Supporting Information Appendix

Orally Administrable Therapeutic Synthetic Nanoparticle for Zika Virus

Bapurao Surnar,^{a,b} Mohammad Z. Kamran,^{a,b§} Anuj S. Shah,^{a§} Uttara Basu,^a Nagesh Kolishetti,^{a,f} Sapna Deo,^{a,c} Dushyantha T. Jayaweera,^{d,e} Sylvia Daunert,^{a,b,c,d} and Shanta Dhar*^{a,b,c}

- a. Department of Biochemistry and Molecular Biology, Leonard M. Miller School of Medicine, University of Miami, 1011 NW 15th St, Miami, FL 33136, USA
- b. Dr. JT Macdonald Foundation Biomedical Nanotechnology Institute of the University of Miami, Leonard M. Miller School of Medicine, University of Miami, 1951 NW 7th Ave, Suite 475, Miami, FL 33136, USA
- c. Sylvester Comprehensive Cancer Center, Leonard M. Miller School of Medicine, University of Miami, 1475 NW 12th Ave, Miami, FL 33136, USA
- d. University of Miami Clinical and Translational Science Institute, Leonard M. Miller School of Medicine, University of Miami, 1120 NW 14th St, Suite 710, Miami, FL 33136, USA
- e. Department of Medicine, Miami Center for AIDS Research, Leonard M. Miller School of Medicine, University of Miami, 1580 NW 10th Ave, Miami, FL 33136, USA
- f. Department of Immunology and Nano-Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA

E-mail: shantadhar@med.miami.edu

[§]M.Z.K. and A.S.S. contributed equally to this work.

^{*}To whom correspondence should be addressed.

Materials: All chemicals were used as received without further purification unless Ivermectin. N'-dicyclohexylcarbodiimide otherwise mentioned. N, (DCC). dimethylaminopyridine (DMAP), N-hydroxysuccinimide (NHS), 6-aminohexanoic acid, maleic anhydride, N,N-diisopropylethylamine (DIPEA), sucrose, and D-(+)-trehalose dihydrate were purchased from Sigma-Aldrich. Acid terminated poly(DL-lactide-coglycolide) (PLGA-COOH) of inherent viscosity dL/g, 0.15 to 0.25 was purchased from Durect LACTEL® absorbable Polymers. Polyethylene glycol (H2N-PEG2000-NH2) was procured from JenKem Technology USA. Deuterated solvents, CDCl₃ and DMSO-d6 were purchased from Cambridge Isotope Laboratories Inc. Regenerative cellulose membrane Amicon Ultra centrifugal 100 kDa filters were purchased from Merck Millipore Ltd. Strata C18-T columns (catalog number 8B-S004-EAK) were purchased from Phenomenex. Copper grids for transmission electron microscopy (TEM) were purchased from Electron Microscopy Sciences. Qdot® 705 ITK™ Amino (PEG) Quantum Dots (catalog number Q21561MP) and ProLong® Gold anti-fade reagent with 4',6-diamidino-2-phenylindole (DAPI) were purchased from Life Technologies. Trans-well system polycarbonate (0.4-µm pore size, 12-well plates) were purchased from Corning, Lowell, MA. The tight junction antibody ZO-1 (catalog number ab59720) was purchased from Abcam. Alexa Fluor 488 goat anti-rabbit IgG secondary antibody (catalog number A11008) was procured from Invitrogen, ThermoFisher Scientific. Phosphate buffered saline (1X PBS) was purchased from Gibco (reference number 10010-023). Goat serum Aldrich (catalog number was obtained from Sigma G9023). Glutamine, penicillin/streptomycin trypsin-EDTA solution, HEPES buffer (1 M in water), and sodium pyruvate were procured from Sigma Life Sciences. Dulbecco's Modified Eagle's medium

(DMEM) and fetal bovine serum (FBS) were purchased from Gibco Life Technologies. Mouse monoclonal IgG, Fc-Rn (A-6) (Catalog number SC-393064) was purchased from Santa Cruz Biotechnology. Zika virus NS1 antibody (EA88) (catalog number. MA5-24583) was purchased from Invitrogen. Flag-tagged Zika NS1 plasmid (Catalog number 79641) was procured from Addgene. Native human IgG FC fragment protein (catalog number Ab90285) was procured from Abcam. Ammonium persulfate (Catalog number 161-0180), tris/glycine/SDS buffer (Catalog number 161-0732), SDS-PAGE gel preparation kit TGX stain-free™ fast cast™ acrylamine 10% (Catalog number 161-0182), and Clarity™ western ECL substrate (Catalog number 170-5060) were purchased from Bio-Rad Inc. Beta-actin antibody (Catalog number ab8226), nitrocellulose membrane (catalog number 88018), and tween-20 was purchased from Fisher Bioreagents. Simulated gastric fluid (SGF) was purchased from Ricca chemical and Omeprazole was procured from Sigma.

Instruments: 1 H and 13 C NMR spectra were recorded on 400 MHz Bruker NMR spectrometer. Gel permeation chromatographic (GPC) analyses were performed on Shimadzu LC20-AD prominence S4 liquid chromatographer equipped with a refractive index detector and water columns; molecular weights were calculated using a conventional calibration curve constructed from narrow polystyrene standards using DMF as an eluent at a temperature of 40 $^{\circ}$ C. Dynamic light scattering (DLS) measurements were carried out using a Malvern Zetasizer Nano ZS system. Distilled water was purified by passage through a Millipore Milli-Q Biocel water purification system (18.2 M Ω) containing a 0.22 μ m filter. Absorbance analyses were performed on a Bio-Tek Synergy HT microplate reader. High-performance liquid chromatography (HPLC) analyses were

made on an Agilent 1200 series instrument equipped with a multi-wavelength UV-visible and a fluorescence detector. Cells were counted using Countess® Automated Cell Counter procured from Invitrogen. TEM images were acquired using a JEOL JEM-1400 equipped with a Gatan Orius SC 200D CCD digital camera with a magnification of 80K. Inductively coupled plasma mass spectrometry (ICP-MS) studies were performed on an Agilent 7900 ICP-MS instrument. Mitochondrial bioenergetics assays were performed on XF°96 Extracellular Flux Analyzer (Agilent Seahorse Biosciences). TEER measurements were performed on a Millicell® ERS-2 Voltohmmeter Instrument (Catalog number MERS00002) purchased from Millipore. Confocal microscopy images were obtained using an Olympus FluoView FV3000. H and E images were captured using a Zeiss Stemi 2000-CS stereoscope fitted with a CL-1500 ECO SteREO light source.

	Title	Citation	Procedure used in synthesis of NPs	Type of NPs	Size (nm) Zeta potential (mV)	% Loading % EE	Application	Shortcomings
1	Polyanhydride Nanoparticle Delivery Platform Dramatically Enhances Killing of Filarial Worms	PLoS Negl Trop Dis 2015, 9 (10); e0004173	Solid/oil/oil nanoprecipitation	Microparticles	250 Not provided	5% Not Provided	Reduce the microfilaria	Incomplete characterizati of NPs Non-spherical NPs Large size No targeting ability No antiviral activity
2	Lipid Nanostructured Carriers Systems for Ivermectin and Methoprene Aiming Parasite Control	Quim. Nova. 2016, vol.39, n.9, pp.1034- 1043	Nanoprecipitation	Lipid nanoparticles	210 Not provided	7% Not provided	Anti-parasitic treatment	Incomplete characterization of NPs Large size No targeting ability No antiviral activity
3	lvermectin-loaded solid lipid nanoparticles: preparation, characterization, stability and transdermal behavior	Artificial cells, Nanomedicine and Biotechnology, 2018, 46 (2), 255	Hot homogenization	Lipid nanoparticles	312 -30	10% 98%	Treatment of scabies.	Incomplete characterization of NPs Large size No targeting ability No antiviral activity
4	lvermectin-Loaded Polymeric Nanoparticles: Screening the Effects of Polymers, Methods, and the Usefulness of Mathematical Models	Journal of Nanoscience and Nanotechnology, 2017 , 17(6), pp. 4218-4234	Nanoprecipitation	Nanocapsules	-30	3% Not provided	Used to study Korsmeyer- Peppas's generalized equation	Incomplete characterization of NPs Only mathematical models, no biological experimental evaluation
5	lvermectin-loaded lipid nanocapsules: toward the development of a new antiparasitic delivery system for veterinary applications	Parasitology Research 2016, 115(5), 1945-53	Hot homogenizations	Lipid nanocapsules	55 -17	Not provided 98%	Anti-parasitic treatment	 Incomplete characterization of NPs No targeting ability No antiviral activity
6	Liposomal Systems as Nanocarriers for the Antiviral Agent Ivermectin	International Journal of Biomaterials Volume 2016, Article ID 8043983	Ethanol injection	Liposomes	30 to 350 Not provided	Not provided 98%	To treat Dengue Virus	No targeting ability Limited translational use due to large size
7	Design and in vitro characterization of ivermectin nanocrystals	Pharm Dev Technol. 2017 Sep;22(6):809- 817	Emulsification	Nano suspensions	215 Not provided	1% Not provided	NP synthetic model	No targeting abilityNot biodegradable
8	Safety test of Ivermectin nanoemulsion on beef cattle	Guangdong Nongye Kexue (2014), 41(2), 125-127	Emulsification	Nano suspensions	Not provided	2% Not provided	Safety study	Incomplete characterization of NPs No targeting ability No antiviral activity
9	Preparation and property evaluation of ivermectin nanoemulsion for injection	Xumu Shouyi Xuebao (2011), 42(8), 1161-1167	Emulsification	Nano suspensions	Not provided	5% Not provided	NP synthetic model	No targeting abilityNot biodegradableNo pharmaceutical application
10	Ivermectin lipid-based nanocarriers as novel formulations against head lice	Parasitology research (2017), 116(8), 2111-2117	Phase inversion procedure	Nanocapsules	55 Not provided	0.11% Not provided	Against head lice	Incomplete characterization of NPs No targeting ability No antiviral activity
11	Therapeutic efficacy of poly (lactic-co-glycolic acid) nanoparticles encapsulated ivermectin (nanoivermectin) against Brugian filariasis in experimental rodent model	Parasitology research (2014), 113(2), 681-91	Nanoprecipitation	Nano-IVM	96 Not provided	74% Not provided	Brugian filariasis	Incomplete characterization of NPs No targeting ability No antiviral activity

Figure S1. (A) ¹H NMR and (B) ¹³C NMR of MAL-NHS in CDCl₃.

Figure **S2**. LC-MS-ESI of MAL-NHS.

Figure S3. (A) ¹H NMR and (B) ¹³C NMR of PLGA-*b*-PEG-NH₂ in CDCl₃.

Figure S4. (A) ¹H NMR and (B) ¹³C NMR of PLGA-*b*-PEG-MAL in CDCl₃.

Figure S5. DLS histograms of (A) Mal-NP, (B) Mal-IVM10-NP, (C) Mal-IVM20-NP, (D) Mal-IVM30-NP, (E) Mal-IVM40-NP and (F) Mal-IVM50-NP in nanopure water at 37° C.

Figure S6. Zeta potential (mV) of (A) Mal-NP, (B) Mal-IVM10-NP, (C) Mal-IVM20-NP, (D) Mal-IVM30-NP, (E) Mal-IVM40-NP and (F) Mal-IVM50-NP in nanopure water at 37° C.

Figure S7. TEM images of (A) NT-Mal-NP and (B) NT-Mal-IVM-NP stained with 4% of uranyl acetate.

Figure S8. (A) DLS histograms of (A) NT-Mal-NP, (B) T-Fc-NP, (C) NT-Mal-IVM-NP, and (D) T-Fc-IVM-NP in nanopure water at 37° C.

Figure S9. Zeta potential (mV) of (A) NT-Mal-NP, (B) T-Fc-NP, (C) NT-Mal-IVM-NP, and (D) T-Fc-IVM-NP in nanopure water at 37° C.

Figure S10. (A) Diameters, (B) Zeta potentials of NT-Mal-QD-NP and T-Fc-QD-NP. (C) Fc conjugation efficiency of targeted NPs by the bicinchoninic acid assay (BCA). (D) TEM images of T-Fc-QD-NP (unstained)

Figure S11. Quantification of QD (Cd) loaded NPs in the (A) apical and (B) basolateral sides of the endothelial cell barrier.

Figure S12. Biodistribution of ivermectin, NT-OH-IVM-NP, T-Fc-IVM-NP after oral administration to Balb/c albino mice. Data are mean %ID per gram of tissue \pm SD (n = 3 mice per group).

Figure S13. Alanine aminotransferase (ALT) and Aspartate Aminotransferase (AST) levels from the blood plasma of BALB/c mice (n=3 in each group) treated with single dose of articles (at a dose of 40 mg/kg with respect to ivermectin) *via* oral gavage for 24 h.

Figure S14. Release of IVM from NT-Mal-IVM-NPs at pH 3 and 5 at 37 °C

Figure S15. Stability of T-Fc-IVM-NP in simulated gastric fluid (SGF) at (A) room temperature and (B) 37 °C.

Figure S16. Stability of NT-Mal-IVM-NP in simulated gastric fluid (SGF) without (A) and with (B) Omeprazole at room temperature.

Figure S17. *In vitro* efficacy of (A) ivermectin, (B) NT-OH-IVM-NP, (C) NT-Mal-IVM-NP, and (D) T-Fc-IVM-NP in Caco-2 cells by the MTT assay. (E) IC₅₀ values of the articles in the Caco-2 cells after treatment for 72 h.

Figure S18. Comparison of FcRn expression level in Caco-2, HEK293T, and JEG-3 cells by western blotting.

NT-Mal-IVM-NP NT-Mal-IVM-NP:Trehalose

After 180 Days

Figure S19. Morphological comparison of NT-Mal-IVM-NP and NT-Mal-IVM-NP with sucrose after 180 days by TEM.