonance imaging,
positron emission tomography, other biological markers, and clinical and neuropsychological
assessment can be combined to measure the progression of mild cognitive impairment and
early Alzheimer's disease. For up-to-date information, see www.adni-info.org. Details of brain
image acquisition can be found elsewhere!3. As per ADNI protocols, all procedures performed
in ADNI studies involving human participants were in accordance with the ethical standards
of the institutional and/or national research committee and with the 1964 Helsinki
declaration and its later amendments or comparable ethical standards. T1-weighted MRI
brain images acquired at baseline assessments across all three phases of ADNI were included,
resulting in 205 (age range 55-91 years, 100 males) individuals diagnosed with dementia and
468 (age range 50-95 years, 192 males) healthy comparison individuals. T1-weighted images
were processed using FreeSurfer 6. Baseline diffusion MRI brain images acquired at ADNI-GO/
2 and ADNI 3 were included, resulting in 114 (age range 55-91 years, 73 males) individuals
diagnosed with dementia and 471 (age range 50-96 years, 182 males) healthy comparison
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individuals. FA and MD maps were computed from the dMRI data using FSL 6
(http://www.fsl.fmrib.ox.au.uk). Head motion and eddy current-induced distortions were
corrected using the eddy tool in FSL.

PISA

The Prospective Imaging Study of Ageing: Genes, Brain and Behaviour (PISA)* studies the
interplay between genetic, epigenetic and environmental factors for dementia, and also aims
to identify risk factors that could be modified through intervention
(https://www.qimrberghofer.edu.au/study/prospective-imaging-study-of-ageing/). The PISA
study protocol has approval from the Human Research Ethics Committees of QIMR Berghofer
Medical Research Institute and the University of Queensland. Written informed consent was
obtained from all participants. T1-weighted MRI brain images of 31 (age range 51-78 years,
13 males) individuals diagnosed with dementia and 235 (age range 43-82 years, 54 males)
healthy comparison individuals were included in this study. T1-weighted images were
processed using FreeSurfer 6. Diffusion MRI brain images were available for 32 (age range 43-
78 years, 13 males) individuals diagnosed with dementia and 236 (age range 43-82 years, 53
males) healthy comparison individuals. Consistent with as described above, FSL 6 was used to
process the dMRI data and the eddy tool of FSL was used to correct head motion and eddy
current-induced distortions.

HCP-YA & HCP-Aging

The Human Connectome Project Young Adult (HCP-YA)* and the Aging (HCP-A) cohorts'®
comprise the HCP lifespan project (https://www.humanconnectome.org/lifespan-studies).
T1-weighted brain MRl images of 1,113 (age range 22-37 years, 507 males) and 709 (36-90
years, 313 males) healthy individuals were sourced from HCP-YA and HCP-A respectively.
Diffusion brain MRI images were available for 1,034 (age range 22-37 years, 474 males) and
695 (age range 22-37 years, 309 males) healthy individuals in each dataset. Brain images were
processed using the HCP minimal pre-processing pipeline!’. The HCP datasets were acquired
by the WU-Minn HCP consortium with local human research ethics approval and shared with
us in accordance with the WU-Minn HCP consortium Open Access and Restricted Data Use
Terms. Written informed consent was obtained from all participants.

Brain MRI image quality control

In addition to the quality control and artifact removal performed in each dataset, for all
datasets, the quality of the T1-weighted images was further assessed using the Euler number,
an index generated by FreeSurfer recon-all that measures the topological complexity of a
reconstructed cortical surface®. Following previous recommendations®®, images with a Euler
number less than -217 were deemed poor quality and thus discarded. For diffusion MRI,
images with in-scanner head motion residing more than three standard deviations from the
median were discarded due to the potential impact of motion on fitting of the diffusion tensor
and estimation of fractional anisotropy and mean diffusivity?>. A summary head motion
parameter was computed as the average displacement of each voxel across all volumes (FSL
eddy output: eddy_movement_rms). Finally, images with any MRI-derived phenotypes
residing more than six standard deviations from the median were discarded from each
dataset respectively. This resulted in the final sample as described above.

Data harmonization
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Brain imaging-derived phenotypes were harmonized using Combat
(https://github.com/IJfortin1l/ComBatHarmonization)?%?2, to control for site and scanner
variation. Age, sex and diagnostic status were included as biological covariates in the
harmonization. Specifically, brain phenotypes were first harmonized within each cohort if
brain images were acquired from more than one MRI scanner. This was applied to the UK
Biobank (4 scanners), ASRB (5 scanners), AIBL (4 scanners) and ADNI (76 scanners). Of note,
the harmonization of gray matter phenotypes within the ADNI cohort was performed in a
larger sample, where individuals with mild cognitive decline were also included (n=713), to
ensure data from at least 10 individuals were available from each MRI scanner, enabling
reliable harmonization. Due to varied acquisition protocols (e.g., the number and/or
distribution of diffusion-weighted gradients, angular resolution and scan duration) for ADNI
dMRI data, we followed previous work?3, in which FA and MD measures were first harmonized
across 8 acquisition protocols using Combat. Linear mixed-effects models were then used to
model random effects of scanner nested in dMRI protocol (protocol|scanner). The within-
cohort harmonized data were then harmonized across all cohorts, yielding a final set of
harmonized brain phenotypes for further analyses.

Normative modeling

The gamlss package (version 5.4-3)?% in R for generalized additive models for local, scale and
shape (GAMLSS)?® was used to establish sex-specific normative references (median and
centiles) over the adult lifespan for each brain and body phenotype in healthy individuals
combined across cohorts. Cohort differences were modeled as random effects for brain
phenotypes. We first evaluated a range of GAMLSS distribution families (n=21) with three or
four parameters (i.e., u,0,v,7)%*. To determine the best fitting distribution, for each
distribution type, we fitted GAMLSS to global brain phenotypes, including mean cortical
thickness, total gray matter volume, total cerebrospinal fluid (ventricles) volume, mean FA,
as well as representative body phenotype for each body system (handgrip strength, FEV1,
systolic blood pressure, C-reactive protein, serum creatine, cholesterol ratio, serum alanine
aminotransferase). Of note, evaluation of the best fitting distribution was based on global
brain phenotypes because they are likely more reliable and less noisy than regionally specific
brain phenotypes. A second order fractional polynomial was used for yt and .

The goodness of model fitting was evaluated by i) model stability, i.e., whether a model
converges after iterative fitting. We used the default convergence criterion of
loglikelihood=0.001 between iterations but increased the maximal iteration cycles from 20 to
100; and ii) the Bayesian Information Criteria (BIC). The optimal model distribution was thus
selected as the one with the lowest BIC among converged models. We found that while the
optimal model varied across the 11 representative phenotypes, the Box-Cox t distribution
generally yielded the lowest BIC compared to other distribution families (eFigure 2). We
therefore used GAMLSS with the Box-Cox t distribution to model the age-related phenotypic
variation for each phenotype in healthy individuals. Individual variation in each phenotype,
denoted with y, was thus modeled such that,

y =BCT(u,0,v,1)

u= fyl (age) + fuz (sex) + ﬁuzsite
o= fa(age)' V= .Bvr T= B‘r .
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In the above model, BCT denotes the Box-Cox t distribution, which is a shifted and truncated
version of the t distribution. The distribution was parameterized with four parameters:
median/location (u), centile-based coefficient of variation (o), skewness (v) and kutosis (7).

Normative references ranges (i.e., quantiles) as a function of age and sex were derived from
the GAMLSS and then used to estimate standardized phenotypic deviation scores (z-
scores)?”28 for individuals with schizophrenia, bipolar disorder, depression, generalized
anxiety disorder and dementia. The z-scores were estimated using quantile randomized
residuals?®, whereby the quantiles of the fitted Box-Cox t distribution were mapped onto z-
scores of a standard Gaussian distribution.

Deviations scores for healthy individuals were estimated using 10-fold cross-validation. For
each 10-fold cross-validation, a GAMLSS model was fitted in individuals comprising 9 folds
(training set). The fitted model parameters (i, g, v, T) were then applied iteratively to the held
out set of individuals (test set), resulting in estimated centiles. Phenotypic deviation scores
were then computed accordingly as described above. The normality of the distribution of the
computed z-scores were evaluated using a two-sided Kolmogorov-Smirnov test.

Estimating organ/system-specific health scores

An organ/system health score (OHS) was estimated for each organ system and for each
individual. The OHS is a weighted sum of deviation scores (z-scores) across all phenotypes
pertaining to a specific organ system. Phenotype weights were estimated based on the
importance of each phenotype toward differentiating healthy individuals from a patient
group: i) diagnosed with one or more chronic diseases that primarily affects the organ/system
under consideration; and ii) excluding individuals with comorbid psychiatric illness.

For example, for the metabolic system, a logistic regression model was trained to differentiate
between healthy comparison individuals and a group of patients with chronic metabolic
diseases, including diabetes mellitus (ICD 10 code E10-E14) and/or disorders of lipoprotein
metabolism (E78), using phenotypes deviation scores pertaining to the metabolic system. The
regression coefficients (phenotype weights) fitted in this logistic regression were then used
to compute the metabolic health score for individuals with neuropsychiatric disorders.
Individuals comorbid with any of the five neuropsychiatric disorders were not included in the
fitting of the logistic regression. This approach was repeatedly applied for all 7 body systems,
where the patient group was adjusted to include disease categories most relevant to the
system under consideration as outlined in ICD-10. The disease categories selected for each
body system are provided in eTable 4. This process resulted in 7 sets of the phenotype weights
(i.e., logistic regression coefficients). The overall body health score was computed based on
phenotype weights estimated in a combined group of patients diagnosed with chronic
diseases affecting multiple body systems. Similarly for the brain, however, health scores
computed for a given neuropsychiatric disorder were based on phenotype weights estimated
in individuals in the other four groups, to avoid circularity.

More specifically, the organ health score (OHS) for individualn = 1, ..., N and organ system

k € {cardiovascular, pulmonary, musculoskeletal, immune, renal, hepatic, metabolic, brain},
was given by,
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OHS(n, k) = — <w3’- + Z] ijxj(n)>
j=1

Where wjk is the fitted regression coefficient for phenotype j = 1,...J and x;(n) is the

phenotype deviation score (z-score) for the nth individual, as inferred from the GAMLSS. As
described above, w]-k are regression coefficients fitted in a logistic regression differentiating
healthy comparison individuals from a group of patients with chronic diseases that primarily
affect the kth organ system (see eTable 4 for the list of chronic diseases associated with each
organ system). The OHS was multiplied by -1, to ensure that poor organ health is indicated by

a lower organ health score across different organ systems. We set wk =

—ZnehealthyZLlekxj(n) /H to ensure that the distribution of OHS across healthy

comparison individuals was necessarily centered at zero, where H is the number of healthy
individuals. The center of the OHS distribution would otherwise vary according to the relative
proportion of individuals in the patient and healthy comparison groups.

Ten-fold cross-validation was used to compute the OHS for healthy individuals. Specifically,
for each 10-fold cross-validation, the regression coefficients (phenotype weights) fitted in the
training set (9 folds) were iteratively used to compute the organ health score for the held out
set of individuals (test set). Rather than removing individuals with any missing data, an organ-
specific missing data handling procedure was used, where the OHS was computed for
individuals without any missing entries (e.g., the immune health score was only computed for
individuals with no missing entries for all phenotypes comprising the immune system).

Organ health scores are conceptually similar to allostatic load estimation®. Indeed, allostatic
load and organ health scores include several common phenotypes, such as cholesterol,
glycated hemoglobin, systolic and diastolic blood pressure3'32, This overlap in phenotypes is
consistent with established links between chronic stress and poor organ health. Whereas
allostatic load specifically measures the physiological impacts of chronic stress exposure and
the effects of “wear and tear”33, organ health scores focus on characterizing the health and
function of specific organs and body systems. Other key differences include benchmarking to
normative reference ranges for organ health scores and differences in the way that items are
scored 332,

Further methodological considerations are worthy of mention. First, organ health is
multifaceted, and it is unlikely that a single organ health score will be adequate for all
individuals and conditions. Further work is needed to validate the organ health scores
developed here in independent community samples. However, validation studies are
currently challenging due to the lack of available datasets with the same breadth of brain and
body markers as the UK Biobank. Second, as the field evolves, we anticipate that standardized
measures of organ health will be established, potentially incorporating specialized markers
and non-clinical tests of organ function, such as brain spectroscopy and cardiac diffusion MRI.
Finally, many of the markers comprising our health scores are already widely assayed in
primary care (e.g., systolic and diastolic blood pressure, glycated hemoglobin, blood lipids),
facilitating feasible clinical implementation of organ health scores in this setting.

Diagnostic and transdiagnostic neuropsychiatric disorder classification
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Logistic regression models were trained to classify an individual’s diagnostic status
(schizophrenia, bipolar disorder, depression, generalized anxiety disorder vs healthy
comparison individuals) based on phenotypic deviation scores. Using 10-fold cross validation,
models were developed for each brain and body system and for each pair of diagnostic
(disease vs healthy comparison group) and transdiagnostic (disease vs disease) classifications
(eFigure 1D). Classification accuracy was quantified with the area under the receiver
operating characteristic curve. Confidence intervals of classification accuracy were estimated
by 100 repartitions of 10-fold cross-validation. Regression coefficients estimated from cross-
validation iterations were averaged, yielding a consensus representation of feature
(phenotype) importance in disease classification.
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eFigure 4. Brain and body health scores in neuropsychiatric disorders stratified by organ
system. Radial plots show the mean of estimated organ health scores within each
neuropsychiatric disorder. Organ systems in each plot were organized anti-clockwise
according to the mean health score, from the smallest to the largest value. GM, gray matter;
WM, white matter; Cardiac, cardiovascular; Muscle, musculoskeletal; Pulmon., pulmonary;
Metab., metabolic; DEM, dementia; SCZ, schizophrenia; BD, bipolar disorder; DEP, depression;
GAD, generalized anxiety disorder; HC, healthy comparison.
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eFigure 5. Brain and body health scores in dementia. Radial plots show the mean of
estimated organ health scores across individuals within dementia group. Organ systems were
organized anti-clockwise according to the mean health score, from the smallest to the largest
value. GM, gray matter; WM, white matter; Cardiac, cardiovascular; Muscle, musculoskeletal;
Pulmon., pulmonary; Metab., metabolic; DEM, dementia.
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eFigure 6. Distribution of brain and body health scores in neuropsychiatric disorders
stratified by organ system. Box plots in each panel show the distribution of estimated
organ/system health scores across individuals within each neuropsychiatric disorder and
healthy comparison (HC) individuals. An overall body health score was estimated using all
body phenotypes (top right). A score of zero indicates healthy/normal organ function and
scores below zero suggest deterioration of organ health, controlling for age and sex. Disease
groups with significantly lower organ/system health scores than HC are marked with red
asterisks (p<0.05, two-tailed, FDR corrected across 5 disorder groups x 10 organ systems=50
tests). Central line/circle mark on each box plot indicates the mean/median value. The bottom
and top edges of each box plot indicate 40™ and 60" percentiles of the distribution. The
whiskers extend to the most extreme data points that are not considered outliers (1.5-times
the interquartile range). GM, gray matter; WM, white matter; SCZ, schizophrenia; BD, bipolar
disorder; DEP, depression; GAD, generalized anxiety disorder; DEM, dementia.
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eFigure 7. Physical comorbidity rates. Proportions of female (left) and male (right) individuals
with comorbid physical illness in individuals diagnosed with each of the five neuropsychiatric
disorders in the UK Biobank cohort. SCZ, schizophrenia; BD, bipolar disorder; DEP, depression;
GAD, generalized anxiety disorder; DEM, dementia. CHD, coronary heart disease; COPD,
chronic obstructive pulmonary disease; CKD, chronic kidney disease.
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eFigure 8. Accuracy of diagnostic and transdiagnostic disease classification. (A) A logistic
regression model was trained to classify an individual’s diagnostic status (disease X vs HC).
Classification models were established for each organ system, using organ-specific
phenotypic deviation scores. Each row represents one target disease group X, where icons
are positioned to indicate the model accuracy, as quantified by the area under the curve (AUC)
of the receiver operating characteristic curve. (B) Similar to panel (A), but a logistic regression
model was trained to classify an individual’s diagnostic status between disease pairs (disease
X vs disease Y). Each row represents one target disease group X, where icons are positioned
to the average accuracy in differentiating disease group X from all the other groups. SCZ,
schizophrenia; BD, bipolar disorder; DEP, depression; GAD, generalized anxiety disorder; DEM,

dementia.

© 2023 American Medical Association. All rights reserved.



A Brain GM c DEM vs SCZ DEM vs BD DEM vs DEP DEM vs GAD

1 B ,ZZEQ@ 1L  OLD

Weights

AUC 8
&
53 o Lateralorbitofrontal Transversetemporal Superiortemporal
> i P VentraDC
07 £ Med|a|orbﬂofrontalmmawe Lateralo ‘P%ncalcalrme - ,el—E‘r:?orhinal
Fusiform ota =~ Festeentral Erontalpol unets.
e * Palhdum Insula Llngual M|dd|etemporal
$ Insula Amscai Perlcalcarlne H ippocam rlNJmS Hi
o o weLingual Hippocampus o I Ippg%ﬁgn pus
] o Mlddletem oral e
2 Cadale Paricalcarine VentraidC Cuneus et Patidom pmmm — falioum pest IRECHESTS
& Supramarginal Entertina! Amygdaia LINGUAI Entorhinal cmonm-conex VentralDC Trar ste‘[setrlniora‘
Rostralanteriorcingulate ’ Mldd\:tempor‘a\ Amygdala
" upramarginal i Supramarginal
Hippocampus
B . D DEM vs SCZ_ DEM vs BD DEM vs DEP DEM vs GAD
Brain WM %
E ((\Y) § 05 (("77 *“ (""7)}\
g (4 7 ~,
AUC Eosi% ,asi & "‘ © A@g;: 5 o1 & Yo )5
8 |
o
& oy Body of GG . i ot st s
ix cres/stria temninal
0.70 L b dFormx zgeﬁ/sma t;rmm?hs o;;;?;::{;f;"g ¢ FSup cerebEHEiSr pEd‘unc\E : adle
: omix Sagtel aretum
% @ scz id. cerebellar peduncle Genuof GO L o Retrolenticular IC
R Cingulum h|ppocampus Splenium of CC .. Retrolenticular IC aropmmvas  SPIENIUM OF CC micr
o NP, Cosbralpornce = o 1 i PE e Cingulum hippocampus Cingulum hlppocampus Pos. limb of IC
a Cingulum hlppocampus
° Sup. cerebellar peduncle  Pos. limb of IC cma0s:limbofIC g tons
< Pos. limb of IC Body of CC Mid. cerebellar peduncle Body of CC

Fomix Cres/stna terminalis

Sagittal stratum
Cingulum cingulate 9 ot Cos pinal act Sup. cerebellar peduncle

In. cerebellar peduncle Sup. fronto-ocapit fasciculus

eFigure 9. Pairwise transdiagnostic disease classification and feature weights. Accuracy of
disease classification using brain gray matter (GM, A) and white matter (WM, B) phenotypes
for each pair of disorder groups. Each node represents one disease group. Edge thickness is
modulated by the accuracy of disease classification between the two linked groups, as
guantified by the area under the curve (AUC). Solid lines indicate models that significantly
exceed chance-level accuracy intervals (permutation testing, n=1000, p<0.05, one-tailed, FDR
corrected across 10 disease pairs). Non-significant accuracies are suppressed from the graph.
(C) Regional gray matter features differentiating individuals with dementia from the other
four neuropsychiatric disorders. Feature weights for cortical gray matter volume (Desikan-
Killiany atlas) are rendered on cortical surface for visualization. Word clouds show top-ranked
features including cortical and subcortical regions. The font color indicates weight polarity
(red, positive; blue, negative). The font size is scaled according to the absolute weight of the
feature. (D) Regional white matter features differentiating individuals with dementia from
the other four neuropsychiatric disorders. Feature weights for regional fractional anisotropy
(JHU ICBM-DTI-81 atlas). are rendered in anatomical space. Word clouds show top-ranked
white matter tracts. The font color indicates weight polarity (red, positive; blue, negative).
The font size is scaled according to the absolute weight of the feature. SCZ, schizophrenia; BD,
bipolar disorder; DEP, depression; GAD, generalized anxiety disorder; DEM, dementia.
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eFigure 10. Feature weights differentiating individuals with dementia from other
neuropsychiatric disorders. (A) Feature weights for regional cortical thickness (Desikan-
Killiany atlas) rendered on cortical surface for visualization. Word clouds show top-ranked
featuresincluding cortical regions. The font color indicates weight polarity (red, positive; blue,
negative). The font size is scaled according to the absolute weight of the feature. (B) Feature
weights for regional diffusivity (JHU ICBM-DTI-81 atlas) rendered in anatomical space. The
font color indicates weight polarity (red, positive; blue, negative). The font size is scaled
according to the absolute weight of the feature. SCZ, schizophrenia; BD, bipolar disorder; DEP,
depression; GAD, generalized anxiety disorder; DEM, dementia.
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eTable 1. Brain gray matter phenotypes

Gray matter volume

Cortical thickness

Volume of bankssts

Volume of caudalanteriorcingulate

Volume of caudalmiddlefrontal
Volume of cuneus

Volume of entorhinal

Volume of fusiform

Volume of inferiorparietal
Volume of isthmuscingulate
Volume of lateraloccipital
Volume of lateralorbitofrontal
Volume of lingual

Volume of medialorbitofrontal
Volume of middletemporal
Volume of parahippocampal
Volume of paracentral
Volume of parsopercularis
Volume of parsorbitalis
Volume of inferiortemporal
Volume of parstriangularis
Volume of pericalcarine
Volume of postcentral
Volume of posteriorcingulate
Volume of precentral

Volume of precuneus

Volume of rostralanteriorcingulate

Volume of rostralmiddlefrontal
Volume of superiorfrontal
Volume of superiorparietal
Volume of superiortemporal
Volume of supramarginal
Volume of frontalpole

Volume of transversetemporal
Volume of insula

Volume of Cerebellum-Cortex
Volume of Thalamus-Proper
Volume of Caudate

Volume of Putamen

Volume of Pallidum

Volume of Hippocampus

Volume of Amygdala

Mean thickness of bankssts

Mean thickness of caudalanteriorcingulate

Mean thickness of caudalmiddlefrontal
Mean thickness of cuneus

Mean thickness of entorhinal

Mean thickness of fusiform

Mean thickness of inferiorparietal
Mean thickness of inferiortemporal
Mean thickness of isthmuscingulate
Mean thickness of lateraloccipital
Mean thickness of lateralorbitofrontal
Mean thickness of lingual

Mean thickness of medialorbitofrontal
Mean thickness of middletemporal
Mean thickness of parahippocampal
Mean thickness of paracentral

Mean thickness of parsopercularis
Mean thickness of parsorbitalis

Mean thickness of parstriangularis
Mean thickness of pericalcarine

Mean thickness of posteriorcingulate
Mean thickness of precentral

Mean thickness of precuneus

Mean thickness of rostralanteriorcingulate

Mean thickness of rostralmiddlefrontal
Mean thickness of postcentral

Mean thickness of superiorfrontal
Mean thickness of superiorparietal
Mean thickness of superiortemporal
Mean thickness of supramarginal
Mean thickness of frontalpole

Mean thickness of transversetemporal

Mean thickness of insula
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Volume of Accumbens-area
Volume of VentralDC
Volume of CSF
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eTable 2. Brain white matter phenotypes

Fractional anisotropy (FA)

Mean diffusivity (MD)

Mean FA in middle cerebellar peduncle on FA skeleton
Mean FA in pontine crossing tract on FA skeleton
Mean FA in genu of corpus callosum on FA skeleton
Mean FA in body of corpus callosum on FA skeleton
Mean FA in splenium of corpus callosum on FA
skeleton

Mean FA in fornix on FA skeleton

Mean FA in corticospinal tract on FA skeleton

Mean FA in medial lemniscus on FA skeleton

Mean FA in inferior cerebellar peduncle on FA
skeleton

Mean FA in superior cerebellar peduncle on FA
skeleton

Mean FA in cerebral peduncle on FA skeleton

Mean FA in anterior limb of internal capsule on FA
skeleton

Mean FA in posterior limb of internal capsule on FA
skeleton

Mean FA in retrolenticular part of internal capsule on
FA skeleton

Mean FA in anterior corona radiata on FA skeleton
Mean FA in superior corona radiata on FA skeleton
Mean FA in posterior corona radiata on FA skeleton
Mean FA in posterior thalamic radiation on FA
skeleton

Mean FA in sagittal stratum on FA skeleton

Mean FA in external capsule on FA skeleton

Mean FA in cingulum cingulate gyrus on FA skeleton
Mean FA in cingulum hippocampus on FA skeleton
Mean FA in fornix cres+stria terminalis on FA skeleton
Mean FA in superior longitudinal fasciculus on FA
skeleton

Mean FA in superior fronto-occipital fasciculus on FA
skeleton

Mean FA in uncinate fasciculus on FA skeleton

Mean FA in tapetum on FA skeleton

Mean MD in middle cerebellar peduncle on FA skeleton
Mean MD in pontine crossing tract on FA skeleton
Mean MD in genu of corpus callosum on FA skeleton
Mean MD in body of corpus callosum on FA skeleton

Mean MD in splenium of corpus callosum on FA skeleton
Mean MD in fornix on FA skeleton

Mean MD in corticospinal tract on FA skeleton

Mean MD in medial lemniscus on FA skeleton

Mean MD in inferior cerebellar peduncle on FA skeleton
Mean MD in superior cerebellar peduncle on FA
skeleton

Mean MD in cerebral peduncle on FA skeleton

Mean MD in anterior limb of internal capsule on FA
skeleton

Mean MD in posterior limb of internal capsule on FA
skeleton

Mean MD in retrolenticular part of internal capsule on
FA skeleton

Mean MD in anterior corona radiata on FA skeleton
Mean MD in superior corona radiata on FA skeleton
Mean MD in posterior corona radiata on FA skeleton

Mean MD in posterior thalamic radiation on FA skeleton
Mean MD in sagittal stratum on FA skeleton

Mean MD in external capsule on FA skeleton

Mean MD in cingulum cingulate gyrus on FA skeleton
Mean MD in cingulum hippocampus on FA skeleton

Mean MD in fornix cres+stria terminalis on FA skeleton
Mean MD in superior longitudinal fasciculus on FA
skeleton
Mean MD in superior fronto-occipital fasciculus on FA
skeleton

Mean MD in uncinate fasciculus on FA skeleton
Mean MD in tapetum on FA skeleton
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eTable 3. Body phenotypes.

Field ID

Variable name

Body system

Hand grip strength
102-0.0
3062-0.0
3063-0.0
3064-0.0
4079-0.0
4080-0.0
21001-0.0
30000-0.0
30010-0.0
30020-0.0
30030-0.0
30040-0.0
30050-0.0
30060-0.0
30070-0.0
30080-0.0
30090-0.0
30100-0.0
30110-0.0
30120-0.0
30130-0.0
30140-0.0
30150-0.0
30160-0.0
30170-0.0
30180-0.0
30190-0.0
30200-0.0
30210-0.0
30220-0.0
30230-0.0
30240-0.0
30250-0.0
30260-0.0
30270-0.0
30280-0.0
30290-0.0
30300-0.0
30510-0.0
30520-0.0

Hand grip strength (average)

Pulse rate, automated reading

Forced vital capacity (FVC)

Forced expiratory volume in 1-second (FEV1)
Peak expiratory flow (PEF)

Diastolic blood pressure, automated reading
Systolic blood pressure, automated reading
Body mass index (BMI)

White blood cell (leukocyte) count

Red blood cell (erythrocyte) count
Haemoglobin concentration

Haematocrit percentage

Mean corpuscular volume

Mean corpuscular haemoglobin

Mean corpuscular haemoglobin concentration
Red blood cell (erythrocyte) distribution width
Platelet count

Platelet crit

Mean platelet (thrombocyte) volume
Platelet distribution width

Lymphocyte count

Monocyte count

Neutrophill count

Eosinophill count

Basophill count

Nucleated red blood cell count

Lymphocyte percentage

Monocyte percentage

Neutrophill percentage

Eosinophill percentage

Basophill percentage

Nucleated red blood cell percentage
Reticulocyte percentage

Reticulocyte count

Mean reticulocyte volume

Mean sphered cell volume

Immature reticulocyte fraction

High light scatter reticulocyte percentage
High light scatter reticulocyte count
Creatinine (enzymatic) in urine

Potassium in urine
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Musculoskeletal
Cardiovascular
Pulmonary
Pulmonary
Pulmonary
Cardiovascular
Cardiovascular
Musculoskeletal
Immune
Immune
Immune
Immune
Immune
Immune
Immune
Immune
Immune
Immune
Immune
Immune
Immune
Immune
Immune
Immune
Immune
Immune
Immune
Immune
Immune
Immune
Immune
Immune
Immune
Immune
Immune
Immune
Immune
Immune
Immune

Renal

Renal



30530-0.0
30600-0.0
30610-0.0
30620-0.0
30630-0.0
30640-0.0
30650-0.0
30660-0.0
30670-0.0
30680-0.0
30700-0.0
30710-0.0
30720-0.0
30730-0.0
30740-0.0
30750-0.0
30760-0.0
30770-0.0
30780-0.0
30790-0.0
30810-0.0
30830-0.0
30840-0.0
30850-0.0
30860-0.0
30870-0.0
30880-0.0
30890-0.0

FEV1-FVC ratio
Waist-hip
circumference ratio
Heel bone mineral
density

Ankle spacing width
Cholesterol ratio

21021-0.0

Sodium in urine

Albumin

Alkaline phosphatase

Alanine aminotransferase (ALT)
Apolipoprotein A
Apolipoprotein B

Aspartate aminotransferase (AST)
Direct bilirubin

Urea

Calcium

Creatinine

C-reactive protein

Cystatin C

Gamma glutamyltransferase
Glucose

Glycated haemoglobin (HbAlc)
HDL cholesterol

IGF-1

LDL direct

Lipoprotein A

Phosphate

SHBG

Total bilirubin

Testosterone

Total protein

Triglycerides

Urate

Vitamin D

FEV1-FVC ratio

Waist-hip circumference ratio

Heel bone mineral density (average)

Ankle spacing width (average)
Cholesterol ratio

Arterial stiffness index

Renal

Renal, Hepatic
Musculoskeletal, Hepatic
Hepatic

Metabolic

Metabolic

Hepatic

Hepatic

Renal
Musculoskeletal, Renal
Renal

Immune

Renal

Hepatic

Metabolic

Metabolic

Metabolic

Body

Metabolic

Metabolic
Musculoskeletal, Renal
Body

Hepatic

Body

Renal, Hepatic
Metabolic

Renal

Musculoskeletal

Pulmonary
Musculoskeletal

Musculoskeletal
Musculoskeletal
Metabolic

Cardiovascular
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eTable 4. Disease categories used for the estimation of phenotype weights specific to each

organ system.

Organ Number of ICD-10
system patients code Code description
Cardiovascular 47,085 110 Essential (primary) hypertension
111 Hypertensive heart disease
112 Hypertensive renal disease
113 Hypertensive heart and renal disease
115 Secondary hypertension
125 Chronic ischaemic heart disease
150 Heart failure
170 Atherosclerosis
Pulmonary 47,102 J41 Simple and mucopurulent chronic bronchitis
142 Unspecified chronic bronchitis
J43 Emphysema
Ja4a Other chronic obstructive pulmonary disease
J45 Asthma
147 Bronchiectasis
Musculoskeletal 9,718 M60 Myositis
M61 Calcification and ossification of muscle
M62 Other disorders of muscle
M63 Disorders of muscle in diseases classified elsewhere
M80 Osteoporosis with pathological fracture
M81 Osteoporosis without pathological fracture
M82 Osteoporosis in diseases classified elsewhere
Immune 12,335 D55 Anaemia dut to enzyme disorders
D56 Thalassaemia
D57 Sickle-cell disorders
D58 Other hereditary haemolytic anaemias
D59 Acquired haemolytic anaemia
D60 Acquired pure red cell aplasia [erythroblastopenia]
D61 Other aplastic anaemia
D63 Anaemia in chronic diseases classified elsewhere
D64 Other anaemias
Disseminated intravascular coagulation [defibrination
D65 syndrome]
D66 Hereditary factor viii deficiency
D67 Hereditary factor ix deficiency
D68 Other coagulation defects
D69 Purpura and other haemorrhagic conditions
D70 Agranulocytosis
D71 Functional disorders of polymorphonuclear neutrophils
D72 Other disorders of white blood cells
D73 Diseases of spleen
D74 Methaemoglobinaemia
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D75 Other diseases of blood and blood-forming organs
Certain diseases involving lymphoreticular tissue and

D76 reticulohistiocytic system
Other disorders of blood and blood-forming organs in
D77 diseases classified elsewhere
D80 Immunodeficiency with predominantly antibody defects
D81 Combined immunodeficiencies
D82 Immunodeficiency associated with other major defects
D83 Common variable immunodeficiency
D84 Other immunodeficiencies
D86 Sarcoidosis
Other disorders involving the immune mechanism, not
D89 elsewhere classified
Hepatic 947 K70 Alcoholic liver disease
K72 Hepatic failure, not elsewhere classified
K73 Chronic hepatitis, not elsewhere classified
K74 Fibrosis and cirrhosis of liver
K75 Other inflammatory liver diseases
K76 Other diseases of liver
K77 Liver disorders in diseases classified elsewhere
Renal 4,489 N18 Chronic renal failure
Metabolic 70,024 E10 Insulin-dependent diabetes mellitus
E11 Non-insulin-dependent diabetes mellitus
E12 Malnutrition-related diabetes mellitus
E13 Other specified diabetes mellitus
E14 Unspecified diabetes mellitus
E78 Disorders of lipoprotein metabolism and other lipidaemias
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eTable 5. Diagnostic codes of schizophrenia.

Code type Code Code description

UK Biobank Self Report 1289 Schizophrenia

ICD9 295 Schizophrenic disorders

ICD9 2950 Simple type

ICD9 2951 Hebephrenic type

ICD 9 2952 Catatonic type

ICD9 2953 Paranoid type

ICD9 2954 Acute Schizophrenic episode

ICD 9 2955 Latent schizophrenia

ICD9 2956 Residual schizophrenia

ICD9 2957 Schizoaffective type

ICD9 2958 Other specified types of schizophrenia

ICD9 2959 Unspecified schizophrenia

ICD9 297 Delusional disorders

ICD9 2970 Paranoid state, simple

ICD9 2971 Paranoia

ICD9 2972 Paraphrenia

ICD9 2973 Induced psychosis

ICD9 2978 Other specified paranoid states

ICD9 2979 Unspecified paranoid state

ICD9 2983 Acute paranoid reaction

ICD9 2984 Psychogenic paranoid psychosis

ICD 10 F20 Schizophrenia

ICD 10 F200 Paranoid schizophrenia

ICD 10 F201 Hebephrenic schizophrenia

ICD 10 F202 Catatonic schizophrenia

ICD 10 F203 Undifferentiated schizophrenia

ICD 10 F204 Post-schizophrenic depression

ICD 10 F205 Residual schizophrenia

ICD 10 F206 Simple schizophrenia

ICD 10 F208 Other schizophrenia

ICD 10 F209 Schizophrenia, unspecified

ICD 10 F21X Schizotypal disorder

ICD 10 F22 Persistent delusional disorders

ICD 10 F220 Delusional disorder

ICD 10 F228 Other persistent delusional disorders

ICD 10 F229 Persistent delusional disorder, unspecified
ICD 10 F23 Acute and transient psychotic disorders

ICD 10 F230 Acute polymorphic psychotic disorder without symptoms of schizophrenia
ICD 10 F231 Acute polymorphic psychotic disorder with symptoms of schizophrenia
ICD 10 F232 Acute schizophrenia-like psychotic disorder
ICD 10 F233 Other acute predominantly delusional psychotic disorders
ICD 10 F238 Other acute and transient psychotic disorders
ICD 10 F239 Acute and transient psychotic disorder, unspecified
ICD 10 F24X Induced delusional disorder
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ICD 10
ICD 10
ICD 10
ICD 10
ICD 10
ICD 10
ICD 10
ICD 10

F25

F250
F251
F252
F258
F259
F28X
F29X

Schizoaffective disorders

Schizoaffective disorder, manic type
Schizoaffective disorder, depressive type
Schizoaffective disorder, mixed type
Other schizoaffective disorders
Schizoaffective disorder, unspecified
Other nonorganic psychotic disorders
Unspecified nonorganic psychosis
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eTable 6. Diagnostic codes of depression.

Code type Code Code description

UK Biobank Self Report 1286  Depression

ICD9 311 Depressive disorder, not elsewhere classified

ICD9 3119  Depressive disorder, not elsewhere classified

ICD 10 F32 Depressive episode

ICD 10 F320  Mild depressive episode

ICD 10 F321  Moderate depressive episode

ICD 10 F322  Severe depressive episode without psychotic symptoms

ICD 10 F323 Severe depressive episode with psychotic symptoms

ICD 10 F328  Other depressive episodes

ICD 10 F329  Depressive episode, unspecified

ICD 10 F33 Recurrent depressive disorder

ICD 10 F330  Recurrent depressive disorder, current episode mild

ICD 10 F331  Recurrent depressive disorder, current episode moderate

ICD 10 F332  Recurrent depressive disorder, current episode severe without psychotic symptoms
ICD 10 F333  Recurrent depressive disorder, current episode severe with psychotic symptoms
ICD 10 F334  Recurrent depressive disorder, currently in remission

ICD 10 F338  Otherrecurrent depressive disorders

ICD 10 F339  Recurrent depressive disorder, unspecified
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eTable 7. Diagnostic codes of bipolar disorder.

Code type Code Code description

UK Biobank Self Report 1291 Mania/bipolar disorder/manic depression

ICD9 2960 Manic-depressive psychosis, manic type

ICD9 2962 Manic-depressive psychosis, circular type but currently manic

ICD9 2963 Major depressive disorder, recurrent episode

ICD 9 2964 Manic-depressive psychosis, circular type but currently depressed

ICD9 2965 Manic-depressive psychosis, circular type, current condition not specified

ICD 10 F302 Mania with psychotic symptoms

ICD 10 F31 Bipolar affective disorder

ICD 10 F310 Bipolar affective disorder, current episode hypomanic

ICD 10 F311 Bipolar affective disorder, current episode manic without psychotic symptoms

ICD 10 F312 Bipolar affective disorder, current episode manic with psychotic symptoms

ICD 10 F313 Bipolar affective disorder, current episode mild or moderate depression

1CD 10 F314 Bipolar affective disorder, current episode severe depression without psychotic
symptoms

1D 10 F315 Bipolar affective disorder, current episode severe depression with psychotic
symptoms

ICD 10 F316 Bipolar affective disorder, current episode mixed

ICD 10 F317 Bipolar affective disorder, currently in remission

ICD 10 F318 Other bipolar affective disorders

ICD 10 F319 Bipolar affective disorder, unspecified
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eTable 8. Diagnostic codes of generalized anxiety disorder.

Code type Code Code description Notes

UK Biobank Self

Report 1287 Anixety/panic attacks This is not necessarily GAD. Not included.

ICD9 3000 Anxiety states 3000.02 is GAD but UKB does not have. Not included.
ICD 10 F411 Generalised anxiety disorder Included
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eTable 9. Diagnostic codes of dementia.

Code type Code Code description

UK Biobank Self Report 1263 Dementia/Alzheimers/Cognitive Impairment
ICD9 2902 Senile dementia, depressed or paranoid type
ICD9 2903 Senile dementia with acute confusional state
ICD9 2904 Arteriosclerotic dementia

ICD9 2912 Other alcoholic dementia

ICD9 2941 Dementia in other conditions classified elsewhere
ICD9 3310 Alzheimer's disease

ICD9 3311 Pick's disease

ICD 9 3312 Senile degeneration of brain

ICD9 3315 Creutzfeldt-Jakob disease

ICD 10 A810 Sporadic Creutzfeldt-Jakob disease

ICD 10 FOO Dementia in Alzheimer's disease

ICD 10 FO00 Dementia in Alzheimer's disease with early onset
ICD 10 FOO1 Dementia in Alzheimer's disease with late onset
ICD 10 F002 Dementia in Alzheimer's disease, atypical or mixed type
ICD 10 FO09 Dementia in Alzheimer's disease, unspecified

ICD 10 FO1 Vascular dementia

ICD 10 FO10 Vascular dementia of acute onset

ICD 10 FO11 Multi-infarct dementia

ICD 10 FO12 Subcortical vascular dementia

ICD 10 FO13 Mixed cortical and sub-cortical vascular dementia
ICD 10 FO18 Other vascular dementia

ICD 10 FO19 Vascular dementia, unspecified

ICD 10 FO2 Dementia in other diseases classified elsewhere
ICD 10 F020 Dementia in Picks disease

ICD 10 FO21 Dementia in Creutzfeldt-Jacob disease

ICD 10 F022 Dementia in Huntington’s disease

ICD 10 FO23 Dementia in Parkinson’s disease

ICD 10 F024 Dementia in HIV disease

ICD 10 F028 Dementia in other specified diseases classified elsewhere
ICD 10 FO3 Unspecified dementia

ICD 10 FO51 Delirium superimposed on dementia

ICD 10 F106 Mental and behavioural disorders due to use of alcohol - amnesic syndrome
ICD 10 G30 Alzheimer’s disease

ICD 10 G300 Alzheimer’s disease with early onset

ICD 10 G301 Alzheimer’s disease with late onset

ICD 10 G308 Other Alzheimer's disease

ICD 10 G309 Alzheimer's disease unspecified
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ICD 10 G310 Circumscribed brain atrophy

ICD 10 G311 Senile degeneration of brain
ICD 10 G318 Other specified degenerative diseases of nervous system
ICD 10 1673 Binswanger's disease
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