1	Supporting Information
2	Reaction of Fe ^{II} _{aq} with Peroxymonosulfate and Peroxydisulfate in
3	Presence of Bicarbonate: Formation of Fe^{IV} aq and
4	Carbonate Radical Anions
5	
6	
7	Aswin Kottapurath Vijay, ^{a,b} Vered Marks, ^c Amir Mizrahi, ^d Yinghao Wen, ^e Xingmao Ma, ^e
8 9	Virender K. Sharma, ^f Dan Meyerstein ^{* a,b}
10	^a Department of Chemical Sciences and The Radical Research Center Ariel University,
11	Ariel 40700, Israel.
12 13	E-mail: <u>danm@ariel.ac.11</u> ^b Chemistry Department Ben-Gurion University Beer-Sheva 8410501 Israel
14	^c Department of Chemical Sciences, Ariel University, Ariel 40700, Israel
15	^d Chemistry Department, Nuclear Research Centre Negev, Beer-Sheva 84190, Israel
16 17	College Station, Texas, 77843, United States
18	^f Program for the Environment and Sustainability, Department of Environmental and
19 20	Occupational Health, Texas A&M University, College Station, Texas 77843, United States
20	
21	
22	
23	
24 25	
25	Deges 21 Tables 1 Figures 17
20 27	rages:21, Table:1, Figures:17
27 28	
20	
30	
31	
32	
33	
34	
35	

Table of contents

Table S1	.3
igure S1	.4
igure S2	.5
igure S3	.6
igure S4	.7
igure S5	.8
igure S6	.9
igure S7	10
igure S8	10
igure \$9	11
igure \$10	12
igure \$11	13
igure S12	14
igure \$13	15
Text S1	16
Text S2	17
Text S3	18
igure S14	19
igure \$15	19
igure \$16	20
igure S17	21

37890412344567890122345567890612346566789071237456778901288888888888888888888888888888888888
84
85
0.J
80
87
88
89
90
91
92
93

Table S1. Six different setups used to determine the degradation efficiencies of SMX and SDM

1	atment	$[PMS]_0 (mM)$	[PDS] ₀ (mM)	$[\mathrm{Fe}^{\mathrm{II}}_{aq}]_0 (\mathrm{mM})$	[bicarbonate] ₀ (mM)
I PM	S alone	0.04	0	0	0
2 Fe ^{II} a	_q - PMS	0.04	0	0.2	0
3 Fe ^{II} aq bica	– PMS - rbonate	0.04	0	0.2	0.5
4 PD	S alone	0	1.0	0	0
5 Fe ^{II} a	_{iq} - PDS	0	1.0	2.0	0
6 Fe ^{II} aq bica	– PDS - rbonate	0	1.0	2.0	5.0

Figure S1. Formation of Fe(III) as a function of time during the reaction of $Fe(H_2O)_6^{2+}$ with PMS at different concentrations of PMS while keeping a constant low concentration of HCO_3^{-} . (A) [PMS] = 0.05 mM, (B) [PMS] = 0.10 mM, and (C) [PMS] = 0.20 mM. (Experimental initial concentrations in the Fenton solutions:)[Fe^{II}] = 0.020 mM, [HCO₃⁻] = 0.50 mM.

Figure S2. Formation of Fe(III) as a function of time during the reaction of $Fe(H_2O)_6^{2+}$ with PDS at different concentrations of PDS while keeping a constant concentration of HCO_3^- . (A) [PDS] = 1.0 mM, (B) [PDS] = 2.0 mM, and (C) [PDS] = 3.0 mM. (Experimental initial concentrations in the Fenton solutions: $[Fe^{II}] = 0.10$ mM, $[HCO_3^-] = 8.0$ mM).

132

133

- 135
- 136
- 137

Figure S3. Typical kinetic curves of the formation of Fe(III) during the reaction of $Fe(H_2O)_6^{2+}$ with PMS at different concentrations of Fe^{II}_{aq} under a constant concentration of low HCO₃⁻. (A) $[Fe^{II}_{aq}=0.02 \text{ mM}, (B) [Fe^{II}_{aq}]=0.04 \text{ mM}, (C) [Fe^{II}_{aq}]=0.06 \text{ mM}, \text{ and } (D) [Fe^{II}_{aq}]=0.08$ mM (Experimental initial concentrations in the Fenton solutions: [PMS] = 0.10 mM and $[HCO_3^-] = 0.30 \text{ mM}).$

Figure S4. Typical kinetic curves of the formation of Fe(III) during the reaction of $Fe(H_2O)_6^{2+}$

with PMS at different concentrations of Fe^{II}_{aq} under a constant concentration of high HCO₃⁻.

156 (A) $[Fe^{II}_{aq} = 0.02 \text{ mM}, (B) [Fe^{II}_{aq}] = 0.04 \text{ mM} \text{ and } (C) [Fe^{II}_{aq}] = 0.08 \text{ mM} (Experimental initial)$

157 concentrations in the Fenton solutions: [PMS] = 0.10 mM and $[HCO_3^-] = 0.60 \text{ mM}$).

Figure S5. Typical kinetic curves of the formation of Fe(III) during the reaction of $Fe(H_2O)_6^{2+}$

with PDS at different concentrations of Fe^{II}_{aq} under a constant concentration of low HCO₃⁻.

171 (A) $[Fe^{II}_{aq}] = 0.10 \text{ mM}, (B) [Fe^{II}_{aq}] = 0.20 \text{ mM}, \text{ and } (C) [Fe^{II}_{aq}] = 0.40 \text{ mM Fe}^{II}_{aq}.$ (Experimental

initial concentrations in the Fenton solutions: $[PDS] = 1.0 \text{ mM}, [HCO_3^-] = 2.0 \text{ mM}$

Figure S6. Typical kinetic curves of the formation of Fe(III) during the reaction of $Fe(H_2O)_6^{2+}$

with PDS at different concentrations of Fe^{II}_{aq} under a constant concentration of high HCO₃⁻.

186 (A) $[Fe^{II}_{aq}] = 0.10 \text{ mM}, (B) [Fe^{II}_{aq}] = 0.20 \text{ mM}, \text{ and } (C) [Fe^{II}_{aq}] = 0.40 \text{ mM Fe}^{II}_{aq}.$ (Experimental

initial concentrations in the Fenton solutions: $[PDS] = 1.0 \text{ mM}, [HCO_3^-] = 5.0 \text{ mM})$

Figure S7. Dependence of k_{obs} at pH 7.40 on the concentrations of Fe^{II}_{aq}, at a constant concentration of PMS (A) [HCO₃⁻] = 0.30 mM (Low [HCO₃⁻]) and (B) [HCO₃⁻] = 0.60 mM (High [HCO₃⁻]). Here in both cases, [PMS] = 0.10 mM

206

Figure S8. Dependence of k_{obs} at pH 7.40 on the concentrations of Fe^{II}_{aq}, at a constant concentration of PDS (A) [HCO₃⁻] = 2.0 mM (Low [HCO₃⁻]) and (B) [HCO₃⁻] = 5.0 mM (High [HCO₃⁻]). Here in both cases, [PDS] = 1.0 mM

Figure S9. Kinetic curves of the formation of Fe(III) during the reaction of Fe(H₂O)₆²⁺ with PMS in the absence of bicarbonate at different pH's (A) pH = 5.80, (B) pH = 7.0 and (C) pH = 8.40. (Experimental initial concentrations in the Fenton solutions: [PMS] = 0.20 mM, [Fe^{II}_{aq}] = 0.020 mM)

Figure S10. Kinetic curves of the formation of Fe(III) during the reaction of Fe(H₂O)₆²⁺ with PDS in the absence of bicarbonate at different pH's (A) pH = 5.80, (B) pH = 7.0 and (C) pH = 8.40. (Experimental initial concentrations in the Fenton solutions: [PDS] = 1.0 mM, [Fe^{II}_{aq}] = 0.10 mM)

Figure S11. Dependence of k_{obs} on the pH in the absence of bicarbonate at a constant concentration of (A) PMS ([PMS] = 0.20 mM, [Fe^{II}_{aq}] = 0.020 mM) and (B) PDS ([PDS] = 1.0 mM, [Fe^{II}_{aq}] = 0.10 mM)

Figure S12. Typical kinetic curve of the reaction of $Fe(H_2O)_6^{2+}$ with PMS in presence of excess PMS taken by stopped flow instrument with different concentration of (A) 0 mM HCO₃⁻ (B) 0.10 mM HCO₃⁻ (C) 0.20 mM HCO₃⁻ and (D) 0.40 mM HCO₃⁻. The initial concentrations in the Fenton solutions are $[Fe^{II}] = 0.020$ mM, [PMS] = 0.20 mM. The data of the conventional spectrophotometric measurements were analyzed graphically, and the *k* values were determined by fitting single exponential curves to the absorbance *vs*. time plots.

Figure S13. Typical kinetic curve of the reaction of $Fe(H_2O)_6^{2+}$ with PDS in presence of excess PDS taken by stopped flow instrument with different concentration of (A) 0 mM HCO_3^- (B) 1.0 mM HCO_3^{-} (C) 2.0 mM HCO_3^{-} and (D) 3.0 mM HCO_3^{-} . The initial concentrations in the Fenton solutions are $[Fe^{II}] = 0.10 \text{ mM}$, [PDS] = 1.0 mM.

280	<u>Text S1:</u>	
281	Mechanism I:	
282	Small slope	
283	$\operatorname{Fe}(\operatorname{H}_{2}\operatorname{O})_{6}^{2+} + \operatorname{HSO}_{5}^{-} \rightleftharpoons (\operatorname{H}_{2}\operatorname{O})_{5}\operatorname{Fe}^{\operatorname{II}}(\operatorname{O}_{2}\operatorname{SO}_{3}) / (\operatorname{H}_{2}\operatorname{O})_{3}\operatorname{Fe}^{\operatorname{II}}(\operatorname{O}_{2}\operatorname{SO}_{3}) + \operatorname{H}_{3}\operatorname{O}^{+}$	(8)
284	$(\mathrm{H}_{2}\mathrm{O})_{5}\mathrm{Fe^{II}}(\mathrm{O}_{2}\mathrm{SO}_{3}) / (\mathrm{H}_{2}\mathrm{O})_{3}\mathrm{Fe^{II}}(\mathrm{O}_{2}\mathrm{SO}_{3}) + \mathrm{HCO}_{3}^{-} \rightarrow \mathrm{Fe^{III}}_{aq} + \mathrm{CO}_{3}^{-} + \mathrm{SO}_{4}^{2-}$	
285	(small slope)	(9)
286 287	Since the rate determining step (rds) is Eq. (9), the overall rate law for this refollows:	action is as
288	rate = $k_9 [(H_2O)_5 Fe^{II}(O_2SO_3) / (H_2O)_3 Fe^{II}(O_2SO_3)] [HCO_3^-]$	(9'')
289	Since $(H_2O)_5Fe^{II}(O_2SO_3)/(H_2O)_3Fe^{II}(O_2SO_3)$ is an intermediate, from eqtn (8),	
290	$k_8 [Fe(H_2O_6^{2+}] [HSO_5^{-}] = k_{-8} [(H_2O_5Fe^{II}(O_2SO_3) / (H_2O_3Fe^{II}(O_2SO_3))]$	(8'')
291	This equation may also be written in the following alternative way,	
292	$[(H_2O)_5Fe^{II}(O_2SO_3) / (H_2O)_3Fe^{II}(O_2SO_3)] = K_8 [Fe(H_2O)_6^{2+}] [HSO_5^{-}]$	
293	Eq. (9") may be rewritten as,	
294	rate = $k_9 K_8 [Fe(H_2O)_6^{2+}] [HSO_5^{-}] [HCO_3^{-}]$	
295		
296	Large slope	
297	$\operatorname{Fe}(\operatorname{H}_2\operatorname{O})_6^{2+} + \operatorname{HCO}_3^{-} \rightleftharpoons (\operatorname{H}_2\operatorname{O})_3 \operatorname{Fe}(\operatorname{CO}_3) + \operatorname{H}_3\operatorname{O}^+ + 2\operatorname{H}_2\operatorname{O}$	(10)
298	$(\mathrm{H}_{2}\mathrm{O})_{3}\mathrm{Fe}(\mathrm{CO}_{3}) + \mathrm{HSO}_{5}^{-}/\mathrm{S}_{2}\mathrm{O}_{8}^{2-} \rightarrow \mathrm{Fe}^{\mathrm{III}}_{aq} + \mathrm{CO}_{3}^{-} + \mathrm{SO}_{4}^{2-}/2\mathrm{SO}_{4}^{2-}$	
299	(large slope)	(10')
300	The overall rate law of this reaction is as follows:	
301	$r = k_{10}$, [(H ₂ O) ₃ Fe(CO ₃)] [HSO ₅ -/S ₂ O ₈ ²⁻]	(10'')
302	Here, (H ₂ O) ₃ Fe(CO ₃) is the intermediate formed. Rearranging the equilibrium ra	ate equation
303	(10), the $[(H_2O)_3Fe(CO_3)]$ is given by,	
304	$[(H_2O)_3Fe(CO_3)] = K_{10} [Fe(H_2O)_6^{2+}] [HCO_3^{-}]$	
305	The overall rate of this reaction can be expressed by rearranging the Eq. (10'') as	
306	rate = \mathbf{k}_{10} , \mathbf{K}_{10} [Fe(H ₂ O) ₆ ²⁺] [HCO ₃ ⁻] [HSO ₅ ⁻ /S ₂ O ₈ ²⁻]	
307		

308	<u>Text S2</u>	
309	Mechanism II:	
310	Small slope	
311	$\operatorname{Fe}(\operatorname{H}_{2}\operatorname{O})_{6}^{2+} + \operatorname{HCO}_{3}^{-} \rightleftharpoons (\operatorname{H}_{2}\operatorname{O})_{3}\operatorname{Fe}(\operatorname{CO}_{3}) + \operatorname{H}_{3}\operatorname{O}^{+} + 2\operatorname{H}_{2}\operatorname{O}$	(11)
312	$(H_2O)_3Fe(CO_3) + HSO_5 / S_2O_8^{2-} \rightarrow Fe^{III}_{aq} + CO_3 + SO_4^{2-}/2SO_4^{2-}$	
313	(small slope)	(12)
314	The overall rate law for this reaction $(rds = (12))$ is as follows	
315	$r = k_{12} [(H_2O)_3Fe(CO_3)] [HSO_5/S_2O_8^{2-}]$	(12')
316	Here, $(H_2O)_3Fe(CO_3)$ is an intermediate	
317	From (11),	
318	$r_{forward} = r_{backward}$	
319	$k_{11} [Fe(H_2O)_6^{2+}] [HCO_3^{-}] = k_{-11} [(H_2O)_3Fe(CO_3)]$	(12'')
320	$[(H_2O)_3Fe(CO_3)] = K_{11}[Fe(H_2O)_6^{2+}] [HCO_3^{-}]$	
321	Rearrange the Eq. (12') by substituting the value for $[(H_2O)_3Fe(CO_3)]$,	
322	rate = $k_{12} K_{11} [Fe(H_2O)_6^{2+}] [HCO_3^{-}] [HSO_5^{-}/S_2O_8^{2-}]$	
323	Large slope	
324	$(H_2O)_3Fe(CO_3) + HSO_5/S_2O_8^{2-} \rightleftharpoons$	
325	$(H_2O)Fe(CO_3)(O_2SO_3)/(H_2O)Fe(CO_3)(S_2O_8) + H_3O^+$	(13)
326	$(H_2O)Fe(CO_3)(O_2SO_3)/(H_2O)Fe(CO_3)(S_2O_8) + HCO_3^- \rightleftharpoons$	
327	$Fe^{III}(CO_3)_{aq} + CO_3 - SO_4^2 - 2SO_4^2$ (large slope)	(14)
328	Overall rate is as followed:	
329	$r = k_{14} [(H_2O)Fe(CO_3)(O_2SO_3)/(H_2O)Fe(CO_3)(S_2O_8)] [HCO_3^-]$	(14')
330	Here $(H_2O)Fe(CO_3)(O_2SO_3)/(H_2O)Fe(CO_3)(S_2O_8)$ is an intermediate	
331	Hence, from Eq. (13)	
332	$[(H_2O)Fe(CO_3)(O_2SO_3)/(H_2O)Fe(CO_3)(S_2O_8)] = K_{13}[(H_2O)_3Fe(CO_3)] [HSO_3]$	$O_5^{-}/S_2^{-}O_8^{2-}]$
333		(14'')
334	Substitute the $[(H_2O)_3Fe(CO_3)]$ and $[(H_2O)Fe(CO_3)(O_2SO_3)/(H_2O)Fe(CO_3)]$	(S ₂ O ₈)] in (14')
335	rate = $k_{14}K_{13}K_{11}$ [Fe(H ₂ O) ₆ ²⁺] [HCO ₃ ⁻] ² [HSO ₅ ⁻ /S ₂ O ₈ ²⁻]	
336		
337		

338	<u>Text S3</u>	
339	Mechanism III:	
340	Small slope	
341	$\operatorname{Fe}(\operatorname{H_2O})_6^{2+} + \operatorname{HCO}_3^{-} \rightleftharpoons (\operatorname{H_2O})_3 \operatorname{Fe}(\operatorname{CO}_3) + \operatorname{H_3O^+} + 2\operatorname{H_2O}$	(15)
342	$(H_2O)_3Fe(CO_3) + HSO_5 / S_2O_8^{2-} \rightarrow Fe^{III}_{aq} + CO_3 + SO_4^{2-}/2SO_4^{2-} \text{ (small slope)}$	(16)
343	The overall rate law for this reaction (rds (16)) is as follows:	
344	$r = k_{16} [(H_2O)_3Fe(CO_3)] [HSO_5^{-}/S_2O_8^{2-}]$	(16')
345	From (15),	
346	$[(H_2O)_3Fe(CO_3)] = K_{15}[Fe(H_2O)_6^{2+}] [HCO_3^{-}]$	
347	Eq. (16') may be rewritten as,	
348	rate = $k_{16}K_{15}[Fe(H_2O)_6^{2+}]$ [HCO ₃ ⁻] [HSO ₅ ⁻ /S ₂ O ₈ ²⁻]	
349		
350	Large slope	
351 352	$Fe(H_2O)_6^{2+} + 2HCO_3^{-} \rightleftharpoons (H_2O)_2Fe(CO_3)_2^{2-} + 2H_3O^{+} + 2H_2O$ $(H_2O)_2Fe(CO_3)_2^{2-} + HSO_5^{-}/S_2O_8^{2-} \rightarrow Fe^{III}(CO_3)_{aq} + CO_3^{-} + SO_4^{2-}/2SO_4^{2-}$	(17)
353	(large slope)	(18)
354	Overall rate law (rds (18)) will be	
355	$r = k_{18}[(H_2O)_2Fe(CO_3)_2^{2-}] [HSO_5^{-}/S_2O_8^{2-}]$	(18')
356	From (17),	
357	$[(H_2O)_2Fe(CO_3)_2^{2-}] = k_{17} [Fe(H_2O)_6^{2+}] [HCO_3^{}]^2 / k_{-17}$	
358	Eq. (18') may be rewritten as,	
359	rate = $k_{18}K_{17}[Fe(H_2O)_6^{2+}]$ [HCO ₃ ⁻] ² [HSO ₅ ⁻ /S ₂ O ₈ ²⁻]	
360		
361		
362		
363		
364		
365		
366		
367		
368		

Figure S14. GC determination of methane and ethane with FID detector at four different pH 370 in the absence of HCO_3^- after the Fenton reaction of (A) Fe^{2+} and HSO_5^- and (B) Fe^{2+} and 371 $S_2O_8^{2-}$ in presence of excess Fe^{II}_{aq} and $(CH_3)_2SO$. $[Fe^{II}] = 0.50 \text{ mM}$, $[HSO_5^{-}/S_2O_8^{2-}] = 0.10 \text{ mM}$, 372 $[(CH_3)_2SO] = 25.0 \text{ mM}.$ 373

Figure S15. GC determination of methane and ethane with FID detector at pH 2.2 and at neutral 377 pH in the absence and presence of HCO_3^- after the Fenton reaction of (A) Fe^{2+} and HSO_5^- and 378 (B) Fe^{2+} and $S_2O_8^{2-}$ in presence of excess Fe^{II}_{aq} and $(CH_3)_2SO$. $[Fe^{II}] = 0.50 \text{ mM}$, $[HSO_5^{-}/S_2O_8^{2-}$ 379 $] = 0.10 \text{ mM}, [(CH_3)_2SO] = 25.0 \text{ mM}, [HCO_3^-] = 3.0 \text{ mM}.$ 380

381

Figure S16. The changes in concentrations of PMSO and PMSO₂ in the **(a)** Fe^{II}_{aq} - PMS and **(b)** Fe^{II}_{aq} - PDS systems in presence of high bicarbonate concentrations (Initial pH = 7.0. The PMS system: [PMS]₀ = 0.04 mM; [Fe^{II}_{aq}]₀ = 0.2 mM; [bicarbonate]₀ = 20.0 mM; [PMSO]₀ = 20.0 µM. The PDS system: [PMS]₀ = 1.0 mM; [Fe^{II}_{aq}]₀ = 2.0 mM; [bicarbonate]₀ = 200.0 mM; [PMSO]₀ = 200.0 µM)).

Figure S17. The pseudo-first-order rate constants of the degradation of SMX and SDM by different persulfate systems ($[SMX]_0 = [SDM]_0 = 5.0 \mu$ M; initial pH = 7.0. The PMS system: $[PMS]_0 = 0.04 \text{ mM}$; $[Fe^{II}_{aq}]_0 = 0.2 \text{ mM}$; $[bicarbonate]_0 = 0.5 \text{ mM}$. The PDS system: $[PDS]_0 =$ 1.0 mM; $[Fe^{II}_{aq}]_0 = 2.0 \text{ mM}$; $[bicarbonate]_0 = 5.0 \text{ mM}$.).

393