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Supplementary Material 

ORIGINs will assemble a large and well-characterized imaging genetics dataset through 

collaborations with world-leaders in infant neuroimaging. This dataset will include information 

from approximately 6809 infants and young children (birth to 6 years of age) representing 19 

parent cohorts. The details on the participant number and study design for each cohort is given in 

Supplementary Table 1.  

Supplementary Table 1: Participant number and study design for each ORIGINs site 

Cohort Site/Study Participants 
(N) 

Study Design 

1 UNC Early Brain Development Study (EBDS) 866 Longitudinal 
2 Growing Up in Singapore Towards Healthy 

Outcomes (GUSTO), Singapore 
500 Longitudinal 

3 Infant Brain Imaging Study (IBIS) 210 Longitudinal 
4 UNC Grewen 1 173 Longitudinal 
5 University of California Irvine (UCI) 142 Longitudinal 
6 Max Planck Institute for Human Cognitive and 

Brain Sciences, Germany 
136 Cross-sectional 

7 UNC Multi-visit Advanced Pediatric Brain 
Imaging Study (MAP) 

94 Cross-sectional 

8 UNC Gut Microbiome and Infant Anxiety 
(GMIA) 

149 Longitudinal 

9 Developing Human Connectome Project 
(King’s College London, Imperial College 
London and Oxford University) 

950 Longitudinal 

10 Baby Connectome Project 500 Accelerated longitudinal 
11 Drakenstein Child Health Study (DCHS), 

South Africa 
290 Longitudinal 

12 UNC Grewen 2 275 Longitudinal 
13 Northwestern Promoting Healthy Brain 

Project (PHBP) 
100 Longitudinal 

14 Harvard University/Boston’s Children 
Hospital 

184 Longitudinal 

15 Northwestern When to Worry (W2W) 100 Longitudinal 
16 University of Denver Care Project 300 Longitudinal 
17 University of Denver Prenatal Pathways (PP) 200 Cross-sectional 
18 Rhode Island Hospital 1070 Accelerated longitudinal 
19 Rochester-Magee 570 Longitudinal 
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Genomic Data: As ORIGINs includes sites with existing data and ongoing recruitment, the 

platform for genotyping varies and is described in Supplementary Table 2. To harmonize data 

generated by different genotyping platforms, we will impute genomes to a common set of SNPs 

using the Michigan Imputation Server. To analyze ancestry within each data set, we will use self-

reported ethnicity confirmed with principal component analyses. The classifications are based on 

the NIH reporting criteria for racial and ethnic categories (American Indian or Alaska Native, 

Asian, Black or African American, Hispanic or Latino, Native Hawaiian or Other Pacific Islander, 

and White). The Black participants from our South African cohort (DCHS) are of African ancestry, 

and the participants from our Singapore cohort (GUSTO) are of Asian ancestry. The Black and 

Asian participants from the US cohorts are African Americans and Asian Americans respectively. 

The black participants from the UK cohort might include Caribbean and African ancestry. We will 

cluster our samples using the SNP confirmed ancestries (expected groups include Caucasians, 

African American, Hispanics, East Asian, and admixed) and impute each of the subgroups with a 

separate library (HRC for Caucasians, CAPA for African Americans, TopMed for Hispanics and 

admixed individuals, and 1000 Genomes for East Asians). We will apply standard quality control 

(QC) on the genotypes (matching reported and genetic sex, removing SNPs with low calling rates) 

before imputation. For each data set, we will retain only imputed SNPs with predicted R2 of at 

least 80%, which yields an actual R2 over 90% for both African Americans and Hispanics. 
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Supplementary Table 2: Genotyping platforms used by each ORIGINs site 

Site Genotyping platform 

Early Brain Development Study (EBDS), UNC(1) Affymetrix Axiom® Genome-Wide LAT and Exome 

arrays 

Growing Up in Singapore Towards healthy Outcomes 

(GUSTO), Singapore(2) 

Illumina Omni express arrays and Illumina Exome 

arrays 

Infant Brain Imaging Study (IBIS) Illumina HumanOmni5 and Exome arrays 

University of California, Irvine(3) Illumina OmniExpress arrays 

Drakenstein Child Health Study (DCHS), Cape 

Town(4,5) 

Illumina PsychArray Beadchip 

Rhode Island Cohort Custom chip from Illumina* 

Developing Human Connectome project Illumina 5m chip 

All other sites Infinium Global Screening Array BeadChip 

*This chip was based on the MEGA chip with additional content from NeuroX. 

Image Analysis: All structural, diffusion MR images, and functional connectivity data will be 

processed at a central site (UNC: structural and diffusion MRI, Cedars-Sinai: resting state 

functional MRI) to ensure consistent processing across all imaging datasets with the same tools 

and appropriately standardized parameter settings. Outlined below are the planned image analysis 

methods for each modality to address site-specific differences in acquisition parameters 

(Supplementary Tables 3-6).  

High-Resolution MRI: To adjust for site-related resolution differences, scans will be up- or 

down-sampled into a common 1mm3 isotropic resolution, corrected for intensity inhomogeneity 

via N4(6), and rigidly co-registered to ICBM space using age-specific pediatric MNI templates(7). 

Skull-stripping will then remove non-brain regions keeping both brain tissue regions (cerebral and 

cerebellar) as well as all sub-arachnoidal cerebrospinal fluid (CSF) spaces. Tissue segmentation 

and subcortical region segmentation will be carried out using automatic, multi-atlas tissue 
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segmentation via the MultiSeg tool developed for the full pediatric age range (8–10). Cortical 

surface reconstruction and quantification of cortical thickness, surface area, and sulcal folding is 

performed with NeoCIVET for neonates and CIVET for older subjects(11,12) employing the 

cortical Destrieux parcellation(13). All processing steps will be visually assessed for appropriate 

quality. In case of failure, the dataset will either be excluded or reprocessed with manual 

registration initialization. No manual editing of the label/segmentation results is performed. If 

available, both T1-weighted and T2-weighted MRI will be employed jointly in the above 

processing. In case T2-weighted MRIs are not available for a cohort, then the whole cohort will 

be processed only with the T1-weighted MRIs. Similarly, when T1-weighted MRIs are not 

available for a cohort, then the whole cohort will be processed only with the T2-weighted MRIs. 
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Supplementary Table 3: T1 Structural MRI Acquisition Parameters for each ORIGINs site 

Cohort Site Platform T1 Scan 
types TR TE Resolution 

1 UNC-EBDS 
Allegra 

FLASH 15 7 0.9x0.9x1.0 
MP-Rage 1820 4.38 1.0x0.9x0.9 
MP-Rage 1820-1900 4.38 1x1x1 

TIM Trio MP-Rage 1820-1900 3.74-3.75 1x1x1 
Prisma MP-Rage 2400 2.22 0.8x0.8x0.8 

2 Singapore Skyra MP-RAGE 2000 2.08 1x1x1 
3 IBIS TIM Trio MP-Rage 2400 2.16 1x1x1 

4 UNC-Grewen 1 Allegra MP-Rage 1820 3.75 1x1x1 
TIM Trio MP-Rage 1820 3.75 1x1x1 

5 UCI TIM Trio MP-Rage 2400 3.16 1x1x1 
6 MPI TIM Trio MP-Rage 5000 2.82 1.3x1.3x1.3 
 

7 UNC-MAP Allegra MP-Rage 1820 4.38 1x1x1 
TIM Trio MP-Rage 1820 3.75 1x1x1 

 
8 UNC-GMIA TIM Trio MP-Rage 1900 3.89 0.8x0.8x0.8 

Prisma MP-Rage 2400 2.22 0.8x0.8x0.8 
9 dHCP  Achieva TSE 4795 8.7 0.8x0.8x0.8 

10 BCP 
(UNC/UMN) Prisma MP-Rage 2400 2.22 0.8x0.8x0.8 

 
11 

DCHS 
 Cape Town 

Allegra MP-RAGE 2530 1.64,3.5,5.36,
7.22,9.08 1x1x1 

Skyra MP-RAGE 2530 1.64,3.5,5.36,
7.22,9.08 1x1x1 

12 UNC-Grewen 2 Prisma MP-Rage 2400 2.22 0.8x0.8x0.8 

13 Northwestern-
PHPB Prisma MP-RAGE 2400 3.19 0.8x0.8x0.8 

14 Harvard TIM Trio mocoEMPRA
GE 2270 1.45 1x1x1 

15 Northwestern-
W2W Prisma MP-RAGE 2400 3.19 0.8x0.8x0.8 

16 Denver-Care  Skyra MP-RAGE 1900 3.07 0.82x0.82x0.8 
17 Denver-Kim Prisma MP-RAGE 2400 2.24 0.8x0.8x0.8 

 
18 Rhode Island TIM Trio MP-Rage 1900 1.1 1.2x1.2x1.2 

Prisma MP-Rage 1900 1.1 1.2x1.2x1.2 
19 Rochester/Pitt Skyra MP-RAGE 2400 2.24 0.8x0.8x0.8 
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Supplementary Table 4: T2 Structural MRI Acquisition Parameters for each ORIGINs site 

Cohort Site Platform 
T2 Scan 

types 
TR TE Resolution 

1 UNC-EBDS 

Allegra 

TSE 5270-6200 119-124 
1.25x1.25x1.9

5 

TSE 7380-7590 119 1.25x1.25x1.5 

TSE 6200 116 
1.25x1.25x1.9

5 

TIM Trio 3D SPACE 3200 406 1x1x1 

Prisma 3D SPACE 3200 563 0.8x0.8x0.8 

2 Singapore 1.5T GE TSE 3500 110 1x1x2 

3 IBIS TIM Trio FSE 3200 499 1x1x1 

4 UNC-Grewen 1 
Allegra TSE 6200 116 1.3x1.3x1.5 

TIM Trio TSE 6200 116 1.3x1.3x1.5 

5 UCI TIM Trio TSE 3200 255 1x1x1 

7 UNC-MAP 
Allegra TSE 5270 119 1.3x1.3x1.5 

TIM Trio TSE 6200 116 1.3x1.3x1.5 

8 UNC-GMIA 
TIM Trio 3D SPACE 3200 406 0.8x0.8x0.8 

Prisma 3D SPACE 3200 563 0.8x0.8x0.8 

9 dHCP  Achieva TSE 12000 156 0.8x0.8x0.8 

10 
BCP 

(UNC/UMN) 
Prisma 3D SPACE 3200 563 0.8x0.8x0.8 

11 
DCHS 

Cape Town 

Allegra 3D SPACE 3500 354 1x1x1 

Skyra 3D SPACE 3500 354 1x1x1 

12 UNC-Grewen 2 Prisma 3D SPACE 3200 563 0.8x0.8x0.8 

13 
Northwestern-

PHPB 
Prisma 3D SPACE 3200 563 0.8x0.8x0.8 

15 
Northwestern-

W2W 
Prisma 3D SPACE 3200 563 0.8x0.8x0.8 

16 Denver-Care Skyra TSE 3200 408 0.86x0.86x0.8 

17 Denver-PP Prisma TSE 3200 564 0.8x0.8x0.8 

19 Rochester/Pitt Skyra TSE 3200 564 0.8x0.8x0.8 
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Diffusion Tensor Imaging (DTI): For DTI, the primary issues affecting harmonization are 

different numbers of unique gradient directions and b-values across sites. Synthetic simulations 

and living phantom studies show that beyond 30 directions, the number of unique gradient 

directions has limited effects on quantification of diffusion tensor properties(14–16). Even when 

comparing to directional data(17), a linear correction via site-specific nuisance covariates captures 

most of the inter-site variation(18), although we prefer and will use more sophisticated approaches 

such as ComBat(19). The same is true for inter-site variation due to different b-values if b-values 

range 700-1500 and analysis focuses on fractional anisotropy (FA), which is less sensitive to inter-

site differences than other tensor measures such as axial (AD) and radial (RD) diffusivity(20). In 

order to reduce variability across sites, we will run tensor estimation excluding any information 

acquired at b values >1500. We will use atlas-based functional fiber profile analysis to analyze 

WM microstructure in 12 major fiber tracts(21). Automated QC will be performed by DTIPrep(22) 

and FSL (23) 6.0.8 including detection of slice-wise intensity changes and excessive motion 

artifacts, correction of susceptibility, motion and eddy current effects, and interpolation of outlier 

voxels (24). Diffusion images with excessive number of volumes with larger motion artifacts, 

missing or corrupted sections will be excluded from later analysis. Additional expert-guided QC 

will be performed with 3DSlicer(25). Our analysis framework is based on streamline tractography 

performed in an hierarchical unbiased average DTI tensor atlas(26,27). Tracts are parameterized 

by length to reveal diffusion properties as a function of location along the tracts, and functional 

statistical analysis methods(28–30) used to compute local statistics.  
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Supplementary Table 5: DTI Acquisition Parameters for each ORIGINs site 

Cohort Site Platform B-values Gradient 
Directions TR TE Resolution 

1 UNC-EBDS 

Allegra 
b=0, b=1000*5 

repetitions 6 5200 73 2x2x2 

b=0, b=1000 42 7680 82 2x2x2 
TIM Trio b=0, b=1000 42 7200 83 2x2x2 

Prisma b=0, b=1500, 
b=3000 79 3222 89.2 1.5x1.5x1.5 

2 Singapore Skyra B=0, b=1000 30 8200 85 2x2x2 

3 IBIS TIM Trio Variable (1000) 
Variable (2000) 

25 
65 

12800 
11100 

102 
103 2x2x2 

4 UNC-Grewen 1 Allegra b=0, b=1000 42 7200 83 2x2x2 
TIM Trio b=0, b=1000 42 7200 83 2x2x2 

5 UCI TIM Trio b=0, b=1000 42 8900 83 2x2x2 
6 MPI TIM Trio b=0, b=1000 60 8000 83 1.9x1.9x1.9 
7 UNC-MAP Allegra b=0, b=1000 42 7680 82 2x2x2 

8 UNC-GMIA 
TIM Trio b=0, b=300, 

b=700, b=2000 117 4000 90 2x2x2 

Prisma b=0, b=1500, 
b=3000 79 3222 89.2 1.5x1.5x1.5 

9 dHCP  Achieva 
b=0, b=400, 

b=1000, 
b=2600 

280 3800 90 1.5x1.5x1.5 

10 BCP 
(UNC/UMN) Prisma b=0, b=1500, 

b=3000 79 3222 89.2 1.5x1.5x1.5 

 
11 Cape Town Allegra b=0, b=1000 45 7900 90 1.6x1.4x1.3 

Skyra b=0, b=1000 45 7900 90 1.6x1.4x1.3 

12 UNC-Grewen 2 Prisma b=0, b=1500, 
b=3000 79 3222 89.2 1.5x1.5x1.5 

13 Northwestern-
PHBP Prisma b=0, b=1500, 

b=3000 79 3474 89.2 1.5x1.5x1.5 

14 Harvard TIM Trio b=0, b=1000 60 4600 89 2x2x2 

15 Northwestern-
W2W Prisma b=0, b=1500, 

b=3000 79 3474 89.2 1.5x1.5x1.5 

16 Denver-Care Skyra b=300, b=300, 
b=800,b=2000 104 6100 60 2x2x2 

17 Denver-PP Prisma b=0, 
b=1500,b=3000 98 3222 89.2 1.5x1.5x1.5 

 
18 Rhode Island 

TIM Trio b=0, b=800, 
b=2500 80 2700 76 2x2x2 

TIM Trio b=700, b=1500, 
b=2000 90 7500 104 2.5x2.5x2.5 

Prisma b=700, b=1500, 
b=2000  90 7500 104 2.5x2.5x2.5 

19 Rochester/Pitt Skyra b=0, 
b=1500,b=3000 79 3222 89.2 1.5x1.5x1.5 
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Functional connectivity (rsfMRI): We will adapt an established ENIGMA rsfMRI pipeline to 

define network specific ROIs for functional connectivity assessment(31) in infants and young 

children. This pipeline differs from others in 2 important respects that make it ideal for 

harmonizing data across sites: 1) it does not require a structural T1‐weighted (T1w) brain MRI 

scan to regress out nuisance signals from ventricles and white-matter, or for anatomical registration 

to a common atlas space. Rather, it uses a deformable template created from 1,100 individual T1w 

images(32), which incorporates spatial distortion patterns. This approach eliminates technical 

variation that might arise from site-related differences in T1w data quality and co-registration 

biases that could influence rsfMRI phenotypes. 2) It uses a noise reduction technique based on 

Marchenko–Pastur Principal Component Analysis (MP‐PCA) to improve signal‐to‐noise ratio 

(SNR), thus reducing methodological variance across sites(31). Because subject motion can alter 

time courses of resting state data(33), the pipeline incorporates rigorous motion correction and 

motion censoring (“scrubbing”)(34). To adapt this pipeline for use in infants and young children, 

we will incorporate brain template and functional atlas developed for infant data into the analytical 

workflow and merge it with adult template(35). We will calculate ROI-ROI connectivity estimates 

and use these to extract measures of functional connectivity within Smith’s 9 cortical networks, 

together with system-level efficiency measures based on graph theoretical calculations(36,37), for 

use in subsequent analyses.  
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Supplementary Table 6:  Resting State fMRI Acquisition Parameters for each ORIGINs site 

Cohort Site Platform Scan type TR TE Resolution 

1 UNC-EBDS 
Allegra T2*-weighted EPI 2000 32 4x4x4 

TIM Trio T2*-weighted EPI 2000 32 4x4x4 
Prisma T2*-weighted EPI 800 37 2x2x2 

2 Singapore Skyra T2*-weighted EPI 2660 27 3x3x3 
3 IBIS TIM Trio T2*-weighted EPI 2500 27 4x4x4 

4 UNC-Grewen 1 Allegra T2*-weighted EPI 2000 32 4x4x4 
TIM Trio T2*-weighted EPI 2000 32 4x4x4 

5 UCI TIM Trio T2*-weighted EPI 2000 30 3.4x3.4x4 
6 MPI TIM Trio T2*-weighted EPI 2000 30 3x3x3 

7 UNC-MAP Allegra T2*-weighted EPI 2000 32 4x4x4 
TIM Trio T2*-weighted EPI 2000 32 4x4x4 

8 UNC-GMIA TIM Trio T2*-weighted EPI 2460 32 3x3x3 
Prisma T2*-weighted EPI 800 37 2x2x2 

9 dHCP  Achieva 

multiband (MB) 
9x 

accelerated echo-
planar imaging 

392 38 2.15x2.15x2.15 

10 BCP 
(UNC/UMN) Prisma T2*-weighted EPI 800 37 2x2x2 
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DCHS 
Cape Town 

Allegra T2*-weighted EPI 2000 30 4.0x2.5x2.5 
Skyra T2*-weighted EPI 2000 30 4.0x2.5x2.5 

12 UNC-Grewen 2 Prisma T2*-weighted EPI 800 37 2x2x2 

13 Northwestern-
PHBP Prisma T2*-weighted EPI 800 37 2x2x2 

 
14 Harvard TIM Trio 

T2*-weighted EPI 3000 30 3x3x3 
Simultaneous 

multi-slice EPI 950 30 3x3x3 

15 Northwestern-
W2W Prisma T2*-weighted EPI 800 37 2x2x2 

16 Denver-Care Skyra T2*-weighted EPI 2000 28 3.3x3.3x4 
17 Denver-PP Prisma T2*-weighted EPI 720 37 2x2x2 
18 Rhode Island TIM Trio T2*-weighted EPI 2500 34 3x3x3 
19 Rochester/Pitt Skyra T2*-weighted EPI 720 37 2x2x2 
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Data Analysis Plans: For each neuroimaging measure we will fit a longitudinal model to capture 

change over time as in Figure 3. We anticipate that different imaging measures will exhibit 

different patterns of change We will examine a range of models including linear, quadratic, 

Gompertz, logistic, and non-parametric models such as splines, and assess via graphical displays 

and formal model comparison (e.g., based on AIC) which functional form is best. Model 

parameters (such as intercept and asymptote and predicted values at specific ages) will serve as 

phenotypes for our genetic analyses. 

 

Supplementary Figure 1: Random regression growth curve model to describe the development of an imaging measure.  

 

We refer to these as developmental imaging phenotypes or DIPs. We will use GBLUP models to 

estimate proportion of variance of each DIP explained by common SNPs (aka SNP-heritability) 

and to dissect phenotypic associations between DIPs into genetic and non-genetic components 

(i.e., genetic and environmental correlations). We will use plink to perform multivariate GWA 

analyses on DIPs. Because the number of traits we will scan is large, we will first cluster traits 
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according to their (co)variance patterns and perform multi-trait GWA within each phenotype-

clusters. We will consider possible sex x SNP interaction effects in additional analyses. Our 

GWAS Discovery set will consist of data from all cohorts except Rhode Island (n=1,070 kids), 

Rochester (n=570 kids), and University of Denver Prenatal Pathways (PP, n=200); we will leave 

this data out for validation. We will use GWA results published by the Psychiatric Genetic 

Consortium (PGC)(38) to identify DIPs associated with transdiagnostic and disorder-specific risk. 

Finally, we will test if genetically influenced DIPs predict parent-report measures of impulsivity, 

anxiety, and aggressive behavior using penalized canonical correlation analysis (CCA). 

Challenges and limitations: The different cohorts involved in this group have different study 

designs including cross sectional, longitudinal, and accelerated longitudinal designs. They have 

also been genotyped with different platforms and used different scanners and acquisition protocols. 

Thus, one of the primary challenges of this effort is the harmonization of data across sites. We 

have already discussed our approach to the harmonization of genetic data. For neuroimaging data, 

we will address cohort differences via 4 approaches. 1) To reduce variability and potential site 

bias, we will send all imaging data to a central site for uniform processing and quality control. 2) 

We will take account of different acquisition parameters in our image analyses as described 

previously. For example, we will adjust for site-differences in structural MRI resolution by up-or 

down sampling into 1x1x1mm3isotropic resolution. 3) We note that there are limitations of MRI 

in studying changes at the early postnatal age and imaging related factors of variance across this 

early development as biological processes, particularly myelination in infancy, change the 

interpretation of measurements derived from MR imaging. Technical choices like image resolution 

also affect measurements differently as brain size varies tremendously from neonate stage to 2 

years of age. We use age-appropriate atlases to minimize misspecification of segmented data. 
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These technical limitations will be considered when interpreting the developmental trajectories 

that we derive from our MRI data. 4) In our statistical analyses, we will adjust for cohort effects 

and model site-specific variances by methods similar to those used in ComBat (39), an established 

batch-effect correction approach that has been used successfully to harmonize cortical thickness 

metrics, fractional anisotropy maps, and connectivity measures derived from fMRI data (17,18,40–

42). 5) In additional analyses we will identify potential site effects, via cross-validation 

(successively omitting each cohort), and by stratifying analyses by variables that differ across sites, 

such as prematurity and ancestry. The project aims to obtain ~6100 genomes from infants and 

young children, imaging data from ~5100 children, and behavioral assessments data from ~ 3800 

children. Supplementary table 7 shows details on the varying scan ages and behavioral data ages 

from the different sites. While it is a limitation that not all sites acquired behavioral data, our 

planned behavioral analyses are appropriately powered. 
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Supplementary Table 7: Scan ages and behavioral assessment ages in each cohort 

Cohort Scan Ages Behavioral Data (Ages) 

1 1m, 12m, 24m, 48m, 72m BASC-2 (48m, 72m) 

2 Birth, 54m, 72m CBCL (24m, 48m) 

3 3m, 6m, 9m, 12m, 15m, 24m, 36m CBCL (36m) 

4 1m, 12m, 24m  

5 1m, 12m, 24m CBCL (18m,24m) 

6 37m to 82m  

7 1m  

8 1mand 12m  

9 birth to 1m CBCL (18m) 

10 birth to 60m CBCL (18m-60m) 

11 1m, 24m CBCL (24m, 42m,60m) 

12 1m, 3m, 12m  

13 1m, 6m, 12m  

14 
Cohort 1: 2-18m, 60m, 72m, 84m 

Cohort 2: 2-12m, 14-24m, 60m 
 

15 12m, 36m  

16 1m  

17 1m CBCL (6m,12m) 

18 birth to 60m 
CBCL (18m-72m), 

BASC-2 (24m-72m) 

19 1m, 12m, 48m BASC-2 (36) 
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Data Availability: NIMH grant R01 MH123716-01A1 supports secondary analysis of existing 

genetic data, generation of new genetic data from existing biosamples, and collection and 

genotyping of new biosamples. In accordance with NIMH data sharing policies, clinical and 

demographic covariate data, CBCL data, genetic data, and extracted neuroimaging data from 

children in the latter two categories will be accessible through the NIMH Data Archive (NDA # 

3905).  This includes children in cohorts 3,4,7,8,10,12,13,14,15,16,17,19 and a subset of cohort 1 

(supplementary table 1). Investigators interested in further information on ORIGINs dataset access 

and sharing can contact the principal investigator (PI) Rebecca Knickmeyer 

(knickmey@msu.edu). We welcome researchers involved in pediatric imaging genetics and brain-

behavior associations to join us in understanding how the genetic variants associated with 

psychiatric disorders influence early neurodevelopment and the establishment of brain circuitry. 

Please contact the PI for additional information. The team also encourages domestic and 

international researchers for collaboration and secondary data analysis projects from this dataset. 

Secondary data analysis proposals must be approved by each participating cohort and additional 

data use agreements may be necessary to ensure all sharing is in keeping with participant consents.  

We note that some cohorts that will be included in the ORIGINs dataset have already released or 

will release imaging, behavioral, and/or genetic data that can be accessed without going through 

ORIGINs. Imaging and behavioral data for twins in Cohort 1 is available through NDA #1974 and 

NDA #2384 and for singletons via NDA #4314. Genetic data from a subset of Cohort 1 subjects, 

along with some extracted imaging phenotypes, can be accessed via dbGaP, accession number 

phs001122.v1.p1. Imaging and behavioral data and some genetic data from Cohort 3 is available 

via NDA #19 and NDA #2027. Imaging data for Cohort 5 is available via NDA #1890. Information 

about data releases for Cohort 9 can be found at http://www.developingconnectome.org/. Imaging, 

mailto:knickmey@msu.edu
http://www.developingconnectome.org/
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behavioral, and genetic data for Cohort 9 will also be accessible through NDA (Permission Group 

Developing Human Connectome Project (dHCP)). Imaging and behavioral data for Cohort 10 is 

available via NDA #2848. Imaging and behavioral data from Cohort 15 will be available through 

NDA #3422. Imaging and behavioral data for Cohort 16 will be available through NDA #2685. 

Software sharing: All MRI processing is based on publicly available tools and atlases. In addition, 

we will share all our processing scripts, as well as all employed age-specific atlases via github. As 

these scripts directly operate on data stored in BIDS format, these can be straightforwardly used 

by any interested researcher aiming to process their own data in the same fashion. As part of 

statistical analysis, we commit to share any software developed in the project as open source 

through GitHub or similar platforms (e.g., CRAN).  
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