1 SUPPLEMENTAL MATERIAL AND METHODS

2 Plasmid construction

pMSCV-neo-KMT2A-MLLT1, pGCDNsam-KMT2A-MLLT1-IRES-3 The plasmids 4 Kusabira-Orange, pMYs-3×FLAG-Evil-IRES-GFP, pMYs-HoxA9-IRES-Meisl, and pGCDNsam-MOZ-TIF2-IRES-EGFP have been described previously ¹⁻³. shRNA 5 the pSIREN-RetroQ-puro and pSIREN-RetroQ-DsRed-Express 6 constructs on backgrounds (Clontech Japan, Tokyo, Japan) were generated according to the 7 8 manufacturer's instructions. For the plasmids used for reporter assays, we amplified 9 genomic DNA from the tail of C57B6 mice with the primers shown in supplemental table 10 2 with restriction enzyme cleavage sites and cloned them into the firefly luciferase reporter gene plasmid pGL4.10 or pGL4.23 (Promega, Madison, WI). According to the 11 12 manufacturer's manual, KOD-Plus-Mutagenesis Kit (Toyobo, Japan) was used to delete consensus motifs from the reporter plasmids using the primers shown in supplemental 13 14 table 2.

15

16 **Retrovirus production, transduction, and cell selection**

Briefly, Plat-E packaging cells were transiently transfected with 6-12 μg of each
retrovirus vector mixed with 48-96 μl of polyethylenimines (PEI) and 500 μl of 150 mM

19	NaCl, followed by incubation at 37°C. The culture medium was replaced 12 hours after
20	transfection. The retrovirus-containing supernatant was collected 24 hours after medium
21	change, filtered through a 0.45 μm filter, and added to the culture plate coated with
22	RetroNectin (Takara Bio, Japan). The culture plate was centrifuged at 2000 \times g, 37°C for
23	4 hours, and the supernatant was discarded. Cells were seeded onto the virus-coated plate
24	and infected with retroviruses for 24 hours. For puromycin selection, puromycin was
25	added at the concentration of 1 $\mu\text{g/mL}$ at least from 24 to 72 hours after the start of
26	infection, where > 99% of cells without retroviral transduction died. After 48 hours of
27	selection, surviving cells were used for further experiments. Puromycin was continuously
28	added to the culture medium after that.

30 In vitro culture

Murine AML cells and immortalized cells were maintained in RPMI 1640 supplemented with 10% FCS, 1% PS, 50 ng/mL murine recombinant stem cell factor, 20 ng/mL murine recombinant thrombopoietin, and 20 ng/mL murine recombinant interleukin 3. Palbociclib (Medchemexpress) and Fascaplysin chloride (Cayman) were added to the culture medium, and the medium was changed by half once per day.

37 Colony-forming assay

An indicated number of cells were seeded in duplicate and cultured in cytokinesupplemented methylcellulose media (MethoCult GF M3434, Stem Cell Technologies,
Vancouver, Canada) as per the manufacturer's instructions, and colonies were counted on
day 7. The average colony number was adopted as the measurement value. **Transplantation assay**Sublethally irradiated (4.5 - 6.5 Gy) mice were intravenously injected with an indicated
number of AML cells, depending on the experiments. Recipient mice were clinically

46 monitored at least once in three days, and a complete blood count was performed once in

47 1-12 weeks, depending on the model of AML and as indicated. The frequency of AML

48 cells in the peripheral blood was monitored by FACSCelesta (Becton, Dickinson and

49 Company, Japan: BD, Tokyo, Japan) as indicated. The mice were euthanized when they

50 showed clinical signs of illness, including anemia, malaise, and cachexia.

51

52 Flow cytometry

A mixture of antibodies for CD3ε (AB_312668 (BioLegend Cat. No. 100303)), CD4
 (RRID: AB_312688 (BioLegend Cat. No. 100403)), CD8 (RRID: AB_312742)

55 (BioLegend Cat. No. 100703)), CD127 (RRID: AB_466587 (eBiosience Cat. No. 13-
56 1	1271-81)), B220 (RRID: AB_312988 (BioLegend Cat. No. 103203)), Gr-1 (RRID:
57 A	AB_313368 (BioLegend Cat. No. 108403)), Mac-1 (RRID: AB_466359 (eBiosience Cat.
58 N	No. 13-0112-82)), and Ter-119 (RRID: AB_313704 (BioLegend Cat. No. 116203)) was
59 v	used to identify lineage ⁺ cells. Dead cells were excluded using DAPI (4',6-diamidino-2-
60 p	ohenylin-dole) (BD) or 7-AAD (7-amino-actinomycin D) (BD) according to the
61 r	nanufacturer's instructions. We defined L-GMPs as follows; GFP ⁺ (when applicable),
62 1	ineage (Gr-1, B220, CD3, CD4, CD8, CD127, Ter119)-negative, c-kit+, Sca-1-,
63 (CD16/32+ and CD34+. The data were analyzed with FlowJo software (Tree Star, Ashland
64 (OR, USA, RRID:SCR_008520)).

66 Cell cycle analysis

One million EVI1-AML cells undergoing 72-hour puromycin selection following transduction of shRNA cloned into pSIREN-RetroQ-puro were fixed in ice-cold 70% ethanol overnight. Cells were incubated with 1 μ g/mL DAPI and 0.1% Triton X-100 for 30 minutes at room temperature before analysis using FACSCelesta. Mean + SD from 3 independent experiments were shown.

73 Apoptosis assay

74	One million EVI1-AML cells 48 hours after transduction of shRNA cloned into pSIREN-
75	RetroQ-DsRed were stained with Annexin V-APC (BD, RRID:AB_2868885) and DAPI
76	(1 $\mu\text{g/ml})$ according to manufacturer's instructions. The frequency of annexin V^+ DAPI^-
77	cells and DAPI ⁺ cells were analyzed with FACSCelesta gating on DsRed ⁺ cells. Data
78	were shown as mean + SD from 3 independent experiments.
79	
80	Magnetic cell separation of spleen T and NK cells
81	To obtain spleen T cells, $CD3^+$ T cells were separated using CD3 ϵ biotin-conjugated
82	antibody, Streptavidin MicroBeads, and autoMACS (Miltenyi Biotec, Bergisch Gladbach,
83	Germany) according to the manufacturer's protocol. Residual cells underwent further
84	separation of CD49b ⁺ NK cells using the same protocol. Cells were used for RNA
85	isolation after > 90% purity was confirmed using FACSCelesta.
86	
87	Real-time quantitative PCR (qPCR)
88	Total RNA was prepared using Nucleospin-RNA II or RNA XS kit (Macherey-Nagel,

- 89 Düren, Germany) and reverse-transcribed into cDNA with ReverTra Ace qPCR RT
- 90 Master Mix (Toyobo, Osaka, Japan). Real-time qPCR was carried out on the

91	LightCycler480 (Roche) or QuantStudio system (Thermo Fisher) using SYBR green
92	reagents in triplicate. Relative expression was normalized to the internal control. The list
93	of primers used in qPCR is provided in Supplemental Table 2.
94	
95	Western blot
96	Primary antibodies used are as follows: anti-ERG (CST cat# 97249, RRID:AB_2721841),
97	anti-Cyclin D1 (CST cat#55506, RRID:AB_2827374), anti-STAT1 (BD cat# 610185,
98	RRID:AB_397584), anti-β-Actin (CST cat#4967, RRID:AB_330288). Secondary
99	antibodies used are anti-rabbit IgG, HRP-linked antibody (CST cat#7074,
100	RRID:AB_2099233) and anti-mouse IgG, HRP-linked antibody (CST cat#7076,
101	RRID:AB_330924). Western blotting was performed according to the protocol provided
102	by CST.
103	
104	Luciferase reporter assay
105	For analysis of luciferase activities, COS-7 cells were seeded in 96-well culture plates at
106	a density of 1×10^5 per well. The cells were transfected with 100 ng of pGL4.23, pGL4.10,
107	or an equimolar amount of each reporter construct, together with 100 ng of pME18S or
108	an equimolar amount of pME18S-EVI1 expression plasmid and 2 ng of pRL-TK with

109	PEI. After 48 hours of culture, cells were harvested, and luciferase activities were
110	measured in an ARVO MX (PerkinElmer, Waltham, MA) with a Dual-Glo luciferase
111	assay system E2920 (Promega) to derive firefly and Renilla relative light unit values
112	(RLU) from the same cell extract. To calculate the fold-change in reporter expression due
113	to EVI1 expression, the firefly luciferase RLU was divided by the Renilla luciferase RLU
114	value to give a normalized value, and then the normalized value was divided by the
115	normalized value from the empty pGL4-Luc to give the fold-change. Data are expressed
116	as mean + SD from 3 or more separate experiments.

118 ChIP-sequencing analysis

119	ChIP experiments were carried out using 2×10^6 cells. The antibodies used in ChIP assays
120	were Monoclonal Anti-FLAG M2 (F3165, Sigma-Aldrich, Cat# F3165,
121	RRID:AB_259529), anti-histone H3 (tri methyl K4) antibody (cat# ab8580,
122	RRID:AB_306649) and normal mouse IgG (Santa Cruz Biotechnology, Cat# sc-2025,
123	RRID:AB_737182). Bound DNA fragments were eluted and quantified by subsequent
124	qPCR. The data were analyzed as previously described ⁴ . Briefly, reads were aligned to
125	the mouse genome build mm10 using Bowtie2 version 2.4.1 5 with default parameters.
126	Quality assessment, read normalization, peak calling, and visualization were performed

127 by SSP version 1.2.2⁶ and DROMPAplus version 1.12.1⁷. The default parameter set was

128 used for peak calling ("100-bp bin, --pthre_internal=5, --pthre_enrich=4").

129

130 ChIP-qPCR analysis

131 ChIP experiment using anti-FLAG antibody was performed as described above. ChIP 132 against EVI1 (CST cat# 2593, RRID:AB_2184098) in human HNT-34 AML cell line was 133 performed employing first cross-linking for 45 minutes with DSG (disuccinimidyl 134 glutarate, ThermoFisher cat#20593) before formaldehyde cross-linking. qPCR was 135 carried out on the QuantStudio system (Thermo Fisher) using SYBR green reagents in 136 triplicate. The relative amount was normalized to the input genome DNA. The list of 137 primers used in ChIP-qPCR is provided in Supplemental Table 2.

138

139 **RNA-sequencing (RNA-seq) analysis**

The quality of the RNA samples (RNA Integrity Number > 9.5) was validated using an Agilent 2100 Bioanalyzer (Agilent Technology). Total RNA was submitted to the Genewiz sequencing facility (Jiangsu, China), then enrichment Poly-A RNAs for library preparation and strand-specific total RNA sequencing on the NovaSeq platform. FastQC (RRID:SCR_014583) was used to perform RNA-seq data quality control with the default parameters. Sequencing reads were mapped to GRCm39 by HISAT2 (v2.2.1,
RRID:SCR_015530) using default parameters. For pathway analysis, GSEA software
(RRID:SCR_005724) on the Java platform (v4.1.0) was used ^{8,9}.

148

149 Single-cell RNA-sequencing (scRNA-seq) datasets

150 By using the Seurat R package, cells with a unique feature count over 3000, less than 200,

and $\geq 10\%$ mitochondrial counts were filtered, followed by normalization using Seurat "NormalizeData" function with a scale factor of 10,000 and scaling using "ScaleData" function. The "Elbowplot" function was used to select dimensionality. Non-linear dimension reduction was performed by the "RunUMAP" function. Cells annotated as

- 155 AML cells by the authors were used to draw a diagram ¹⁰. Violin plot and two-color dot
- 156 plot were drawn using "VlnPlot" and "FeaturePlot" functions.

Data from two patients were used as EVI1⁺-AML. AML328 is characterized by DNMT3A c.1910T>A p.L637Q, TP53 c.431A>C p.Q144P, c.455C>G p.P152R and FLT3-ITD with karyotype 45, XX, ider(3)(q10), inv(3)(q21q26.2), add(5)(q13), -7, add(9)?dup(q13q22). AML870 is characterized by ZRSR2 c.1147C>G p.P383A with karyotype 46, XY, t(9;11)(p21;q23).

162

163 Data analysis using publicly available genetic data

164	For selecting genes positively correlated to EVI1 using the transcriptome data ¹¹ , the
165	expressions of EVI1 (215851_at and 221884_at) were used as a phenotype on the GSEA
166	software $(v4.1.0)^{8,9}$, and genes with a score of more than 0.15 in both lists were selected.
167	For anti-ERG ChIP-seq, all available anti-ERG ChIP-Seq profiles of AML cells
168	except acute promyelocytic leukemia were integrated from the ChIP-Atlas resource
169	(http://chip-atlas.org, RRID:SCR_015511) ¹² . AML data (GSM2026052, GSM1122314,
170	and GSM585590) were compared to that of normal CD34 ⁺ progenitor cells (GSM585604)
171	¹²⁻¹⁵ . The binding of ERG to each gene locus given by Peak Browser on ChIP-Atlas was
172	normalized to Z score. Genes for which the average Z-score in AML cells was at least 1
173	greater than in normal CD34 ⁺ cells were submitted to gene ontology (GO) analysis.
174	For GO analysis of positively correlated genes with ERG, genes that were
175	positively correlated with ERG in OHSU datasets with a q-value less than 0.01 were
176	submitted to GO analysis.
177	

179 SUPPLEMENTAL FIGURE LEGENDS

180 Supplemental figure 1. *Evil*^{high} cells show distinct features in murine AML models.

A. UMAP plot of sc-RNA-seq data of AML cells from patient AML870 with 181 182 t(9;11)(p21;q23), showing 4 clusters. **B.** Violin plot of MECOM expression in the 4 183 clusters. C. Representative flow-cytometric data showing GFP (EVI1) positivity within the whole live leukemia cells and L-GMPs. D. Flow cytometric evaluation of KuO of 184 GFP^{high} and GFP^{low} L-GMPs from KMT2A-MLLT1 AML harboring the Evil-KI allele. 185 186 E. Representative flow cytometric data of the bone marrow of secondary recipient mice transplanted with GFP^{high} and GFP^{low} L-GMPs as indicated. Both GFP^{high} and GFP^{low} 187 fractions were generated from both GFP^{high} and GFP^{low} cells. F-H. A Kaplan-Meier 188 189 survival curve for secondary recipient mice transplanted with an indicated number of GFP^{high} or GFP^{low} L-GMPs, after exposure to 6.5 Gy TBI. Significance between the same 190 191 number of cells was examined by a log-rank test. I-J. GSEA showing that differentiation-192 related genes in HSCs (I) and doxorubicin-resistance-related genes (J) are up-regulated 193 in GFP^{high} L-GMPs. K. A model of the experiment to analyze the effect of exogenous 194 expression of Evil in KMT2A-MLLT1 AML cells. pMYs-IRES-GFP or pMYs-Evil-195 IRES-GFP retroviral constructs were used to transduce freshly isolated KMT2A-MLLT1 AML cells. After 48-hour culture, 20,000 GFP⁺ cells were transplanted into primary 196

197	recipient mice. After AML development, 200 GFP ⁺ cells were subjected to colony-
198	forming and transplantation assay into secondary recipient mice. L. A Kaplan-Meier
199	survival curve for primary recipient mice.
200	FDR: false discovery rate (q-value), GSEA: gene set enrichment analysis, HSC:
201	hematopoietic stem cells, KuO: Kusabira-Orange, L-GMP: leukemic granulocyte-
202	macrophage progenitor, NES: normalized enrichment score, UMAP: Uniform Manifold
203	Approximation and Projection.
204	Mean \pm S.D. * p < 0.05.

Supplemental figure 2. A combination of multimodal screening showed potential targets of EVI1 in AML cells.

A. Expression of *Evi1* mRNA in EVI1-AML, compared to normal LSKs. **B.** ChIP-qPCR analysis using anti-FLAG antibody showing the binding of 3×FLAG-tagged EVI1 to the known EVI1-binding regions in the EVI1-AML samples. *Gata2* and *Pten* are positive controls, and *Alb* is a negative control. **C.** Distribution of binding sites of EVI1, elucidated by ChIP-seq using anti-FLAG antibody in the EVI1-AML samples. **D.** ChIP-qPCR

analysis using anti-FLAG antibody showing the binding of $3 \times$ FLAG-tagged EVI1 to the

- 215 EVI1-binding regions identified in the ChIP-seq of the EVI1-AML samples.
- 216 Neighborhood sequences without enrichment in the ChIP-seq were used as a negative

217 control.

218 Alb: Albumin, ChIP: chromatin immunoprecipitation, Gata2: GATA binding protein 2,

219 *Pten*: Phosphatase and tensin homolog, qPCR: quantitative PCR.

220 Mean \pm S.D. ** p < 0.01.

221

223 Supplemental figure 3. ERG and CCND1 are targets of EVI1 in *Evi1*^{high} AML cells.

224 A. Detailed illustration of the results of ChIP-seq in the murine Erg locus, aligned with 225 the public ChIP-seq data of major hematopoietic transcription factors in an HPC-7 murine hematopoietic progenitor cell line¹⁶. Blue bars represent the regi ons cloned into the 226 227 pGL4.23-luciferase reporter construct. B-C. Relative luciferase activity of Erg reporter 228 constructs in COS-7 cell lysates transiently transfected with EVI1 compared with that 229 without EVI1. Data were normalized to those of empty pGL4.23 plasmid and shown as 230 mean + SD from 4 independent experiments. D. Detailed illustration of the results of 231 ChIP-seq in the murine Ccndl locus, aligned with the public ChIP-seq data of major 232 hematopoietic transcription factors in an HPC-7 murine hematopoietic progenitor cell line¹⁶. Blue bars represent the regions cloned into the reporter construct. **E-F.** Relative 233 234 luciferase activity of *Ccnd1* reporter constructs in COS-7 cell lysates transiently 235 transfected with EVI1 compared with that without EVI1. Data were normalized to those 236 of empty pGL4.23 plasmid and shown as mean + SD from 4 independent experiments. G-H. The regions corresponding to the murine Erg +85 and Ccnd1 -4.0 - -3.6, which 237 238 EVI1 binds to in murine AML cells and show activating capacity in reporter assays 239 (indicated in the black bar). The amplicons used in anti-EVI1 ChIP-qPCR were shown as ChIP qPCR 1 and 2. Dnase I hypersensitivity sites and transcription factor binding sites 240

241	in various cell lines, EVI1-binding consensus motifs (familial profile 241 and 95439380),
242	the conserved area in the vertebrae, and Dnase I hypersensitivity sites in the human
243	primary AML cells with inv(3) are shown ^{17,18} . I-J. GSEA shows that EWS-ETS and ERG
244	fusion protein target genes in solid cancers are up-regulated in GFP ^{high} L-GMPs. K.
245	Colony-forming activity of 500 c-kit ⁺ normal hematopoietic progenitor cells transduced
246	with shRNAs against indicated genes.
247	FDR: false discovery rate (q-value), GSEA: gene set enrichment analysis, L-GMP:
248	leukemic granulocyte-macrophage progenitor, NES: normalized enrichment score.
249	Mean \pm S.D. * p < 0.05, ** p < 0.01.

251 Supplemental figure 4. *Evil*^{high} AML cells are dependent on ERG.

252 A. Quantitative PCR showing the relative expression of Erg in EVI1-AML cells expressing shErg in vitro. B. Western blotting showing the efficacy of Erg silencing in 253 254 EVI1-AML cells. C. Cell cycle analysis of EVI1-AML cells transduced with shRNAs 255 against *Luciferase* and *Erg*. The sub-G1 peak represents hypodiploid apoptotic cells. **D**. Apoptosis analysis of EVI1-AML cells transduced by shRNAs against Luciferase and 256*Erg* with DsRed. Frequency of annexin V^+ DAPI⁻ early apoptotic cells (Annexin V+) and 257 DAPI+ dead cells (DAPI+) in DsRed-labeled EVI1⁺ AML cells were shown. E. A model 258 259 of bone marrow transplantation experiments. F. A model of establishment of KMT2A-260 MLLT1-transduced immortalized cell clones. G. Expression of GFP-EVI1 in different 261 KMT2A-MLLT1 clones. H. Expression of Evil mRNA in different KMT2A-MLLT1 262 clones, compared to normal LSKs. I. Relative cell proliferation of KMT2A-MLLT1 CL1 cells expressing shRNAs against Luciferase and Erg in vitro. J. Colony-forming units of 263 264 KMT2A-MLLT1 CL1 cells expressing shRNAs against Luciferase and Erg. K. A Kaplan-Meier survival curve for recipient mice transplanted with 1×10^{6} HOXA9-MEIS1 AML 265 266 cells expressing shRNAs against Luciferase and Erg after being exposed to 6.5 Gy TBI. 267 L. A 2D dot plot showing the relationship between differentially expressed genes after 268 Erg deletion in normal HSCs and Erg knockdown in EVI1-AML cells. M. A volcano plot

269	showing differentially expressed genes in EVI1-AML cells with Erg silencing. N. GSEA
270	showing that MYC-target genes are down-regulated in EVI1-AML cells with Erg
271	silencing. O. Top listed GO biological processes of differentially binding regions in
272	publicly available ChIP-seq data using an anti-ERG antibody between normal CD34 ⁺
273	cells and AML cell lines (Kasumi-1 (GSM2026052), ME-1 (GSM1122314) and SKNO-
274	1 (GSM585590)). P. Top listed GO biological processes positively correlated with ERG
275	with a q-value < 0.01 in the OHSU datasets.
276	ChIP: chromatin immunoprecipitation, CL: clone, FDR: false discovery rate (q-value), ,
277	GO: gene ontology, GSEA: gene set enrichment analysis, NES: normalized enrichment

score, OHSU: Oregon Health Sciences University. 278

- Mean \pm S.D. * p < 0.05, ** p < 0.01, *** p < 0.001. 279
- 280

Supplemental figure 5. Cyclin D1 is necessary for the efficient development of EVI1 AML in vivo.

A. Quantitative PCR showing the relative expression of *Ccnd1* in EVI1-AML cells 283 284 expressing sh*Ccnd1* in vitro. **B.** Western blotting showing the efficacy of *Ccnd1* silencing in EVI1-AML cells. C. Cell cycle analysis of EVI1-AML cells transduced with shRNAs 285 286 against Luciferase and Ccnd1. D. Relative cell proliferation of KMT2A-MLLT1 CL1 287 cells expressing shRNAs against Luciferase and Ccndl in vitro. The data for shLuciferase are common to those of supplemental figure 4I. E. Colony-forming units of KMT2A-288 289 MLLT1 CL1 cells expressing shRNAs against Luciferase and Ccnd1. The data for 290 shLuciferase are common to those of supplemental figure 4J. F. Relative cell proliferation of AML cells with shCcnd1 compared to those with shLuciferase, through days 0 to 3. A 291 292 comparison was made within the same cell between shLuciferase and shCcnd1.G. 293 Relative cell proliferation of different clones of KMT2A-MLLT1 transformed cells 294 (Supplemental figure 4F) with indicated concentrations of palbociclib compared to that with vehicle (0 µM), through days 0 to 3. Clones were characterized by different 295 expression levels of GFP (Evil). A relative cell number was compared to EVI1^{low} CL1 296 297 cells at the same concentration. H-I. Relative cell proliferation of murine AML cells with 298 indicated concentrations of palbociclib (H) and fascaplysin (I) compared to that with

- vehicle (0 µM), through days 0 to 3. A relative cell number was compared to EVI1-AML
- 300 cells at the same concentration. **J.** Frequency of GFP⁺ cells in the bone marrow of lethally
- 301 irradiated (8.5 Gy) recipient mice infused with 5×10^6 AML cells, 16 hours after
- 302 transplantation.
- 303 CL: clone.
- $304 \qquad \text{Mean} \pm \text{S.D.} * p < 0.05, ** p < 0.01, *** p < 0.001.$
- 305

306 Supplemental figure 6. Cyclin D1 is associated with IFN signatures and immune 307 exhaustion in EVI1-AML.

308 A. GSEA showing gene sets associated with positive regulation of cell cycle are not 309 significantly affected by silencing of *Ccnd1* in vitro. **B.** GSEA showing gene sets 310 associated with response to interferon-y are down-regulated by silencing of *Ccnd1* in vitro. 311 C. GSEA showing gene sets associated with the response to type I interferon are down-312 regulated by silencing of *Ccnd1* in vitro. **D.** GSEA showing gene sets associated with the 313 chemokine signaling are down-regulated by silencing of *Ccnd1* in vivo. E. Detailed 314 illustration of the results of ChIP-seq in the murine Stat1 promoter region. A blue bar represents the regions cloned into the pGL4.10-luciferase reporter construct. F. Relative 315 316 luciferase activity of *Stat1* promoter constructs in COS-7 cell lysates transiently 317 transfected with EVI1 compared with that without EVI1. Data were normalized to those of empty pGL4.10 plasmid and shown as mean + SD from 3 independent experiments. 318 319 G. Quantitative PCR showing the relative expression of *Stat1* in EVI1-AML cells 320 expressing shRNA against Evil. The efficiency of Evil silencing was shown in the Figure 321 3D. H. A model of the experiment to analyze the expression of exhaustion-associated 322 genes in spleen T cells in the early stage of AML development. EVI1-AML cells 323 expressing shRNA from secondary recipient mice were transplanted into tertial recipient

324	mice without in vitro culture. I. A model of the experiment to analyze the composition of
325	T cells infiltrating the liver in the AML mice. J-K. Pearson correlation analysis between
326	IFN-γ score and <i>MECOM / CCND1</i> expression in OHSU samples. L. Pearson correlation
327	analysis between STAT1 and MECOM expression in TCGA samples. M. Pearson
328	correlation analysis between CD274 and MECOM expression in TCGA samples. N.
329	Pearson correlation analysis between CD274 and CCND1 expression in OHSU samples.
330	FDR: false discovery rate (q-value), GSEA: Gene Set Enrichment Analysis, NES:
331	normalized enrichment score, OHSU: Oregon Health Sciences University, TBI: total
332	body irradiation, TCGA: The Cancer Genome Atlas.
333	Mean ± S.D. * p < 0.05, ** p < 0.01.

334

336 Supplemental figure 7. Overexpression of *CCND1* is associated with type II IFN 337 signature in human AML.

338	A. Western blotting showing the efficacy of <i>Stat1</i> silencing in EVI1-AML cells. B.
339	Relative cell proliferation of EVI1-AML cells expressing shRNAs against Luciferase and
340	Stat1 in vitro. C. Quantitative PCR showing the relative expression of Ifngr1 in EVI1-
341	AML cells expressing shIfngr in vitro. D. Quantitative PCR showing the relative
342	expression of <i>Ifnar1</i> in EVI1-AML cells expressing sh <i>Ifnar</i> in vitro. E. A Kaplan-Meier
343	survival curve for recipient mice transplanted with 1×10^6 EVI1-AML cells expressing
344	shRNAs against Ifnar, after exposure to 4.5 Gy TBI. F. Quantitative PCR showing the
345	relative expression of chemokines and Stat1 in EVI1-AML cells after treatment of
346	Palbociclib (0.3 μ M) for 72 hours. G. Pearson correlation analysis between CCL2 and
347	CCND1 expression in OHSU samples. H. Pearson correlation analysis between CCL4
348	and MECOM expression in TCGA samples. I. Pearson correlation analysis between
349	CCL4 and CCND1 expression in OHSU samples. J. Pearson correlation analysis between
350	estimated expression of TIGIT in CD4 T cells calculated using CIBERSORTx and
351	MECOM expression in TCGA samples. K. Pearson correlation analysis between
352	estimated expression of TIGIT in CD8 T cells calculated using CIBERSORTx and
353	CCND1 expression in OHSU samples. L. Pearson correlation analysis between estimated

354	expression of IFNG in CD8 T cells calculated using CIBERSORTx and CCND1
355	expression in OHSU samples. M. Pearson correlation analysis between estimated
356	expression of ICOS in CD8 T cells calculated using CIBERSORTx and MECOM
357	expression in TCGA samples. N. Pearson correlation analysis between estimated
358	expression of LAG3 in NK cells calculated using CIBERSORTx and MECOM expression
359	in TCGA samples.
360	OHSU: Oregon Health Sciences University, TBI: total body irradiation, TCGA: The
361	Cancer Genome Atlas.

362 Mean ± S.D.

363

Epitope	Conjugate	Clone	Concentration	Company
B220	Biotin	RA3-6B2	1:200	BioLegend
CD3e	Biotin	145-2C11	1:200	BioLegend
	PerCP-Cy5.5	145-2C11	1:200	BD
CD4	Biotin	GK1.5	1:200	BioLegend
	PE	GK1.5	1:200	BioLegend
CD8	Biotin	53-6.7	1:200	BioLegend
	PerCP	53-6.7	1:200	BioLegend
CD11b	Biotin	M1/70	1:200	eBioscience
CD16/32	APC	93	1:200	eBioscience
	PE	93	1:200	BioLegend
CD34	FITC	RAM34	1:50	eBioscience
	Alexa Flour 647	RAM34	1:50	BD
CD122	APC	5H4	1:200	BioLegend
CD127	Biotin	A7R34	1:200	eBioscience
	PE	A7R34	1:200	eBioscience
CD279	APC-Cy7	29F.1A12	1:200	BioLegend
c-kit	APC	2B8	1:200	BioLegend
	PE-Cy7	2B8	1:200	BD
Gr-1	Biotin	RB6-8C5	1:200	BioLegend
Sca-1	PE-Cy7	E13-161.7	1:200	BioLegend
	PerCP-Cy5.5	D7	1:200	BioLegend
Streptoavidin	APC-Cy7		1:200	BioLegend
	PerCP-Cy5.5		1:200	BD
Ter-119	Biotin	Ter-119	1:200	BioLegend
TIGIT	PE-Cy7	1G9	1:200	BioLegend

365 Supplemental table 1. Details of antibodies used for flow cytometry

	<i>,</i> 0	
Primer	Application	Sequences
sh <i>Luciferase</i> F	Construct	TCGAAGTATTCCGCGTACG
sh <i>Luciferase</i> R	Construct	CGTACGCGGAATACTTCGA
shErg-1 F	Construct	AAGTATTACTACAGAAATAGA
shErg-1 R	Construct	TCTATTTCTGTAGTAATACTT
shErg-2 F	Construct	GGGAAACTACCTGTGTTTAAAAA
shErg-2 R	Construct	TTTTTAAACACAGGTAGTTTCCC
shCcnd1-1 F	Construct	TTGATTCTTTTATATGTTTTT
shCcnd1-1 R	Construct	AAAAACATATAAAAGAATCAA
shCcnd1-2 F	Construct	ATGAAATAGTGACATAATATATT
shCcnd1-2 R	Construct	AATATATTATGTCACTATTTCAT
shEVI1 F	Construct	ATCTAAGGCTGAACTAGCAGA
shEVI1 R	Construct	TCTGCTAGTTCAGCCTTAGAT
shEvil-1 F	Construct	ATCTAAGGCTGAACTAGCAGA
shEvil-1 R	Construct	TCTGCTAGTTCAGCCTTAGAT
shEvil-2 F	Construct	TCAGTGTCCCAAGGCATTTAA
shEvi1-2 R	Construct	TTAAATGCCTTGGGACACTGA
shEvil-3 F	Construct	ACAGCAGTGTGAAGCCCTTTA
shEvil-3 R	Construct	TAAAGGGCTTCACACTGCTGT
shStat1-3 R	Construct	TTTAAAGTTATCTCACCAGGC
sh <i>lfna-</i> 2 F	Construct	TTTCACAGACACATGTAAATA
shIfna-2 R	Construct	TATTTACATGTGTCTGTGAAA
shIfng-1 F	Construct	ACCGACGAATGTTCTAATTAA
sh <i>lfng</i> -1 R	Construct	TTAATTAGAACATTCGTCGGT
shIfng-2 F	Construct	GATGACAGAAAGGATTCAATT
sh <i>lfng</i> -2 R	Construct	AATTGAATCCTTTCTGTCATC
shDnm3 F	Construct	CTGTGATATAAGCATTCTAAA
shDnm3 R	Construct	TTTAGAATGCTTATATCACAG
sh <i>Selp</i> F	Construct	TCCGAAAGATCAACAATAAGT
sh <i>Selp</i> R	Construct	ACTTATTGTTGATCTTTCGGA
sh <i>Etv1</i> F	Construct	TTGTTTATGAACTGTTAAAGA
shEtvl R	Construct	TCTTTAACAGTTCATAAACAA
sh <i>Egln3</i> F	Construct	TTCTTATTCGCACTTTATGTA
sh <i>Egln3</i> R	Construct	TACATAAAGTGCGAATAAGAA

368 Supplemental table 2. Primers, oligos, and cloning templates used in this study.

shPhactr1 F	Construct	TTGACAATTTGACATTAATTA
sh <i>Phactr1</i> R	Construct	TAATTAATGTCAAATTGTCAA
shAngpt1 F	Construct	AGCTAACAAATGGCTAGTTTT
shAngpt1 R	Construct	AAAACTAGCCATTTGTTAGCT
sh <i>Mkl2</i> F	Construct	AGGAAAATAAATATTTTTACT
sh <i>Mkl2</i> R	Construct	AGTAAAAATATTTATTTTCCT
sh <i>Hlcs</i> F	Construct	AAGATACATATATAAAATTTA
sh <i>Hlcs</i> R	Construct	TAAATTTTATATATGTATCTT
sh <i>Ptk7</i> F	Construct	GAGCTTTTGACACTTATATGA
sh <i>Ptk7</i> R	Construct	TCATATAAGTGTCAAAAGCTC
sh <i>Egfl7</i> F	Construct	CTCCATCTTTGTCATAATAAA
sh <i>Egfl7</i> R	Construct	TTTATTATGACAAAGATGGAG
sh <i>Nbeal2</i> F	Construct	GCCAACTATGTCAAAGTTTGA
sh <i>Nbeal2</i> R	Construct	TCAAACTTTGACATAGTTGGC
sh <i>Ogt</i> F	Construct	ATGAAGAAATTGGTTAGTATT
sh <i>Ogt</i> R	Construct	AATACTAACCAATTTCTTCAT
<i>Erg</i> +60 F	Construct	CACAAGTGTGGCCAAGGGCCTCTG
<i>Erg</i> +60 R	Construct	CTGTCAGCTTCCCGGTTTCCCATTCATC
<i>Erg</i> +75 F	Construct	GGCAGAGAGATGATGTCTCAGAAGAGTTGGC
<i>Erg</i> +75 R	Construct	CTGGGCACGGAGAACAACCCGTG
<i>Erg</i> +85 F	Construct	GGTAGGTACCCCGTATCCATTTGTAGCC
<i>Erg</i> +85 R	Construct	GGGCTGCCGTCAACTAAGGTTCCTG
$E_{\rm res} = 95$ AED 241 E	Construct	AATTCAAATCTGGTTGTTTAGTCTACATGGAG
<i>L1g</i> +63 ΔΓΓ241 Γ		CAGGG
<i>Erg</i> +85 ΔFP241 R	Construct	ACGGCCCCTTCACAGATGTGCACAGATG
<i>Erg</i> +85 Δ95439380 F	Construct	ATCTCATTTCCGACAAGACTTCCCTTTCCTTC
<i>Erg</i> +85 Δ95439380 R	Construct	AACGAGTGTTCAGCCCTGATAACCCATCTG
<i>Ccnd1</i> -0.6 - 0 F	Construct	GACAGGGACGCTGGGATTTCTAAGC
<i>Ccnd1</i> -0.6 - 0 R	Construct	CTTCGCAGCACAGGAGCTGGTGTTC
<i>Ccnd1</i> -1.40.3 F	Construct	CTGGGACACGAAAGTATTCCGTGGGAA
<i>Ccnd1</i> -1.40.3 R	Construct	TCGTAGATATGCAAATCGCTCGGACTGC
<i>Ccnd1</i> -2.40.3 F	Construct	GGGTTCGAGGAGGCAGGAAATCCG
<i>Ccnd1</i> -2.40.3 R	Construct	TCGTAGATATGCAAATCGCTCGGACTGC
<i>Ccnd1</i> -4.00.3 F	Construct	TAGTTCCTCTCTGGCTTCTACCACAGTCAG
<i>Ccnd1</i> -4.00.3 R	Construct	TCGTAGATATGCAAATCGCTCGGACTGC

<i>Ccnd1</i> -4.03.6 F	Construct	TAGTTCCTCTCTGGCTTCTACCACAGTCAG
<i>Ccnd1</i> -4.03.6 R	Construct	GGCGGACCCATGGCACTAGCCTC
<i>Ccnd1</i> -3.83.6 F	Construct	GTTCACCGCGGGGGGGGCGTCCTCA
<i>Ccnd1</i> -4.03.6 R	Construct	GGCGGACCCATGGCACTAGCCTC
<i>Ccnd1</i> -4.03.6 ΔFP241 F	Construct	TAGTTCCTCTCTGGCTTCTACCACAGTCAG
<i>Ccnd1</i> -4.03.6 ΔFP241 R	Construct	GTGGCTTGGACGCGCGGGGGGGA
<i>Ccnd1</i> -3.83.6 ΔFP241 F	Construct	GTTCACCGCGGGGGGGGCGTCCTCA
<i>Ccnd1</i> -3.83.6 ΔFP241 R	Construct	GTGGCTTGGACGCGCGGGGGGGGA
Stat1 promoter F	Construct	AGTGATGCGCCTACTTAATGCAGGATCTCC
Stat1 promoter R	Construct	GACTCGGCGCTGAAAACCGAAAGTACC
Gapdh F	qPCR	TGGCCTCCAAGGAGTAAGAA
Gapdh R	qPCR	GGTCTGGGATGGAAATTGTG
18s RNA F	qPCR	CGCGGTTCTATTTGTTGGT
18s RNA R	qPCR	AGTCGGCATCGTTTATGGTC
<i>Erg</i> F	qPCR	AAGGCCATGATCCAGACTGT
Erg R	qPCR	ACTGGTCCTCGCTCACAACT
Ccnd1 F	qPCR	GAGATTGTGCCATCCATGC
Ccnd1 R	qPCR	CTCCTCTTCGCACTTCTGCT
Evil F	qPCR	GGAGGAGGACTTGCAACAAA
Evil R	qPCR	GACAGCATGTGCTTCTCCAA
Stat1 F	qPCR	GGAGGTGAACCTGACTTCCA
Stat1 R	qPCR	CAAAGGCGTGGTCTTTGTCA
<i>Ifngr</i> F	qPCR	GAGCTTTGACGAGCACTGAG
Ifngr R	qPCR	CCAGGAACCCGAATACACCT
<i>Ifnar</i> F	qPCR	ATCTCCAAGTGGATGCCCAA
Ifnar R	qPCR	TGAATAGCCAGGAAGCCACT
Lag3 F	qPCR	CTCCATCACGTACAACCTCAAGG
Lag3 R	qPCR	GGAGTCCACTTGGCAATGAGCA
Pdcd1 F	qPCR	CCCTAGTGGGTATCCCTGTATT
Pdcd1R	qPCR	TCCTTCAGAGTGTCGTCCTT
<i>Tigit</i> F	qPCR	GCTGACCCACAGGAATACTTTA
Tigit R	qPCR	GAGAGACATAGGGAGAGGGATAG
Ccl2 F	qPCR	GAAGGAATGGGTCCAGACATAC
Ccl2 R	qPCR	TCACACTGGTCACTCCTACA
Ccl4 F	qPCR	CCACTTCCTGCTGTTTCTCTTAC

Ccl4 R	qPCR	GGAGACACGCGTCCTATAACTA
Ccl5 F	qPCR	GCCCACGTCAAGGAGTATTT
Ccl5 R	qPCR	CTGATTTCTTGGGTTTGCTGTG
ChIP PC Pten promoter 3 F	ChIP-qPCR	TTTAATTTCCGAGTTTGCGTTAAT
ChIP PC Pten promoter 3 R	ChIP-qPCR	AGTAAACTGCCTTGAAGCAAGTGA
ChIP PC Gata2 promoter 2 F	ChIP-qPCR	CAGGCTCTGGCTGCACCT
ChIP PC Gata2 promoter 2 R	ChIP-qPCR	TTCCATACCCTACGCTCTCC
ChIP NC Alb promoter F	ChIP-qPCR	CTCCAGATGGCAAACATACG
ChIP NC Alb promoter R	ChIP-qPCR	TCTGTGTGCAGAAAGACTCG
ChIP Erg+85 1 F	ChIP-qPCR	AGAGTGACCCACCCTCCTTT
ChIP Erg+85 1 F	ChIP-qPCR	AACGGTTGGACAGAACTTGC
ChIP Erg+85 2 F	ChIP-qPCR	CAGGGAGCTGCTTAAACTGG
ChIP Erg+85 2 F	ChIP-qPCR	ACTCTTTCCCCGAACTTGGT
ChIP NC Erg F	ChIP-qPCR	CTTGAGCTCCACCCTGAGAG
ChIP NC Erg R	ChIP-qPCR	TGAATCATGAGGCTCAGCAC
ChIP Ccnd1 1 F	ChIP-qPCR	CAGCGGAGCCAAGACAGTAT
ChIP Ccnd1 1 R	ChIP-qPCR	CGCTTACCGTAAACCTTGGA
ChIP Ccnd1 2 F	ChIP-qPCR	GTCGCGTCCAAGGTTTACG
ChIP Ccnd1 2 R	ChIP-qPCR	CTGCTCCCTGTGGTGCTT
ChIP NC Ccnd1 F	ChIP-qPCR	ATGCATGCACAGACACAGGT
ChIP NC Ccnd1 R	ChIP-qPCR	CTGGCCCATCTGCAATAGAT
ChIP ERG 1 F	ChIP-qPCR	GGTGCACATCTGCAGAAAGA
ChIP ERG 1 R	ChIP-qPCR	TTCAGCCCTGATAACCCATC
ChIP ERG 2 F	ChIP-qPCR	CTGTGCCCAGATGGGTTATC
ChIP ERG 2 R	ChIP-qPCR	CCTCCTCTTAACGGCTGATG
ChIP NC ERG F	ChIP-qPCR	AGAACTCTGGGCATGCTTGT
ChIP NC ERG R	ChIP-qPCR	TGATGGTGTTCGTGAGCATT
ChIP CCND1 1 F	ChIP-qPCR	GACCCCTTAGGGAATTCTGG
ChIP CCND1 1 R	ChIP-qPCR	TCCTCCCCTCACCTCTCC
ChIP CCND1 2 F	ChIP-qPCR	GAGGGGAGGAGGCGAGAG
ChIP CCND1 2 R	ChIP-qPCR	TTTTCTAAGCCTTACGGTAAACG
ChIP NC CCND1 F	ChIP-qPCR	GACAGCACGAATCACAATGG
ChIP NC CCND1 R	ChIP-qPCR	GGTGGTGGGAAGAATCAGAA
2/0		

	Pathway	SIZE	NES	NOM	FDR	FWER
	1 auiway		INES	p-val	q-val	p-val
1	KYNG_DNA_DAMAGE_BY_UV	51	2.81	0	0.168	0
2	BOSCO_INTERFERON_INDUCED_ANTIVIRAL_MODUL E	62	2.57	0	0.168	0.168
3	BOYLAN_MULTIPLE_MYELOMA_PCA3_DN	61	2.53	0	0.168	0.168
4	KIM_WT1_TARGETS_UP	199	2.52	0	0.168	0.168
5	LUI_THYROID_CANCER_CLUSTER_1	46	2.52	0	0.168	0.168
6	ICHIBA_GRAFT_VERSUS_HOST_DISEASE_35D_UP	127	2.5	0	0.168	0.168
7	GAL_LEUKEMIC_STEM_CELL_DN	204	2.5	0	0.168	0.168
8	RICKMAN_TUMOR_DIFFERENTIATED_WELL_VS_POO RLY_DN	334	2.45	0	0.168	0.168
9	ICHIBA_GRAFT_VERSUS_HOST_DISEASE_D7_UP	99	2.44	0	0.168	0.168
10	LEE_TARGETS_OF_PTCH1_AND_SUFU_UP	48	2.44	0	0.168	0.168
11	GROSS_HYPOXIA_VIA_HIF1A_DN	99	2.43	0	0.168	0.168
12	KYNG_DNA_DAMAGE_DN	162	2.41	0	0.168	0.168
13	LANDIS_ERBB2_BREAST_TUMORS_324_UP	141	2.4	0	0.168	0.168
14	MARTIN_VIRAL_GPCR_SIGNALING_UP	75	2.39	0	0.168	0.168
15	PROVENZANI_METASTASIS_DN	121	2.39	0	0.168	0.168
16	AMUNDSON_DNA_DAMAGE_RESPONSE_TP53	15	2.38	0	0.168	0.168
17	LEE_AGING_NEOCORTEX_DN	54	2.38	0	0.168	0.168
18	WOTTON_RUNX_TARGETS_UP	17	2.37	0	0.168	0.168
19	DELYS_THYROID_CANCER_UP	382	2.36	0	0.168	0.168
20	MAGRANGEAS_MULTIPLE_MYELOMA_IGLL_VS_IGLK _UP	38	2.35	0	0.168	0.168

371 Supplemental Table 3. GSEA report for positively enriched pathways in GFPhigh 372 L-GMPs (C2 chemical and genetic perturbations)

	Pathway		NEC	NOM	FDR	FWER
			INES	p-val	q-val	p-val
1	GOBP_POSITIVE_REGULATION_OF_NIK_NF_KAPPAB_SI	67	20	0	0 163	0
1	GNALING	02	2.9	0	0.105	0
2	GOBP_GANGLIOSIDE_METABOLIC_PROCESS	22	2.84	0	0.163	0.163
3	GOBP_HEMATOPOIETIC_STEM_CELL_DIFFERENTIATIO	26	2.84	0	0 163	0 163
5	Ν	20	2.04	0	0.105	0.105
1	GOBP_CELLULAR_RESPONSE_TO_CORTICOSTEROID_S	18	281	0	0 163	0 163
4	TIMULUS	40	2.04	0	0.105	0.105
5	GOBP_NEGATIVE_REGULATION_OF_PROTEIN_BINDIN	82	28	0	0 163	0 163
5	G	83	2.0	0	0.105	0.163
6	GOBP_RESPONSE_TO_MOLECULE_OF_BACTERIAL_ORI	270	2 70	0	0.162	0.162
0	GIN	219	2.79	0	0.163	0.105
7	GOBP_LYMPHOCYTE_MEDIATED_IMMUNITY	233	2.76	0	0.163	0.163
8	GOBP_POSITIVE_REGULATION_OF_BINDING	152	2.74	0	0.163	0.163
9	GOBP_CELLULAR_RESPONSE_TO_ALCOHOL	73	2.74	0	0.163	0.163
10	GOBP_CORONARY_VASCULATURE_DEVELOPMENT	40	2.73	0	0.163	0.163
11	GOBP_POSITIVE_REGULATION_OF_B_CELL_ACTIVATI	70	2.72		0.163	0.163
11	ON	/8	2.73	0		
12	GOBP_ANTIGEN_PROCESSING_AND_PRESENTATION	74	2.72	0	0.163	0.163
13	GOBP_LIPOPROTEIN_LOCALIZATION	16	2.69	0	0.163	0.163
14	GOMF_CARBOXYPEPTIDASE_ACTIVITY	38	2.69	0	0.163	0.163
1.5	GOBP_POSITIVE_REGULATION_OF_DEFENSE_RESPONS	222	2 (0	0	0.1.62	0.1.60
15	E	232	2.69	9 0	0.163	0.163
16	GOBP_B_CELL_MEDIATED_IMMUNITY	126	2.68	0	0.163	0.163
17	GOBP_PEPTIDYL_CYSTEINE_MODIFICATION	45	2.68	0	0.163	0.163
18	GOBP_MEMBRANE_INVAGINATION	76	2.68	0	0.163	0.163
19	GOBP_POSITIVE_REGULATION_OF_DNA_BINDING	47	2.65	0	0.163	0.163
20	GOBP_GLYCOLIPID_BIOSYNTHETIC_PROCESS	65	2.65	0	0.163	0.163
	376					

Supplemental table 4. GSEA report for positively enriched pathways in GFPhigh L GMPs (C5 Gene Ontology biological process)

Pailway BLE NES p-val q-val val 1 GOMF_STRUCTURAL_CONSTITUENT_OF_RIBOSO ME 126 2.02 0 0.026 0.029 2 GOBP_NUCLEOBASE_CONTAINING_SMALL_MOL ECULE_INTERCONVERSION 26 1.96 0 0.044 0.097 3 GOCC_RIBOSOMAL_SUBUNIT 152 1.94 0 0.042 0.135 4 GOBP_METAPHASE_ANAPHASE_TRANSITION_OF _CELL_CYCLE 60 1.92 0 0.058 0.239 5 GOBP_RIBOSOMAL_LARGE_SUBUNIT_BIOGENES IS 59 1.92 0 0.046 0.28 7 GOBP_RIBOSOME_BIOGENESIS 275 1.91 0 0.042 0.293 8 GOCC_RIBOSOME_BIOGENESIS 275 1.91 0 0.042 0.293 8 GOCC_RIBOSOME_BIOGENESIS 399 1.9 0 0.033 0.335 10 GOBP_INA_DEPENDENT_DNA_REPLICATION 148 1.9 0 0.032 0.366 111 GOBP_NA_REPLICATION 263 1.89<		Dathway		NEC	NOM	FDR	FWER p-
1 GOMF_STRUCTURAL_CONSTITUENT_OF_RIBOSO ME 126 2.02 0 0.026 0.029 2 GOBP_NUCLEOBASE_CONTAINING_SMALL_MOL ECULE_INTERCONVERSION 26 1.96 0 0.044 0.097 3 GOCC_RIBOSOMAL_SUBUNIT 152 1.94 0 0.042 0.135 4 GOBP_METAPHASE_ANAPHASE_TRANSITION_OF _CELL_CYCLE 60 1.92 0 0.058 0.239 5 GOBP_RIBOSOMAL_LARGE_SUBUNIT_BIOGENES IS 59 1.92 0 0.044 0.252 6 GOCC_SNO_S_RNA_CONTAINING_RIBONUCLEOP ROTEIN_COMPLEX 26 1.91 0 0.042 0.293 8 GOCC_RIBOSOME_BIOGENESIS 275 1.91 0 0.042 0.233 9 GOBP_RIBONUCLEOPROTEIN_COMPLEX_BIOGE NESIS 399 1.9 0 0.042 0.233 10 GOBP_DNA_DEPENDENT_DNA_REPLICATION 148 1.9 0 0.033 0.341 11 GOBP_NCRNA_PROCESSING 362 1.89 0 0.033 0.346 14 <td></td> <td>raniway</td> <td>SIZE</td> <td>INES</td> <td>p-val</td> <td>q-val</td> <td>val</td>		raniway	SIZE	INES	p-val	q-val	val
ME Inst I	1	GOMF_STRUCTURAL_CONSTITUENT_OF_RIBOSO	126	2.02	0	0.026	0.029
2 GOBP_NUCLEOBASE_CONTAINING_SMALL_MOL ECULE_INTERCONVERSION 26 1.96 0 0.044 0.097 3 GOCC_RIBOSOMAL_SUBUNIT 152 1.94 0 0.042 0.135 4 GOBP_METAPHASE_ANAPHASE_TRANSITION_OF _CELL_CYCLE 60 1.92 0 0.058 0.239 5 GOBP_RIBOSOMAL_LARGE_SUBUNIT_BIOGENES IS 59 1.92 0 0.049 0.252 6 GOCC_SNO_S_RNA_CONTAINING_RIBONUCLEOP ROTEIN_COMPLEX 26 1.91 0 0.042 0.293 8 GOCC_RIBOSOME_BIOGENESIS 275 1.91 0 0.042 0.293 8 GOCC_RIBOSOME 186 1.9 0 0.042 0.33 9 ROBP_NEIBONUCLEOPROTEIN_COMPLEX_BIOGE NESIS 399 1.9 0 0.032 0.341 11 GOBP_DNA_DEPENDENT_DNA_REPLICATION 148 1.9 0 0.032 0.346 12 GOBP_DNA_REPLICATION 263 1.89 0 0.032 0.346 13 GOCC_LARGE_RIB		ME	120	2.02	0	0.020	0.02)
Image: Problem instant Problem instant Problem instant Problem instant 3 GOCC_RIBOSOMAL_SUBUNIT 152 1.94 0 0.042 0.135 4 GOBP_METAPHASE_ANAPHASE_TRANSITION_OF _CELL_CYCLE 60 1.92 0 0.058 0.239 5 GOBP_RIBOSOMAL_LARGE_SUBUNIT_BIOGENESS IS 59 1.92 0 0.049 0.252 6 GOCC_SNO_S_RNA_CONTAINING_RIBONUCLEOP ROTEIN_COMPLEX 26 1.91 0 0.046 0.28 7 GOBP_RIBOSOME_BIOGENESIS 275 1.91 0 0.042 0.293 8 GOCC_RIBOSOME 186 1.9 0 0.042 0.33 9 GOBP_RIBONUCLEOPROTEIN_COMPLEX_BIOGE NESIS 399 1.9 0 0.033 0.341 10 GOBP_DNA_DEPENDENT_DNA_REPLICATION 148 1.9 0 0.033 0.341 11 GOBP_DNA_REPLICATION 263 1.89 0 0.032 0.366 13 GOCC_LARGE_RIBOSOMAL_SUBUNIT 93 1.89	2	GOBP_NUCLEOBASE_CONTAINING_SMALL_MOL	26	196	0	0 044	0.097
3 GOCC_RIBOSOMAL_SUBUNIT 152 1.94 0 0.042 0.135 4 GOBP_METAPHASE_ANAPHASE_TRANSITION_OF _CELL_CYCLE 60 1.92 0 0.058 0.239 5 GOBP_RIBOSOMAL_LARGE_SUBUNIT_BIOGENES IS 59 1.92 0 0.049 0.252 6 GOCC_SNO_S_RNA_CONTAINING_RIBONUCLEOP ROTEIN_COMPLEX 26 1.91 0 0.042 0.293 8 GOCC_RIBOSOME_BIOGENESIS 275 1.91 0 0.042 0.293 8 GOCC_RIBOSOME BIOGENESIS 275 1.91 0 0.042 0.33 9 GOBP_RIBONUCLEOPROTEIN_COMPLEX_BIOGE NESIS 399 1.9 0 0.035 0.341 11 GOBP_DNA_DEPENDENT_DNA_REPLICATION 148 1.9 0 0.032 0.366 13 GOCC_LARGE_RIBOSOMAL_SUBUNIT 93 1.89 0 0.033 0.341 11 GOBP_NRNA_METABOLIC_PROCESS 220 1.89 0 0.032 0.366 13 GOCC_CON		ECULE_INTERCONVERSION	20	1.70	°	0.011	
4 GOBP_METAPHASE_ANAPHASE_TRANSITION_OF _CELL_CYCLE 60 1.92 0 0.058 0.239 5 GOBP_RIBOSOMAL_LARGE_SUBUNIT_BIOGENES IS 59 1.92 0 0.049 0.252 6 GOCC_SNO_S_RNA_CONTAINING_RIBONUCLEOP ROTEIN_COMPLEX 26 1.91 0 0.046 0.28 7 GOBP_RIBOSOME_BIOGENESIS 275 1.91 0 0.042 0.293 8 GOCC_RIBOSOME BIOGENESIS 275 1.91 0 0.042 0.33 9 GOBP_RIBONUCLEOPROTEIN_COMPLEX_BIOGE NESIS 399 1.9 0 0.035 0.341 11 GOBP_NCRNA_DEPENDENT_DNA_REPLICATION 148 1.9 0 0.032 0.366 13 GOCC_LARGE_RIBOSOMAL_SUBUNIT 93 1.89 0 0.033 0.341 14 GOBP_RRNA_METABOLIC_PROCESS 220 1.89 0 0.032 0.366 13 GOCC_CONDENSED_CHROMOSOME_CENTROME RIC_REGION 111 1.88 0 0.033 0.432 14<	3	GOCC_RIBOSOMAL_SUBUNIT	152	1.94	0	0.042	0.135
Image: Cell_CYCLE Image: Cell Structure Image: Cell Structure Image: Cell Structure Image: Cell Structure 5 GOBP_RIBOSOMAL_LARGE_SUBUNIT_BIOGENES IS 59 1.92 0 0.049 0.252 6 GOCC_SNO_S_RNA_CONTAINING_RIBONUCLEOP ROTEIN_COMPLEX 26 1.91 0 0.046 0.28 7 GOBP_RIBOSOME_BIOGENESIS 275 1.91 0 0.042 0.293 8 GOCC_RIBOSOME 186 1.9 0 0.042 0.33 9 GOBP_RIBONUCLEOPROTEIN_COMPLEX_BIOGE NESIS 399 1.9 0 0.039 0.335 10 GOBP_DNA_DEPENDENT_DNA_REPLICATION 148 1.9 0 0.032 0.341 11 GOBP_DNA_REPLICATION 263 1.89 0 0.032 0.366 13 GOCC_LARGE_RIBOSOMAL_SUBUNIT 93 1.89 0 0.032 0.368 14 GOBP_RRNA_METABOLIC_PROCESS 220 1.89 0 0.033 0.432 15 GOCC_CONDENSED_CHROMOSOME_CENTROME RIC_REGION 111 1.88 0 0.033 0.432	4	GOBP_METAPHASE_ANAPHASE_TRANSITION_OF	60	1 92	0	0.058	0 239
5 GOBP_RIBOSOMAL_LARGE_SUBUNIT_BIOGENES IS 59 1.92 0 0.049 0.252 6 GOCC_SNO_S_RNA_CONTAINING_RIBONUCLEOP ROTEIN_COMPLEX 26 1.91 0 0.046 0.28 7 GOBP_RIBOSOME_BIOGENESIS 275 1.91 0 0.042 0.293 8 GOCC_RIBOSOME BIOGENESIS 275 1.91 0 0.042 0.33 9 GOBP_RIBONUCLEOPROTEIN_COMPLEX_BIOGE NESIS 399 1.9 0 0.039 0.335 10 GOBP_DNA_DEPENDENT_DNA_REPLICATION 148 1.9 0 0.033 0.341 11 GOBP_NCRNA_PROCESSING 362 1.89 0 0.032 0.366 13 GOCC_LARGE_RIBOSOMAL_SUBUNIT 93 1.89 0 0.032 0.366 15 GOCC_CONDENSED_CHROMOSOME_CENTROME RIC_REGION 111 1.88 0 0.033 0.432 16 GOBP_MITOCHONDRIAL_GENE_EXPRESSION 160 1.88 0 0.033 0.4445 17 GOB	т	_CELL_CYCLE	00	1.72	0	0.050	0.237
IS D7 1.92 0 0.049 0.132 6 GOCC_SNO_S_RNA_CONTAINING_RIBONUCLEOP ROTEIN_COMPLEX 26 1.91 0 0.046 0.28 7 GOBP_RIBOSOME_BIOGENESIS 275 1.91 0 0.042 0.293 8 GOCC_RIBOSOME 186 1.9 0 0.042 0.33 9 GOBP_RIBONUCLEOPROTEIN_COMPLEX_BIOGE NESIS 399 1.9 0 0.039 0.335 10 GOBP_DNA_DEPENDENT_DNA_REPLICATION 148 1.9 0 0.033 0.341 11 GOBP_NCRNA_PROCESSING 362 1.89 0 0.032 0.366 13 GOCC_LARGE_RIBOSOMAL_SUBUNIT 93 1.89 0 0.032 0.366 14 GOBP_RRNA_METABOLIC_PROCESS 220 1.89 0 0.032 0.445 15 GOCC_CONDENSED_CHROMOSOME_CENTROME RIC_REGION 111 1.88 0 0.033 0.432 16 GOBP_MITOCHONDRIAL_GENE_EXPRESSION 160 1.88 0<	5	GOBP_RIBOSOMAL_LARGE_SUBUNIT_BIOGENES	59	1 92	0	0.049	0.252
6 GOCC_SNO_S_RNA_CONTAINING_RIBONUCLEOP ROTEIN_COMPLEX 26 1.91 0 0.046 0.28 7 GOBP_RIBOSOME_BIOGENESIS 275 1.91 0 0.042 0.293 8 GOCC_RIBOSOME 186 1.9 0 0.042 0.33 9 GOBP_RIBONUCLEOPROTEIN_COMPLEX_BIOGE NESIS 399 1.9 0 0.039 0.335 10 GOBP_DNA_DEPENDENT_DNA_REPLICATION 148 1.9 0 0.035 0.341 11 GOBP_NCRNA_PROCESSING 362 1.89 0 0.032 0.366 13 GOCC_LARGE_RIBOSOMAL_SUBUNIT 93 1.89 0 0.032 0.366 14 GOBP_RRNA_METABOLIC_PROCESS 220 1.89 0 0.033 0.432 15 GOCC_CONDENSED_CHROMOSOME_CENTROME RIC_REGION 111 1.88 0 0.033 0.432 16 GOBP_MITOCHONDRIAL_GENE_EXPRESSION 160 1.88 0 0.033 0.445 17 GOBP_NCRNA_METABOLIC_PROCESS <t< td=""><td>5</td><td>IS</td><td>57</td><td>1.72</td><td>0</td><td>0.047</td><td>0.232</td></t<>	5	IS	57	1.72	0	0.047	0.232
Constraint Constraint <thconstraint< th=""> Constraint Constrai</thconstraint<>	6	GOCC_SNO_S_RNA_CONTAINING_RIBONUCLEOP	26	1 91	0	0.046	0.28
7 GOBP_RIBOSOME_BIOGENESIS 275 1.91 0 0.042 0.293 8 GOCC_RIBOSOME 186 1.9 0 0.042 0.33 9 GOBP_RIBONUCLEOPROTEIN_COMPLEX_BIOGE NESIS 399 1.9 0 0.039 0.335 10 GOBP_DNA_DEPENDENT_DNA_REPLICATION 148 1.9 0 0.033 0.341 11 GOBP_NCRNA_PROCESSING 362 1.89 0 0.032 0.366 13 GOCC_LARGE_RIBOSOMAL_SUBUNIT 263 1.89 0 0.032 0.368 14 GOBP_RRNA_METABOLIC_PROCESS 220 1.89 0 0.033 0.347 15 GOCC_CONDENSED_CHROMOSOME_CENTROME RIC_REGION 111 1.88 0 0.033 0.432 16 GOBP_MITOCHONDRIAL_GENE_EXPRESSION 160 1.88 0 0.033 0.477 18 HP_BICORNUATE_UTERUS 432 1.87 0 0.033 0.479 19 GOBP_MITOCHONDRIAL_TRANSLATION 132 1.87 0 0.031 0.492 20 GOBP_MITOTIC_SISTER_CHROM	0	ROTEIN_COMPLEX	20	1.71	0	0.040	0.20
8 GOCC_RIBOSOME 186 1.9 0 0.042 0.33 9 GOBP_RIBONUCLEOPROTEIN_COMPLEX_BIOGE NESIS 399 1.9 0 0.039 0.335 10 GOBP_DNA_DEPENDENT_DNA_REPLICATION 148 1.9 0 0.035 0.341 11 GOBP_NCRNA_PROCESSING 362 1.89 0 0.032 0.366 12 GOBP_DNA_REPLICATION 263 1.89 0 0.032 0.366 13 GOCC_LARGE_RIBOSOMAL_SUBUNIT 93 1.89 0 0.032 0.368 14 GOBP_RRNA_METABOLIC_PROCESS 220 1.89 0 0.028 0.376 15 GOCC_CONDENSED_CHROMOSOME_CENTROME RIC_REGION 111 1.88 0 0.032 0.445 16 GOBP_MITOCHONDRIAL_GENE_EXPRESSION 160 1.88 0 0.033 0.477 18 HP_BICORNUATE_UTERUS 42 1.87 0 0.033 0.477 18 HP_BICORNUATE_UTERUS 42 1.87 0 0.031 0.492 19 GOBP_MITOTIC_SISTER_CHROMATID_SEGREGA TIO	7	GOBP_RIBOSOME_BIOGENESIS	275	1.91	0	0.042	0.293
9 GOBP_RIBONUCLEOPROTEIN_COMPLEX_BIOGE NESIS 399 1.9 0 0.039 0.335 10 GOBP_DNA_DEPENDENT_DNA_REPLICATION 148 1.9 0 0.035 0.341 11 GOBP_NCRNA_PROCESSING 362 1.89 0 0.032 0.347 12 GOBP_DNA_REPLICATION 263 1.89 0 0.032 0.366 13 GOCC_LARGE_RIBOSOMAL_SUBUNIT 93 1.89 0 0.032 0.368 14 GOBP_RRNA_METABOLIC_PROCESS 220 1.89 0 0.032 0.368 15 GOCC_CONDENSED_CHROMOSOME_CENTROME RIC_REGION 111 1.88 0 0.033 0.432 16 GOBP_MITOCHONDRIAL_GENE_EXPRESSION 160 1.88 0 0.033 0.445 17 GOBP_NCRNA_METABOLIC_PROCESS 432 1.87 0 0.033 0.492 18 HP_BICORNUATE_UTERUS 42 1.87 0 0.033 0.492 19 GOBP_MITOCHONDRIAL_TRANSLATION 132	8	GOCC_RIBOSOME	186	1.9	0	0.042	0.33
9 NESIS 399 1.9 0 0.039 0.333 10 GOBP_DNA_DEPENDENT_DNA_REPLICATION 148 1.9 0 0.035 0.341 11 GOBP_NCRNA_PROCESSING 362 1.89 0 0.033 0.347 12 GOBP_DNA_REPLICATION 263 1.89 0 0.032 0.366 13 GOCC_LARGE_RIBOSOMAL_SUBUNIT 93 1.89 0 0.03 0.368 14 GOBP_RRNA_METABOLIC_PROCESS 220 1.89 0 0.028 0.376 15 GOCC_CONDENSED_CHROMOSOME_CENTROME RIC_REGION 111 1.88 0 0.033 0.432 16 GOBP_MITOCHONDRIAL_GENE_EXPRESSION 160 1.88 0 0.033 0.477 18 HP_BICORNUATE_UTERUS 42 1.87 0 0.033 0.499 19 GOBP_MITOCHONDRIAL_TRANSLATION 132 1.86 0 0.031 0.492 20 GOBP_MITOTIC_SISTER_CHROMATID_SEGREGA TION 152 1.86 0 0.031 0.513	0	GOBP_RIBONUCLEOPROTEIN_COMPLEX_BIOGE	200	1.0	0	0.030	0 335
10 GOBP_DNA_DEPENDENT_DNA_REPLICATION 148 1.9 0 0.035 0.341 11 GOBP_NCRNA_PROCESSING 362 1.89 0 0.033 0.347 12 GOBP_DNA_REPLICATION 263 1.89 0 0.032 0.366 13 GOCC_LARGE_RIBOSOMAL_SUBUNIT 93 1.89 0 0.03 0.368 14 GOBP_RRNA_METABOLIC_PROCESS 220 1.89 0 0.028 0.376 15 GOCC_CONDENSED_CHROMOSOME_CENTROME RIC_REGION 111 1.88 0 0.033 0.432 16 GOBP_MITOCHONDRIAL_GENE_EXPRESSION 160 1.88 0 0.033 0.477 18 HP_BICORNUATE_UTERUS 42 1.87 0 0.033 0.477 19 GOBP_MITOCHONDRIAL_TRANSLATION 132 1.87 0 0.031 0.492 20 GOBP_MITOTIC_SISTER_CHROMATID_SEGREGA TION 152 1.86 0 0.031 0.513	9	NESIS	377	1.9	0	0.039	0.555
11 GOBP_NCRNA_PROCESSING 362 1.89 0 0.033 0.347 12 GOBP_DNA_REPLICATION 263 1.89 0 0.032 0.366 13 GOCC_LARGE_RIBOSOMAL_SUBUNIT 93 1.89 0 0.033 0.368 14 GOBP_RRNA_METABOLIC_PROCESS 220 1.89 0 0.028 0.376 15 GOCC_CONDENSED_CHROMOSOME_CENTROME RIC_REGION 111 1.88 0 0.033 0.432 16 GOBP_MITOCHONDRIAL_GENE_EXPRESSION 160 1.88 0 0.033 0.477 18 HP_BICORNUATE_UTERUS 42 1.87 0 0.033 0.477 18 HP_BICORNUATE_UTERUS 42 1.87 0 0.033 0.492 19 GOBP_MITOCHONDRIAL_TRANSLATION 132 1.87 0 0.031 0.492 20 GOBP_MITOTIC_SISTER_CHROMATID_SEGREGA TION 152 1.86 0 0.031 0.513	10	GOBP_DNA_DEPENDENT_DNA_REPLICATION	148	1.9	0	0.035	0.341
12 GOBP_DNA_REPLICATION 263 1.89 0 0.032 0.366 13 GOCC_LARGE_RIBOSOMAL_SUBUNIT 93 1.89 0 0.03 0.368 14 GOBP_RRNA_METABOLIC_PROCESS 220 1.89 0 0.028 0.376 15 GOCC_CONDENSED_CHROMOSOME_CENTROME RIC_REGION 111 1.88 0 0.033 0.432 16 GOBP_MITOCHONDRIAL_GENE_EXPRESSION 160 1.88 0 0.033 0.445 17 GOBP_NCRNA_METABOLIC_PROCESS 432 1.87 0 0.033 0.477 18 HP_BICORNUATE_UTERUS 42 1.87 0 0.033 0.492 19 GOBP_MITOCHONDRIAL_TRANSLATION 132 1.87 0 0.031 0.492 20 GOBP_MITOTIC_SISTER_CHROMATID_SEGREGA TION 152 1.86 0 0.031 0.513	11	GOBP_NCRNA_PROCESSING	362	1.89	0	0.033	0.347
13 GOCC_LARGE_RIBOSOMAL_SUBUNIT 93 1.89 0 0.03 0.368 14 GOBP_RRNA_METABOLIC_PROCESS 220 1.89 0 0.028 0.376 15 GOCC_CONDENSED_CHROMOSOME_CENTROME RIC_REGION 111 1.88 0 0.033 0.432 16 GOBP_MITOCHONDRIAL_GENE_EXPRESSION 160 1.88 0 0.033 0.445 17 GOBP_NCRNA_METABOLIC_PROCESS 432 1.87 0 0.033 0.477 18 HP_BICORNUATE_UTERUS 42 1.87 0 0.031 0.492 19 GOBP_MITOCHONDRIAL_TRANSLATION 132 1.87 0 0.031 0.492 20 GOBP_MITOTIC_SISTER_CHROMATID_SEGREGA TION 152 1.86 0 0.031 0.513	12	GOBP_DNA_REPLICATION	263	1.89	0	0.032	0.366
14 GOBP_RRNA_METABOLIC_PROCESS 220 1.89 0 0.028 0.376 15 GOCC_CONDENSED_CHROMOSOME_CENTROME RIC_REGION 111 1.88 0 0.033 0.432 16 GOBP_MITOCHONDRIAL_GENE_EXPRESSION 160 1.88 0 0.032 0.445 17 GOBP_NCRNA_METABOLIC_PROCESS 432 1.87 0 0.033 0.477 18 HP_BICORNUATE_UTERUS 42 1.87 0 0.031 0.492 19 GOBP_MITOCHONDRIAL_TRANSLATION 132 1.87 0 0.031 0.492 20 GOBP_MITOTIC_SISTER_CHROMATID_SEGREGA TION 152 1.86 0 0.031 0.513	13	GOCC_LARGE_RIBOSOMAL_SUBUNIT	93	1.89	0	0.03	0.368
15 GOCC_CONDENSED_CHROMOSOME_CENTROME RIC_REGION 111 1.88 0 0.033 0.432 16 GOBP_MITOCHONDRIAL_GENE_EXPRESSION 160 1.88 0 0.032 0.445 17 GOBP_NCRNA_METABOLIC_PROCESS 432 1.87 0 0.033 0.477 18 HP_BICORNUATE_UTERUS 42 1.87 0 0.031 0.492 19 GOBP_MITOCHONDRIAL_TRANSLATION 132 1.87 0 0.031 0.492 20 GOBP_MITOTIC_SISTER_CHROMATID_SEGREGA TION 152 1.86 0 0.031 0.513	14	GOBP_RRNA_METABOLIC_PROCESS	220	1.89	0	0.028	0.376
15 RIC_REGION 111 1.88 0 0.033 0.432 16 GOBP_MITOCHONDRIAL_GENE_EXPRESSION 160 1.88 0 0.032 0.445 17 GOBP_NCRNA_METABOLIC_PROCESS 432 1.87 0 0.033 0.477 18 HP_BICORNUATE_UTERUS 42 1.87 0 0.033 0.49 19 GOBP_MITOCHONDRIAL_TRANSLATION 132 1.87 0 0.031 0.492 20 GOBP_MITOTIC_SISTER_CHROMATID_SEGREGA TION 152 1.86 0 0.031 0.513	15	GOCC_CONDENSED_CHROMOSOME_CENTROME	111	1.00	0	0.022	0.422
16 GOBP_MITOCHONDRIAL_GENE_EXPRESSION 160 1.88 0 0.032 0.445 17 GOBP_NCRNA_METABOLIC_PROCESS 432 1.87 0 0.033 0.477 18 HP_BICORNUATE_UTERUS 42 1.87 0 0.033 0.49 19 GOBP_MITOCHONDRIAL_TRANSLATION 132 1.87 0 0.031 0.492 20 GOBP_MITOTIC_SISTER_CHROMATID_SEGREGA TION 152 1.86 0 0.031 0.513	15	RIC_REGION	111	1.88	0	0.033	0.432
17 GOBP_NCRNA_METABOLIC_PROCESS 432 1.87 0 0.033 0.477 18 HP_BICORNUATE_UTERUS 42 1.87 0 0.033 0.49 19 GOBP_MITOCHONDRIAL_TRANSLATION 132 1.87 0 0.031 0.492 20 GOBP_MITOTIC_SISTER_CHROMATID_SEGREGA TION 152 1.86 0 0.031 0.513	16	GOBP_MITOCHONDRIAL_GENE_EXPRESSION	160	1.88	0	0.032	0.445
18 HP_BICORNUATE_UTERUS 42 1.87 0 0.033 0.49 19 GOBP_MITOCHONDRIAL_TRANSLATION 132 1.87 0 0.031 0.492 20 GOBP_MITOTIC_SISTER_CHROMATID_SEGREGA TION 152 1.86 0 0.031 0.513	17	GOBP_NCRNA_METABOLIC_PROCESS	432	1.87	0	0.033	0.477
19 GOBP_MITOCHONDRIAL_TRANSLATION 132 1.87 0 0.031 0.492 20 GOBP_MITOTIC_SISTER_CHROMATID_SEGREGA 152 1.86 0 0.031 0.513	18	HP_BICORNUATE_UTERUS	42	1.87	0	0.033	0.49
20GOBP_MITOTIC_SISTER_CHROMATID_SEGREGA TION1521.8600.0310.513	19	GOBP_MITOCHONDRIAL_TRANSLATION	132	1.87	0	0.031	0.492
TION 152 1.86 0 0.031 0.513	20	GOBP_MITOTIC_SISTER_CHROMATID_SEGREGA	150	1.00	0	0.021	0.512
	20	TION	152	1.80	0	0.031	0.513

378 Supplemental table 5. GSEA report for positively enriched pathways in shLuc-EVI1-

379 AML cells vs. sh*Erg* (C5 Gene Ontology biological process)

380

	Pathway	SIZE	NEC	NOM	FDR	FWER
_	Pathway	SIZE	NES	p-val	q-val	p-val
1	GOBP_RESPONSE_TO_TYPE_I_INTERFERON	76	2.23	0	0.003	0.002
2	GOBP_RESPONSE_TO_INTERFERON_GAMMA	149	2.19	0	0.003	0.004
3	GOBP_POSITIVE_REGULATION_OF_MACROPHAGE_MI GRATION	23	2.12	0	0.007	0.015
4	GOBP_RESPONSE_TO_INTERFERON_BETA	27	2.09	0	0.01	0.03
5	GOBP_TYPE_I_INTERFERON_PRODUCTION	118	2.05	0	0.017	0.061
6	GOBP_POSITIVE_REGULATION_OF_TUMOR_NECROSI S_FACTOR_SUPERFAMILY_CYTOKINE_ PRODUCTION	74	2.05	0	0.016	0.07
7	GOBP_MEMBRANE_RAFT_ORGANIZATION	22	2.04	0	0.017	0.087
8	GOBP_DEFENSE_RESPONSE_TO_VIRUS	203	2.03	0	0.016	0.092
9	GOBP_LYTIC_VACUOLE_ORGANIZATION	67	2.02	0	0.017	0.109
10	GOBP_POSITIVE_REGULATION_OF_TYPE_I_INTERFER ON_PRODUCTION	70	2.01	0	0.018	0.125
11	GOBP_POSITIVE_REGULATION_OF_INTERFERON_BET A_PRODUCTION	30	2.01	0	0.018	0.133
12	GOBP_LATE_ENDOSOME_TO_VACUOLE_TRANSPORT	22	2.01	0.003	0.017	0.138
13	GOBP_MICROGLIAL_CELL_ACTIVATION	44	2	0	0.016	0.146
14	GOBP_INTERLEUKIN_6_PRODUCTION	125	2	0	0.016	0.157
15	GOBP_RELAXATION_OF_CARDIAC_MUSCLE	16	1.99	0.003	0.017	0.176
16	GOBP_INTERFERON_BETA_PRODUCTION	46	1.98	0	0.019	0.208
17	GOBP_POSITIVE_REGULATION_OF_INTERLEUKIN_6_P RODUCTION	70	1.98	0	0.018	0.21
18	GOBP_RESPONSE_TO_INTERFERON_ALPHA	19	1.97	0.002	0.019	0.232
19	GOBP_RESPONSE_TO_VIRUS	287	1.95	0	0.026	0.311
20	GOBP_POSITIVE_REGULATION_OF_NEUROINFLAMMA TORY_RESPONSE	15	1.95	0	0.025	0.313
3	84					

Supplemental table 6. GSEA report for positively enriched pathways in shLuc-EVI1 AML cells vs. shCcnd1 in vitro (C5 Gene Ontology biological process)

386 **References**

Yoshimi A, Goyama S, Watanabe-Okochi N, et al. Evi1 represses PTEN
 expression and activates PI3K/AKT/mTOR via interactions with polycomb proteins.
 Blood. 2011;117(13):3617-3628.

Arai S, Yoshimi A, Shimabe M, et al. Evi-1 is a transcriptional target of mixedlineage leukemia oncoproteins in hematopoietic stem cells. *Blood*. 2011;117(23):63046314.

393 3. Kagoya Y, Yoshimi A, Kataoka K, et al. Positive feedback between NF-κB and
394 TNF-α promotes leukemia-initiating cell capacity. *The Journal of clinical investigation*.
395 2014;124(2):528-542.

Mizuno H, Koya J, Masamoto Y, Kagoya Y, Kurokawa M. Evi1 upregulates
Fbp1 and supports progression of acute myeloid leukemia through pentose phosphate
pathway activation. *Cancer Sci.* 2021;112(10):4112-4126.

399 5. Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. *Nat*400 *Methods*. 2012;9(4):357-359.

401 6. Nakato R, Shirahige K. Sensitive and robust assessment of ChIP-seq read
402 distribution using a strand-shift profile. *Bioinformatics*. 2018;34(14):2356-2363.

403 7. Nakato R, Sakata T. Methods for ChIP-seq analysis: A practical workflow and
404 advanced applications. *Methods*. 2021;187:44-53.

405 8. Mootha VK, Lindgren CM, Eriksson K-F, et al. PGC-1α-responsive genes
406 involved in oxidative phosphorylation are coordinately downregulated in human diabetes.
407 *Nat Genet*. 2003;34(3):267-273.

Subramanian A, Tamayo P, Mootha VK, et al. Gene set enrichment analysis: A
knowledge-based approach for interpreting genome-wide expression profiles. *Proceedings of the National Academy of Sciences*. 2005;102(43):15545-15550.

411 10. van Galen P, Hovestadt V, Wadsworth Ii MH, et al. Single-Cell RNA-Seq
412 Reveals AML Hierarchies Relevant to Disease Progression and Immunity. *Cell*.
413 2019;176(6):1265-1281.e1224.

Valk PJ, Verhaak RG, Beijen MA, et al. Prognostically useful gene-expression
profiles in acute myeloid leukemia. *N Engl J Med.* 2004;350(16):1617-1628.

416 12. Oki S, Ohta T, Shioi G, et al. ChIP-Atlas: a data-mining suite powered by full
417 integration of public ChIP-seq data. *EMBO Rep.* 2018;19(12).

418 13. Mandoli A, Singh AA, Jansen PW, et al. CBFB-MYH11/RUNX1 together with
419 a compendium of hematopoietic regulators, chromatin modifiers and basal transcription
420 factors occupies self-renewal genes in inv(16) acute myeloid leukemia. *Leukemia*.

421 2014;28(4):770-778.

422 14. Martens JH, Mandoli A, Simmer F, et al. ERG and FLI1 binding sites demarcate
423 targets for aberrant epigenetic regulation by AML1-ETO in acute myeloid leukemia.
424 *Blood*. 2012;120(19):4038-4048.

Mandoli A, Singh AA, Prange KHM, et al. The Hematopoietic Transcription
Factors RUNX1 and ERG Prevent AML1-ETO Oncogene Overexpression and Onset of
the Apoptosis Program in t(8;21) AMLs. *Cell Rep.* 2016;17(8):2087-2100.

16. Schütte J, Wang H, Antoniou S, et al. An experimentally validated network of
nine haematopoietic transcription factors reveals mechanisms of cell state stability. *Elife*.
2016;5:e11469.

431 17. Assi SA, Imperato MR, Coleman DJL, et al. Subtype-specific regulatory
432 network rewiring in acute myeloid leukemia. *Nat Genet*. 2019;51(1):151-162.

433 18. Vierstra J, Lazar J, Sandstrom R, et al. Global reference mapping of human
434 transcription factor footprints. *Nature*. 2020;583(7818):729-736.

Supplemental figure 4

