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Web Appendix A: Proof of Proposition 1

Proposition 1 Let πik follow the multinomial logit model defined in equation (6) of the manuscript, and let
ψik have a univariate intrinsic CAR prior as defined in equation (7) of the manuscript. Under Pólya–Gamma
data augmentation, the full conditional distribution of ψik is N(mik, Vik), where

mik =
1
mi

∑
l∈δi ψlk + U∗ik
m2
i

ν2k
+ 1

ω2
ik

, and Vik =
1

m2
i

ν2k
+ 1

ω2
ik

, (1)

where U∗ik = Uik−1/2
ωik

+cik−wT
i ρk, Uik is an indicator equal to 1 if zi = k and 0 otherwise, cik = log{

∑K
h6=k exp(wT

i ρh+
ψih)}, and ωik ∼ PG(1, 0).
Proof. The full conditional distribution of ψik, denoted p(ψik| · · · ), may be expressed as

p(ψik| · · · ) = p(ψik|ψ−ik, z, ...) =
p(ψik, ψ−ik, z, ...)

p(ψ−ik, z, ...)

∝ p(ψik|ψ−ik)︸ ︷︷ ︸
CAR prior

p(z|ψik, ψ−ik, ...)︸ ︷︷ ︸
likelihood

∝

N

 1

mi

∑
l∈δi

ψlk,
ν2k
mi

 n∏
i=1

K∏
k=1

πUikik ,

where Uik is an indicator equal to 1 if zi = k and 0 otherwise. Given Uk = (U1k, ..., Unk)
T , we may re-

parameterize the model for πik as

πik = P(Uik = 1)

=
exp(wT

i ρk + ψik)∑K
h=1 exp(wT

i ρh + ψih)

=
exp(wT

i ρk + ψik)∑K
h6=k exp(wT

i ρh + ψih) + exp(wT
i ρk + ψik)

.

Dividing through by
∑K

h6=k exp(wT
i ρh + ψih) gives

πik =
exp(wT

i ρk + ψik − cik)
1 + exp(wT

i ρk + ψik − cik)
=

exp(γik)

1 + exp(γik)
,
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where cik = log{
∑K

h6=k exp(wT
i ρh + ψih)} and γik = wT

i ρk + ψik − cik. Now, we notice that with respect to ψik,
the likelihood contribution may be simplified as follows.

p(ψik| · · · ) ∝ p(ψik|ψ−ik)
(

eγik

1 + eγik

)Uik ( 1

1 + eγik

)1−Uik

= p(ψik|ψ−ik)


(

eγik
1+eγik

)Uik ( 1
1+eγik

)
(

1
1+eγik

)Uik


= p(ψik|ψ−ik)


(

eγik
1+eγik

1
1+eγik

)Uik (
1

1 + eγik

)
= p(ψik|ψ−ik)

(eγik)Uik

1 + eγik
.

The likelihood is now in the logistic form, which Polson et al. (2013) showed can be written as a scale mixture
of normals with Pólya–Gamma precision terms ωik ∼ PG(1, 0). Thus, we have

p(ψik| · · · ) ∝ p(ψik|ψ−ik)
{
e(Uik−1/2)γik

∫ ∞
0

e−
ωikγ

2
ik

2 p(ωik)dωik

}
= p(ψik|ψ−ik)exp

{
(Uik − 1/2)γik − ωikγ2ik/2

}
∝ p(ψik|ψ−ik)exp

{
−1

2

(
(U∗ik − ψik)2

ω2
ik

)}
,

where U∗ik = Uik−1/2
ωik

+ cik −wT
i ρk. Following standard results from Bayesian normal models (Hoff, 2009), we

find the full conditional of ψik is N(mik, Vik), as defined in equation (1).
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Web Appendix B: MCMC Algorithm

1. Update multivariate skew-normal outcome model parameters µk, ξk, and Σk.

For k = 1, ...,K:

(a) Update µk:

i. Define nk =
∑n

i=1 Izi=k as the number of spots in mixture component k.

ii. Define Zk as the set of all spot indices assigned to mixture component k.

iii. Define Yk as the nk × g matrix of gene expression values for mixture component k. Similarly
define tk as the length nk vector of truncated normal random effects for mixture component k
and define Φk as the nk × g matrix with rows φT1 , ...,φ

T
nk

.

iv. Define Ek = (Yk −Φk − tTk ξk) and ēk as the column means of Ek.

v. Update µk from its Ng(µnk,Vnk) full conditional, where µnk = Vnk(V
−1
0k µ0k + nkΣ

−1
k ēk) and

Vnk = (V−10k + nkΣ
−1
k )−1.

(b) Update ξk:

i. Define Mk as the nk × g matrix with each row equal to µTk .

ii. Re-define Ek = tk ◦ (Yk −Mk −Φk), where “◦” denotes the Hadamard product, and let ēk be
the g × 1 vector of columns means of Ek.

iii. Update ξk from its Ng(ξnk,Xnk) full conditional, where ξnk = Xnk(X
−1
0k ξ0k + nkΣ

−1
k ēk) and

Xnk =
{

X−10k + (
∑

i∈Zk t
2
i )Σ

−1
k

}−1
.

(c) Update Σk:

i. Re-define Ek = (Yk −Mk −Φk − tTk ξk).

ii. Update Σk from its IW(νnk,Snk) full conditional, where νnk = ν0k +nk and Snk = S0k + ET
kEk.

(d) (optional) Back-transform to original MSN parameterization:

ηik = µk +ψi,

Ωk = Σk + ξkξ
T
k ,

αk =
1√

1− ξTk Ω−1k ξk

Diag(Ωk)
1/2Ω−1k ξk.

2. Update multivariate skew-normal conditional representation random effects ti.

For i = 1, ..., n:

(a) Given zi = k, define Ak = (1 + ξTk Σ−1k ξk)
−1 and define aik = Ak(ξ

T
k Σ−1k (yi − µk − φi)).

(b) Update ti from N[0,∞)(aik,
√
Ak).

3. Update outcome model multivariate CAR random effects φi.

For i = 1, ..., n:

(a) Given zi = k, update φi from its g−dimensional normal full conditional, where E(φi|...) = (Σ−1k +
miΛ)−1(Σ−1k (yi − µk − tiξk) + Λ−1

∑
l∈δi φl) and Cov(φi|...) = (Σ−1k +miΛ)−1.

4. Update multinomial regression CAR random effects (See Proposition 1).

For i = 1, ..., n and k = 2, ...,K, the full conditional distribution of ψik is N(mik, Vik), where

mik =
1
mi

∑
l∈δi ψlk + U∗ik
m2
i

ν2k
+ 1

ω2
ik

, and Vik =
1

m2
i

ν2k
+ 1

ω2
ik

, (2)

where U∗ik = Uik−1/2
ωik

+ cik − wT
i ρk, Uik is an indicator equal to 1 if zi = k and 0 otherwise, cik =

log(
∑K

h6=k exp(wT
i ρh + ψih)), and ωik ∼ PG(1, 0).
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5. Update multinomial regression mixing weight parameters ρk and latent variables ωik.

For k = 2, ...,K:

(a) For i = 1, ..., n, update PG latent variables ωik from PG(1, ηik), where ηik = wT
i ρk + ψik − cik.

(b) Compute Rnk = (R−10k + WTOkW), where Ok is the diagonal matrix with entries (ω1k, ..., ωnk) and
W is the n× p matrix of covariates with rows wT

1 , ...,w
T
n .

(c) Compute ρnk = Rnk(R
−1
0k ρ0k + WTOkU

∗
k), where U∗k =

(
U1k−1/2
ω1k

+ c1k, ...,
Unk−1/2
ωnk

+ cnk

)
.

(d) Update ρk from Np(ρnk,Rnk).

6. Update mixture component labels z1, ..., zn.

For i = 1, ..., n:

(a) Compute the probability of spot i belonging to cluster k under current values of model parameters.
For k = 1, ...,K, compute Pik = dnorm(yi;µk + φk + tiξk,Σk).

(b) Compute πik =
exp(wT

i ρk+ψik)∑K
h=1 exp(w

T
i ρh+ψih)

.

(c) Compute P(zi = k|...) = Pikπik∑K
h=1 Pihπih

.

(d) Update zi from Categorical{P(zi = 1|...), ...,P(zi = K|...)}.

7. Re-map mixture component labels to protect against label switching.

(a) Define ord(z) as the function to return a length K vector containing the order in which each unique
mixture component label appears in z. E.g., in R this is the unique() function.

(b) Initialize z∗ as an empty length n vector for the re-mapped mixture component labels.

(c) For k = 1, ...,K, let z∗[z = ord(z)[k]] = k.

8. Update Λ from its IW(λn,Dn) full conditional, were λn = λ0 + n and Dn = D0 + ΦT (M−A)Φ, where
Φ as the n× g matrix with rows φT1 , ...,φ

T
n , M is an n× n matrix with diagonal elements m1, ...,mn and

all other elements 0, and A is the n× n adjacenty matrix with elements aij = 1 if cell spots i and j are
neighbors and 0 otherwise.
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Web Appendix C: Supplementary Figures
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Figure S1: Skewness of top 3000 spatially variable genes across 32 publicly available HST data sets. The

skewness coefficient s(X) is defined as s(X) = m3/m
3/2
2 , where m2 and m3 are the 2nd and 3rd sample

moments of X, respectively.
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Figure S2: Trace plots for a selection of mean and variance parameters for the simulated mouse brain data
analyzed in Section 4 of the main manuscript. Geweke’s diagnostic z-score statistic is shown to assess model
convergence.
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Figure S3: Trace plots for a selection of mean and variance parameters for the real breast cancer data analyzed in
Section 5.2 of the main manuscript. Geweke’s diagnostic z-score statistic is shown to assess model convergence.
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Figure S4: Top 5 most differentially expressed marker genes in each of the five sub-populations inferred from
the invasive ductal carcinoma analysis in Section 5.2. Each color band in the colored heatmap represents one
cell spot, and normalized gene expression intensities in each cell spot are shown with color, with bright yellow
indicating higher expression and dark purple indicating lower expression. Marker genes were identified using
adjusted p-values obtained from the Wilcoxon Rank Sum test of each gene in each sub-population vs. the same
gene in all other sub-populations.
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Web Appendix D: Supplementary Tables

Table S1: Simulated parameter values and estimates obtained from three model variants: (i) MVN: multivariate
normal clustering without spatial random effects; (ii) MVN Spatial: multivariate normal clustering with CAR
spatial random effects; and (iii) MSN Spatial: multivariate skew-normal clustering with CAR spatial random
effects. Parameter estimates are shown as posterior means with associated 95 % credible intervals.

Parameter True MVN MSN MSN Spatial

µ11 -2.00 -2.72 (-2.86, 1.77) -2.14 (-2.74, 1.62) -2.01 (-2.86, -1.55)
µ12 -1.00 -2.34 (-2.45, 1.01) -0.83 (-1.27, -0.79) -0.87 (-1.04, -0.63)
µ13 1.00 -0.97 (-1.07, 0.64) 1.32 (0.85, 1.53) 1.03 (0.82, 1.24)
µ14 2.00 1.79 (1.66, 2.89) 2.12 (1.95,2.36) 2.03 (1.84, 2.22)
ξ11 -1.50 - -0.95 (-1.59, -0.28) -1.64 (-1.82, -1.46)
ξ12 -0.75 - -0.41 (-0.79, 0.09) -0.78 (-1.14, -0.51)
ξ13 0.75 - 0.63 (0.36, 0.89) 0.75 (0.43, 0.95)
ξ14 1.50 - 1.27 (0.80, 1.52) 1.43 (0.8, 1.74)
Σ111 1.50 2.01 (1.78, 2.68) 1.45 (0.92, 2.21) 1.57 (1.42, 1.74)
Σ112 1.00 1.37 (1.17, 2.13) 1.11 (0.93, 1.75) 1.13 (0.89, 1.25)
Σ113 0.75 0.60 (0.42, 1.77) 0.75 (0.50, 1.45) 0.78 (0.64, 0.95)
Σ114 0.50 0.32 (-0.24, 1.22) 0.42 (0.25, 1.11) 0.49 (0.39, 0.60)
Σ122 1.50 1.37 (1.17, 2.13) 1.59 (0.39, 0.90) 1.61 (1.41, 1.72)
Σ123 1.00 0.79 (0.63, 1.74) 1.05 (0.68, 1.39) 0.88 (0.64, 1.05)
Σ124 0.75 0.32 (0.11, 1.26) 0.82 (0.49, 0.99) 0.71 (0.54, 0.99)
Σ133 1.50 1.71 (1.54, 2.13) 1.41 (1.01, 1.65) 1.52 (1.24, 1.83)
Σ134 1.00 0.32 (0.11, 1.26) 1.03 (0.76, 1.48) 1.11 (0.54, 2.13)
Σ144 1.50 1.48 (1.15, 1.70) 1.87 (1.01, 1.91) 1.44 (1.30, 1.96)
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Table S2: Run time in seconds per 100 MCMC iterations for sagittal anterior mouse brain data. All models
were fit on an M1 iMac with 8gb RAM.

Dimension (g) Run Time (K = 6) Run Time (K = 8) Run Time (K = 10) Run Time (K = 12)

6 54 68 87 106

7 62 77 93 114

8 62 83 97 117

9 63 81 99 122

10 64 89 109 129

11 65 92 118 128

12 72 88 102 131

13 69 90 111 130

14 73 93 114 136

15 77 101 119 146

16 80 97 121 138

17 73 98 121 144

18 83 106 132 151
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Web Appendix E: Inverse-Wishart Sensitivity Analysis

We sought to investigate the sensitivity of posterior inference of z1, ..., zn to the choice of inverse-Wishart prior
scale matrix S0k and degrees of freedom ν0k. We considered the simulated mouse brain data discussed in
Section 4 of the manuscript, which featured n = 2696 cell spots divided into K = 4 sub-populations. We
simulated multivariate outcomes y1, ...yn with g = 4 gene expression features. The outcomes y1, ...yn were
generated according to model (3) of the manuscript, where mixture component-specific parameters µk were
used to achieve separation between mixture components as:

µ1 = (−3, 3,−3, 3), µ2 = (1,−1, 1,−1),

µ3 = (−1, 1,−1, 1), µ4 = (3,−3, 3,−3),

and all mixture components shared a common variance parameter Σ, i.e.,

Σ1 = Σ2 = Σ3 = Σ4 =


1.50 0.25 0.25 0.25
0.25 1.50 0.25 0.25
0.25 0.25 1.50 0.25
0.25 0.25 0.25 1.50

 .
We then fit the SPRUCE model using each combination of prior degrees of freedom ν0k ∈ {2, 4, 6, 10, 100} for

k = 1, ..., 4, and four prior scale parameters S
(1)
0k , ...,S

(4)
0k defined as:

S
(1)
0k =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 , S
(2)
0k =


2 −1 −1 −1
−1 2 −1 −1
−1 −1 2 −1
−1 −1 −1 2

 , S
(3)
0k =


10 1 1 1
1 10 1 1
1 1 10 1
1 1 1 10

 , S
(4)
0k =


1 0 0 0
0 2 0 0
0 0 3 0
0 0 0 4

 .
In Table S3 below, we show the count (%) of misclassified cell spots from each model fit using the the

inverse-Wishart parameter combinations shown above. We found that the model was able to achieve a low
misclassification across all prior parameter combinations. Since the mixture component labeling parameters
z1, ..., zn are our main object of inference, we conclude that most analyses will be robust to specification of
inverse-Wishart priors for Σk.
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Table S3: Count (%) of misclassified cell spots out of a total of 2696 from model fit across a range of inverse-
Wishart parameter combinations. Posterior estimates of cell spot labels were computed from 1000 post burn-in
MCMC samples using a burn-in period of 1000 iterations.

ν0k = 2 ν0k = 4 ν0k = 6 ν0k = 10 ν0k = 100

S0k = S
(1)
0k

2 (0.07%) 2 (0.07%) 0 (0.00%) 2 (0.07%) 2 (0.07%)

S0k = S
(2)
0k

2 (0.07%) 2 (0.07%) 1 (0.04%) 2 (0.07%) 2 (0.07%)

S0k = S
(3)
0k

2 (0.07%) 2 (0.07%) 1 (0.04%) 2 (0.07%) 2 (0.07%)

S0k = S
(4)
0k

2 (0.07%) 3 (0.11%) 1 (0.04%) 2 (0.07%) 2 (0.07%)
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Web Appendix F: Comparison of Model Fit Criteria

We conducted a simulation study to assess the performance of the six model fit criteria discussed in Section 3.3.2
of the manuscript across various levels of clustering signal in the data. Using the ground truth 4−component
mouse brain labels and coordinates studied in Section 4, we simulated three data sets: setting 1, setting 2, and
setting 3, where the separation of simulated mixture components is high in setting 1, moderate in setting 2,
and low in setting 3. As a result, setting 1 presents an “easy” scenario for the model, while settings 2 and 3
represent “medium” and “hard” scenarios, respectively. We control levels of separation in mixture components
using the mean µk and variance Σk parameters of model (3) of the manuscript. UMAP plots summarizing
separation of mixture components under each setting are provided in Figure S7. For each simulated data set,
we fit the SPRUCE model for a range of K = 1, ..., 8 and computed each of the six model fit criteria discussed
in Section 3.3.2. The results are displayed below in Figure S8.

We find that entropy increased markedly for K ≥ 5, reflecting the lack of separation between artificially
separated sub-populations. The negative log-likelihood criteria identified the correct K under settings 1 and
2, but overestimates K in setting 3. Similar patterns were observed with AIC and BIC. DIC identified the
correct model dimension in settings 1 and 2, but was unable to differentiate between models using K ∈ {2, 3, 4}
in setting 3. Finally, WAIC identified the correct model dimension across all settings, and generally preferred
more parsimonious models. Generally speaking, AIC and BIC more clearly identified the correct K in settings
1 and 2 when compared to WAIC and DIC. Thus, while we utilize WAIC due to its reliable performance and
preference for parsimonious models, we conclude that viable alternatives exist for this setting.
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Figure S7: UMAP plots visualizing the relative separation of mixture components across three simulation
settings considered in Section 4.2. (A) Setting 1 with high separation, (B) Setting 2 with moderate separation,
(C) Setting 3 with low separation. Dimensions V1 and V2 represent UMAP coordinates.
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Figure S8: Comparison of six model fit criteria across three simulation settings: (A) setting 1: “easy” data with
clear separation of mixture components, (B) setting 2: “medium” data with moderate separation of mixture
components, and (C) setting 3: “hard” data with low separation of mixture components.
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