Supplementary Materials: Cross-Modal Autoencoder Framework Learns Holistic Representations of Cardiovascular State

Adityanarayanan Radhakrishnan^{1#}, Sam F. Friedman^{2#}, Shaan Khurshid^{2,3}, Kenney Ng⁴, Puneet Batra², Steven A. Lubitz^{2,3*}, Anthony A. Philippakis^{2,*}, Caroline Uhler^{1,2,*}

¹Massachusetts Institute of Technology, U.S.A. ²Broad Institute of MIT and Harvard, U.S.A. ³Massachusetts General Hospital, U.S.A. ⁴IBM T.J. Watson Research Center, U.S.A.

[#]Equal contribution. *To whom correspondence should be addressed; E-mail: cuhler@mit.edu; aphilipp@broadinstitute.org; lubitz@broadinstitute.org.

This PDF file includes:

Supplementary Figures S1 to S17 Supplementary Tables S1 to S3 Supplementary Videos S1 to S5

Supplementary Figures

Supplementary Fig. S1: The impact of hyper-parameters, architecture, and loss functions on the performance of our autoencoder. (a) We visualize the training and validation loss across 500 epochs; the hyper-parameter optimized architecture produces lower loss than the standard convolutional network architecture from [1]. (b) Using modality dropout leads to improved performance on downstream LVM prediction over averaging or concatenating modality-specific embeddings during training (n=4708, bar shows mean value and black line indicates +/- one standard deviation). (c) Contrastive loss to pair modalities in the latent space leads to improved performance on LVM prediction over pairing samples by maximizing cosine similarity or minimizing Euclidean distance (n=4708, bar shows mean value and black line indicates +/- standard deviation). (d-e) We visualize the reconstructions of test MRI and ECG samples from the optimized architecture and standard convolutional architecture; reconstructions from the optimized architecture are of higher quality (lower loss) than those from the standard convolutional architecture.

Supplementary Fig. S2: A comparison of phenotype prediction from bi-modal embeddings of ECGs and long axis views of cardiac MRIs (LAX) and tri-modal embeddings of ECGs, LAX, and short axis view of cardiac MRIs (SAX). We observe that predictive performance of general phenotypes such as BMI and sex improves when using tri-modal embeddings since SAX is informative about these phenotypes. On the other hand, prediction of ECG intervals (e.g., QT, RR, and PQ intervals) from tri-modal embeddings decreases since SAX contains little information about these phenotypes and may add noise to the prediction task. For BMI and Age, n = 4212. For Sex and hypertension, n = 4218. For LVM, LVEDV, LVESV, LVSV, RVEDV, RVESV, and RVSV, n = 4218. For RR Interval, QRS Duration, PQ Interval and QT Interval, n = 4120. Bars shows mean value and black line indicates +/- standard deviation.

Supplementary Fig. S3: Prediction from cross-modal ECG embedding outperforms prediction from unimodal ECG embedding and semi-supervised ECG embedding, i.e., the embedding obtained from an autoencoder that is trained to both reconstruct ECGs and predict phenotypes. For BMI and Age, n = 4212. For Sex and hypertension, n = 4218. For LVEDV, LVESV, LVSV, and LVM, n = 4218. For RR Interval, n = 4120. Bars shows mean value and black line indicates +/- standard deviation.

(a)

R² Values for ECG-Derived Phenotype Prediction from Cross-modal MRI Embeddings

Model\Phenotype	PQ Interval	QT Interval	QTC Interval	QRS Duration	RR Interval	Average
Kernel Regression	0.51	0.26	0.19	0.25	0.49	0.34
Linear Regression	0.50	0.25	0.18	0.24	0.49	0.33

\mathbb{R}^2	Values	for	MRI-I	Derived	Pheno	type	Prediction	from	Cross	-modal	FCG	Embed	dinas
••	valueo	101	1411 / 1	2011/00	1 110110	U PO	1 100101011		01000	modul	-00	LINDOG	unigu

Model\Phenotype	LVM	LVEDV	LVEF	LVESV	LVSV	RVEF	RVESV	RVSV	RVEDV	Average
Kernel Regression	0.53	0.45	0.11	0.39	0.31	0.13	0.44	0.31	0.48	0.35
Linear Regression	0.51	0.43	0.11	0.36	0.30	0.14	0.43	0.30	0.47	0.34

(b) R² Values for General Numerical Phenotype Prediction from Cross-modal ECG Embeddings

Model\Phenotype	BMI	Age	Average
Kernel Regression	0.36	0.27	0.32
Linear Regression	0.35	0.24	0.29

R² Values for General Numerical Phenotype Prediction from Cross-modal MRI Embeddings

Model\Phenotype	BMI	Age	Average
Kernel Regression	0.48	0.42	0.45
Linear Regression	0.47	0.40	0.44

(c)

AUROC Values for General Categorical Phenotype Prediction from Cross-modal ECG Embeddings

Model\Phenotype	Sex	Hypercholesterolemia	Hypertension	Average
Kernel Regression	0.96	0.64	0.69	0.76
Logistic Regression	0.90	0.56	0.63	0.70

AUROC Values for General Categorical Phenotype Prediction from Cross-modal MRI Embeddings

Model\Phenotype	Sex	Hypercholesterolemia	Hypertension	Average
Kernel Regression	0.99	0.66	0.75	0.80
Logistic Regression	0.95	0.58	0.66	0.73

Higher R² and AUROC are better with a maximum value of 1.

Supplementary Fig. S4: Comparison of kernel, linear, and logistic regression models used for phenotype prediction from cross-modal ECG and MRI embeddings. Overall, the kernel regression models outperform linear and logistic regression models for the tasks considered in Fig. 2 of the main text. (a, b) R^2 -values for kernel and linear regression used in the prediction of continuous-valued phenotypes considered in Fig. 2 of the main text. (c) Area under the Receiver Operating Curve (AUROC) for kernel and logistic regression used in the prediction of categorical phenotypes considered in Fig. 2 of the main text.

	Cross-modal ECG	Unimodal ECG	Supervised ECG
LVH AUROC	0.756 ± 0.022	0.716 ± 0.012	0.692 ± 0.016
LVSD AUROC	0.572 ± 0.052	0.535 ± 0.028	0.558 ± 0.023

AUROC Values for Left Ventricular Hypertrophy Classification

Supplementary Fig. S5: Logistic regression using cross-modal ECG embeddings leads to improved prediction of Left Ventricular Hypertrophy (LVH) and Left Ventricular Systolic Dysfunction (LVSD) over logistic regression from unimodal ECG embeddings and supervised learning from ECGs directly.

	F	Prediction o	f MRI Deriv	ed Phenoty	bes from EC		Prediction of General Phenotypes from ECG (R ²)							
				1				Γ	W	ithout LDL & CR	Р		With LDL & CRP	
	W	/ithout LDL& CF	RP.		With LDL & CRP	, ,		F	Cross-modal Unimodal Supervised		Cross-modal	Unimodal	Supervised	
	Cross-modal	Unimodal	Supervised	Cross-modal	Unimodal	Supervised		r						
								BMI	0.362	0.320	0.192	0.461	0.426	0.330
LVM	0.536	0.475	0.439	0.536	0.485	0.440		Age	0.264	0.253	0.105	0.278	0.253	0.117
LVEDV	0.451	0.382	0.381	0.442	0.379	0.383			0.040	0.005	0.440	0.070	0.040	0.004
IVEE	0.103	0.080	0.049	0.098	0.085	0.044		Average	0.313	0.286	0.148	0.370	0.340	0.224
LVESV	0.380	0.324	0.327	0.368	0.325	0.326			Prediction of General Phenotypes from ECG (AUROC)					C)
LVSV	0.316	0.246	0.231	0.315	0.244	0.233				Without LDL 8	CRP		With LDL & CF	tΡ.
RVEF	0.129	0.116	0.065	0.129	0.120	0.063			Cross-mod	al Unimoda	Supervise	d Cross-moda	I Unimodal	Superv
RVESV	0.445	0.388	0.374	0.447	0.399	0.380		Sex	0.961	0.937	0.911	0.962	0.947	0.90
RVSV	0.320	0.245	0.236	0.320	0.248	0.239	ну	percholesterolem	ia 0.635	0.629	0.598	0.630	0.625	0.57
RVEDV	0.490	0.409	0.407	0.490	0.418	0.413		Hypertension	0.696	0.713	0.684	0.706	0.703	0.68
Average	0.352	0.296	0.279	0.349	0.300	0.280		Average	0.764	0.760	0.731	0.766	0.758	0.72

Supplementary Fig. S6: Impact of two circulating biomarkers, namely low-density lipoprotein (LDL) and C-reactive protein (CRP), on the prediction of phenotypes from ECG. Generally, we observe that the inclusion of these biomarkers consistently increases the R²-value for predicting BMI and age across all models but does not generally increase prediction accuracy for MRI derived phenotypes or sex, hypercholesterolemia, and hypertension.

Prediction of MRI Derived Phenotypes from ECG (R²)

Prediction of MRI Derived Phenotypes from ECG (R²)

		Without Sex		With Sex				
	Cross-modal	Unimodal	Supervised	Cross-modal	Unimodal	Supervised		
LVM	0.535	0.469	0.433	0.594	0.576	0.490		
LVEDV	0.452	0.387	0.391	0.506	0.495	0.415		
LVEF	0.109	0.095	0.049	0.123	0.112	0.052		
LVESV	0.388	0.344	0.352	0.437	0.428	0.369		
LVSV	0.311	0.240	0.220	0.345	0.319	0.241		
RVEF	0.131	0.111	0.061	0.146	0.140	0.073		
RVESV	0.438	0.382	0.370	0.493	0.489	0.404		
RVSV	0.312	0.242	0.222	0.356	0.337	0.246		
RVEDV	0.479	0.403	0.399	0.542	0.530	0.436		
Average	0.351	0.297	0.277	0.394	0.381	0.303		

		Without BMI		With BMI				
	Cross-modal	Unimodal	Supervised	Cross-modal	Unimodal	Supervised		
LVM	0.535	0.469	0.433	0.566	0.513	0.475		
LVEDV	0.452	0.388	0.391	0.471	0.428	0.400		
LVEF	0.108	0.094	0.049	0.111	0.085	0.048		
LVESV	0.388	0.344	0.352	0.401	0.359	0.346		
LVSV	0.312	0.242	0.222	0.328	0.286	0.241		
RVEF	0.131	0.113	0.061	0.132	0.099	0.066		
RVESV	0.439	0.382	0.370	0.445	0.398	0.367		
RVSV	0.313	0.244	0.223	0.340	0.296	0.250		
RVEDV	0.480	0.403	0.400	0.499	0.446	0.409		
Average	0.351	0.298	0.278	0.366	0.323	0.289		

Supplementary Fig. S7: Impact of stratification by sex and BMI on the prediction of MRI-derived phenotypes from ECG. In general, we observe that such stratification increases the prediction accuracy as measured by R^2 -values.

Supplementary Fig. S8: Cross-modal representation leads to improved performance of a trial fibrillation (AF) and heart failure (HF). Labels of AF and HF were provided by the UK Biobank. For these phenotypes, n = 4708 and bars shows mean value and black line indicates +/- standard deviation.

Supplementary Fig. S9: Additional examples of modality translation using cross-modal autoencoders. (a) Translation of ECG to MRI for individuals with high and low BMI. (b) Translation of MRI to ECG for individuals with long and short QT intervals.

Supplementary Fig. S10: Translating cross-modal embeddings along a phenotype direction produces phenotype-specific impacts on ECGs and MRIs after decoding. (a) Translating cross-modal embeddings along the direction from short to long (or long to short) QT or PQ interval leads to corresponding increases (or decreases) of these intervals on the original ECGs. (b) Translating cross-modal embeddings along the direction from low to high (or high to low) LVM or BMI leads to corresponding increases (or decreases) of these phenotypes on the original MRI.

Supplementary Fig. S11: GWAS of PQ interval predicted from (a) MRI cross-modal representations and (b) ECG cross-modal representations identify genes associated with PQ interval duration, including SCN10A, KCND3, and CAV1.

Supplementary Fig. S12: Unsupervised GWAS of cross-modal representations and representations from unimodal autoencoders. (a) Unsupervised GWAS of cross-modal latent representations of both ECG and MRI, i.e., representations corresponding to the instances where both ECG and MRI pairs are available as input to the model. (b) Unsupervised GWAS of MRI representations from a unimodal autoencoder. (c) Unsupervised GWAS of ECG representations from a unimodal autoencoder.

Model	Number of Principal Components of Ancestry	INLP R ² Threshold	Remaining Latent Dimensionality	Number of Lead SNPs Identified	GC λ
Cross-modal ECG	30	0.001	38	48	1.083
Cross-modal ECG	10	0.002	111	91	1.172
Cross-modal ECG	5	0.002	131	723	1.333
Cross-modal ECG	5	0.01	165	2720	2.72
Unimodal ECG	40	0.001	13	50	1.151
Unimodal ECG	30	0.001	49	97	1.228
Unimodal ECG	20	0.001	85	304	1.338
Cross-modal MRI (256 latent dims.)	10	0.002	136	26	1.086
Cross-modal MRI (512 latent dims.)	30	0.001	202	73	0.984
Unimodal MRI	10	0.002	167	6	1.0

Supplementary Fig. S13: Impact of varying the number of principal components of ancestry and the threshold for iterative nullspace projection (INLP) on the number of lead SNPs recovered by unsupervised GWAS for cross-modal and unimodal ECG embeddings. (a) Using too few principal components (PCs) of ancestry or using too large of an R^2 threshold yield unsupervised GWAS that are inflated, as is indicated by the λ_{GC} values. (b) Manhattan plot for uncorrected GWAS, which is highly inflated. (c) Manhattan plot for GWAS corrected with 5 PCs and an INLP threshold of 0.01, which is also inflated. (d) Manhattan plot for corrected GWAS with 20 PCs and an INLP threshold of 0.0015, which is no longer inflated. (d) Corresponding QQ plots for the Manhattan plots in (b-d). The λ_{GC} values are large for uncorrected unsupervised GWAS, and decrease to reasonable values after correction.

Comparison of Lead SNPs Across Embeddings/Phenotypes

	PQ Interval	QRS Duration	QT Interval	QTC Interval	RR Interval
Cross-modal ECG + MRI	0.43	0.71	0.47	0.75	0.39
Cross-modal ECG	0.53	0.64	0.47	0.75	0.44
Cross-modal MRI	0.23	0.32	0.20	0.19	0.33
PQ Interval	1.00	0.29	0.20	0.25	0.33
QRS Duration	0.17	1.00	0.03	0.25	0.06
QT Interval	0.13	0.04	1.00	0.44	0.78
QTC Interval	0.09	0.14	0.23	1.00	0.17
RR Interval	0.13	0.04	0.47	0.19	1.00
Verweij et al. 2020.	0.45	0.54	0.47	0.62	0.44

(b)

Number of	f Lead SNP	s from GWAS

Cross-modal ECG + MRI	Cross-modal ECG	Cross-modal MRI	PQ Interval	QRS Duration	QT Interval	QTC Interval	RR Interval	Verweij et al. 2020.
93	86	33	22	23	18	24	11	72

Supplementary Fig. S14: (a) Unsupervised GWAS of cross-modal representations identifies several lead SNPs associated with the heart and includes those found from GWAS on ECG derived phenotypes and from [2]. Entry (i, j) of the table represents the percentage of lead SNPs identified via GWAS of the phenotype in column j that also arise when performing GWAS of the embedding/phenotype in row i. We observe that lead SNPs identified by unsupervised GWAS of cross-modal representations include several of those from GWAS of PQ interval, QRS duration, QT interval, QTC interval, and RR interval. On the other hand, GWAS based on specific phenotypes (e.g. PQ interval, QRS duration, etc.) identifies lead SNPs that do not overlap much with those from GWAS of other ECG derived phenotypes. Our single unsupervised GWAS of cross-modal ECG representations identifies several of the same lead SNPs as those identified from 500 GWAS of ECG values from [2] upon Bonferroni correction. (b) A count of the number of lead SNPs identified by our unsupervised GWAS compared to GWAS on labelled ECG phenotypes. Our method recovers many more significant SNPs and includes those found via traditional GWAS approaches.

Supplementary Fig. S15: Venn diagrams illustrating the difference in SNPs found by the cross-modal unsupervised GWAS and SNPs found by the supervised GWAS on ECG-derived phenotypes. Overall, we observe that the SNPs not found by our method are near the significance cutoff of 5×10^{-8} . Reported p-values are given by two-sided t-tests.

Supplementary Fig. S16: A visualization of the differences between Manhattan plots resulting from unsupervised GWAS. (a) Cross-modal ECG representations show enriched signals for genes associated with vasculature development, the heart muscle protein, myosin, and ion channels (KCND3, and SCN5A) as compared to unimodal ECG representations. (b) Difference between unsupervised GWAS of cross-modal ECG representations and cross-modal MRI representations shows stronger signals for the cross-modal ECG. (c) BMI-adjustment increases strength of the sodium ion channel SCN5A but also shows reduced significance at sites associated with height.

Supplementary Fig. S17: (a) Hierarchical clustering of SNPs by signature, i.e., the vector pointing from the mean embedding of homozygous reference samples to the mean embedding of heterozygous and homozygous alternate samples. Darker colors indicate highly correlated SNP signatures. Several clusters arise including those corresponding to genes associated with the QT interval, genes related to the P-wave, and genes with effects on multiple cardiac traits. (b) Hierarchical clustering on a smaller subset of lead SNPs confirms the robustness of the identified clusters by showing that the SNPs fall into the same phenotypic clusters as in (a).