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Supplementary Figures

MRI Reconstructions from Optimized Architecture MRI Reconstructions from Convolutional Architecture(d)

Supplementary Fig. S1: The impact of hyper-parameters, architecture, and loss functions on the per-
formance of our autoencoder. (a) We visualize the training and validation loss across 500 epochs; the
hyper-parameter optimized architecture produces lower loss than the standard convolutional network
architecture from [1]. (b) Using modality dropout leads to improved performance on downstream LVM
prediction over averaging or concatenating modality-specific embeddings during training (n=4708, bar
shows mean value and black line indicates +/- one standard deviation). (c) Contrastive loss to pair
modalities in the latent space leads to improved performance on LVM prediction over pairing samples
by maximizing cosine similarity or minimizing Euclidean distance (n=4708, bar shows mean value and
black line indicates +/- standard deviation). (d-e) We visualize the reconstructions of test MRI and ECG
samples from the optimized architecture and standard convolutional architecture; reconstructions from
the optimized architecture are of higher quality (lower loss) than those from the standard convolutional
architecture.
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Supplementary Fig. S2: A comparison of phenotype prediction from bi-modal embeddings of ECGs and
long axis views of cardiac MRIs (LAX) and tri-modal embeddings of ECGs, LAX, and short axis view
of cardiac MRIs (SAX). We observe that predictive performance of general phenotypes such as BMI and
sex improves when using tri-modal embeddings since SAX is informative about these phenotypes. On
the other hand, prediction of ECG intervals (e.g., QT, RR, and PQ intervals) from tri-modal embed-
dings decreases since SAX contains little information about these phenotypes and may add noise to the
prediction task. For BMI and Age, n = 4212. For Sex and hypertension, n = 4218. For LVM, LVEDV,
LVESV, LVSV, RVEDV, RVESV, and RVSV, n = 4218. For RR Interval, QRS Duration, PQ Interval
and QT Interval, n = 4120. Bars shows mean value and black line indicates +/- standard deviation.
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Supplementary Fig. S3: Prediction from cross-modal ECG embedding outperforms prediction from uni-
modal ECG embedding and semi-supervised ECG embedding, i.e., the embedding obtained from an
autoencoder that is trained to both reconstruct ECGs and predict phenotypes. For BMI and Age,
n = 4212. For Sex and hypertension, n = 4218. For LVEDV, LVESV, LVSV, and LVM, n = 4218. For
RR Interval, n = 4120. Bars shows mean value and black line indicates +/- standard deviation.
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Model\Phenotype PQ Interval QT Interval QTC Interval QRS Duration RR Interval Average

Kernel Regression 0.51 0.26 0.19 0.25 0.49 0.34

Linear Regression 0.50 0.25 0.18 0.24 0.49 0.33

Model\Phenotype LVM LVEDV LVEF LVESV LVSV RVEF RVESV RVSV RVEDV Average

Kernel Regression 0.53 0.45 0.11 0.39 0.31 0.13 0.44 0.31 0.48 0.35

Linear Regression 0.51 0.43 0.11 0.36 0.30 0.14 0.43 0.30 0.47 0.34

Model\Phenotype BMI Age Average

Kernel Regression 0.36 0.27 0.32

Linear Regression 0.35 0.24 0.29

Model\Phenotype BMI Age Average

Kernel Regression 0.48 0.42 0.45

Linear Regression 0.47 0.40 0.44

Model\Phenotype Sex Hypercholesterolemia Hypertension Average

Kernel Regression 0.96 0.64 0.69 0.76

Logistic Regression 0.90 0.56 0.63 0.70

Model\Phenotype Sex Hypercholesterolemia Hypertension Average

Kernel Regression 0.99 0.66 0.75 0.80

Logistic Regression 0.95 0.58 0.66 0.73

R2 Values for ECG-Derived Phenotype Prediction from Cross-modal MRI Embeddings

R2 Values for MRI-Derived Phenotype Prediction from Cross-modal ECG Embeddings

R2 Values for General Numerical Phenotype 
Prediction from Cross-modal ECG Embeddings

R2 Values for General Numerical Phenotype 
Prediction from Cross-modal MRI Embeddings

AUROC Values for General Categorical Phenotype 
Prediction from Cross-modal ECG Embeddings

AUROC Values for General Categorical Phenotype 
Prediction from Cross-modal MRI Embeddings

Higher R2 and AUROC are better with a maximum value of 1.

(a)

(b)

(c)

Supplementary Fig. S4: Comparison of kernel, linear, and logistic regression models used for phenotype
prediction from cross-modal ECG and MRI embeddings. Overall, the kernel regression models outper-
form linear and logistic regression models for the tasks considered in Fig. 2 of the main text. (a, b)
R2-values for kernel and linear regression used in the prediction of continuous-valued phenotypes consid-
ered in Fig. 2 of the main text. (c) Area under the Receiver Operating Curve (AUROC) for kernel and
logistic regression used in the prediction of categorical phenotypes considered in Fig. 2 of the main text.
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AUROC Values for Left Ventricular Hypertrophy Classification
Cross-modal ECG Unimodal ECG Supervised ECG

LVH AUROC 0.756 ± 0.022 0.716 ± 0.012 0.692 ± 0.016

LVSD AUROC 0.572 ± 0.052 0.535 ± 0.028 0.558 ± 0.023

Supplementary Fig. S5: Logistic regression using cross-modal ECG embeddings leads to improved pre-
diction of Left Ventricular Hypertrophy (LVH) and Left Ventricular Systolic Dysfunction (LVSD) over
logistic regression from unimodal ECG embeddings and supervised learning from ECGs directly.
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Without LDL & CRP With LDL & CRP

Cross-modal Unimodal Supervised Cross-modal Unimodal Supervised

LVM 0.536 0.475 0.439 0.536 0.485 0.440

LVEDV 0.451 0.382 0.381 0.442 0.379 0.383

LVEF 0.103 0.080 0.049 0.098 0.085 0.044

LVESV 0.380 0.324 0.327 0.368 0.325 0.326

LVSV 0.316 0.246 0.231 0.315 0.244 0.233

RVEF 0.129 0.116 0.065 0.129 0.120 0.063

RVESV 0.445 0.388 0.374 0.447 0.399 0.380

RVSV 0.320 0.245 0.236 0.320 0.248 0.239

RVEDV 0.490 0.409 0.407 0.490 0.418 0.413

Average 0.352 0.296 0.279 0.349 0.300 0.280

Without LDL & CRP With LDL & CRP

Cross-modal Unimodal Supervised Cross-modal Unimodal Supervised

BMI 0.362 0.320 0.192 0.461 0.426 0.330

Age 0.264 0.253 0.105 0.278 0.253 0.117

Average 0.313 0.286 0.148 0.370 0.340 0.224

Prediction of MRI Derived Phenotypes from ECG (R2) Prediction of General Phenotypes from ECG (R2)

Without LDL & CRP With LDL & CRP

Cross-modal Unimodal Supervised Cross-modal Unimodal Supervised

Sex 0.961 0.937 0.911 0.962 0.947 0.909

Hypercholesterolemia 0.635 0.629 0.598 0.630 0.625 0.572

Hypertension 0.696 0.713 0.684 0.706 0.703 0.685

Average 0.764 0.760 0.731 0.766 0.758 0.722

Prediction of General Phenotypes from ECG (AUROC)

Supplementary Fig. S6: Impact of two circulating biomarkers, namely low-density lipoprotein (LDL)
and C-reactive protein (CRP), on the prediction of phenotypes from ECG. Generally, we observe that
the inclusion of these biomarkers consistently increases the R2-value for predicting BMI and age across
all models but does not generally increase prediction accuracy for MRI derived phenotypes or sex,
hypercholesterolemia, and hypertension.
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Without Sex With Sex

Cross-modal Unimodal Supervised Cross-modal Unimodal Supervised

LVM 0.535 0.469 0.433 0.594 0.576 0.490

LVEDV 0.452 0.387 0.391 0.506 0.495 0.415

LVEF 0.109 0.095 0.049 0.123 0.112 0.052

LVESV 0.388 0.344 0.352 0.437 0.428 0.369

LVSV 0.311 0.240 0.220 0.345 0.319 0.241

RVEF 0.131 0.111 0.061 0.146 0.140 0.073

RVESV 0.438 0.382 0.370 0.493 0.489 0.404

RVSV 0.312 0.242 0.222 0.356 0.337 0.246

RVEDV 0.479 0.403 0.399 0.542 0.530 0.436

Average 0.351 0.297 0.277 0.394 0.381 0.303

Prediction of MRI Derived Phenotypes from ECG (R2)

Without BMI With BMI

Cross-modal Unimodal Supervised Cross-modal Unimodal Supervised

LVM 0.535 0.469 0.433 0.566 0.513 0.475

LVEDV 0.452 0.388 0.391 0.471 0.428 0.400

LVEF 0.108 0.094 0.049 0.111 0.085 0.048

LVESV 0.388 0.344 0.352 0.401 0.359 0.346

LVSV 0.312 0.242 0.222 0.328 0.286 0.241

RVEF 0.131 0.113 0.061 0.132 0.099 0.066

RVESV 0.439 0.382 0.370 0.445 0.398 0.367

RVSV 0.313 0.244 0.223 0.340 0.296 0.250

RVEDV 0.480 0.403 0.400 0.499 0.446 0.409

Average 0.351 0.298 0.278 0.366 0.323 0.289

Prediction of MRI Derived Phenotypes from ECG (R2)

Supplementary Fig. S7: Impact of stratification by sex and BMI on the prediction of MRI-derived
phenotypes from ECG. In general, we observe that such stratification increases the prediction accuracy
as measured by R2-values.
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Supplementary Fig. S8: Cross-modal representation leads to improved performance of atrial fibrillation
(AF) and heart failure (HF). Labels of AF and HF were provided by the UK Biobank. For these
phenotypes, n = 4708 and bars shows mean value and black line indicates +/- standard deviation.
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Individual with High BMI

Original 12-Lead ECG

… …

Original 50 Frame MRI

Translation from ECG

…

Reconstruction of MRI

…

Original 12-Lead ECG

… …

Original 50 Frame MRI

Translation from ECG

…

Reconstruction of MRI

…

Individual with Low BMI

Individual with Long QT

Original 12-Lead ECG

… …

Original 50 Frame MRI

Reconstruction of ECG

…

Translation from MRI

…

Original 12-Lead ECG

… …

Original 50 Frame MRI

Reconstruction of ECG

…

Translation from MRI

…

Individual with Short QT

(a)

(b)

Supplementary Fig. S9: Additional examples of modality translation using cross-modal autoencoders.
(a) Translation of ECG to MRI for individuals with high and low BMI. (b) Translation of MRI to ECG
for individuals with long and short QT intervals.
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LVM Lower LVM HigherOriginal

ReconstructionBMI Lower BMI Higher

(a)

(b)

Supplementary Fig. S10: Translating cross-modal embeddings along a phenotype direction produces
phenotype-specific impacts on ECGs and MRIs after decoding. (a) Translating cross-modal embeddings
along the direction from short to long (or long to short) QT or PQ interval leads to corresponding
increases (or decreases) of these intervals on the original ECGs. (b) Translating cross-modal embeddings
along the direction from low to high (or high to low) LVM or BMI leads to corresponding increases (or
decreases) of these phenotypes on the original MRI.
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Supplementary Fig. S11: GWAS of PQ interval predicted from (a) MRI cross-modal representations
and (b) ECG cross-modal representations identify genes associated with PQ interval duration, including
SCN10A, KCND3, and CAV1.
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Supplementary Fig. S12: Unsupervised GWAS of cross-modal representations and representations from
unimodal autoencoders. (a) Unsupervised GWAS of cross-modal latent representations of both ECG and
MRI, i.e., representations corresponding to the instances where both ECG and MRI pairs are available
as input to the model. (b) Unsupervised GWAS of MRI representations from a unimodal autoencoder.
(c) Unsupervised GWAS of ECG representations from a unimodal autoencoder.
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Model Number of  Principal 
Components of Ancestry 

INLP R2 

Threshold
Remaining Latent 

Dimensionality
Number of Lead 
SNPs Identified

GC 𝝀

Cross-modal ECG 30 0.001 38 48 1.083

Cross-modal ECG 10 0.002 111 91 1.172

Cross-modal ECG 5 0.002 131 723 1.333

Cross-modal ECG 5 0.01 165 2720 2.72

Unimodal ECG 40 0.001 13 50 1.151

Unimodal ECG 30 0.001 49 97 1.228

Unimodal ECG 20 0.001 85 304 1.338

Cross-modal MRI 
(256 latent dims.)

10 0.002 136 26 1.086

Cross-modal MRI 
(512 latent dims.)

30 0.001 202 73 0.984

Unimodal MRI 10 0.002 167 6 1.0

(a)

(b)

(c)

(d)

(e)

Supplementary Fig. S13: Impact of varying the number of principal components of ancestry and the
threshold for iterative nullspace projection (INLP) on the number of lead SNPs recovered by unsupervised
GWAS for cross-modal and unimodal ECG embeddings. (a) Using too few principal components (PCs)
of ancestry or using too large of an R2 threshold yield unsupervised GWAS that are inflated, as is
indicated by the λGC values. (b) Manhattan plot for uncorrected GWAS, which is highly inflated. (c)
Manhattan plot for GWAS corrected with 5 PCs and an INLP threshold of 0.01, which is also inflated.
(d) Manhattan plot for corrected GWAS with 20 PCs and an INLP threshold of 0.0015, which is no
longer inflated. (d) Corresponding QQ plots for the Manhattan plots in (b-d). The λGC values are large
for uncorrected unsupervised GWAS, and decrease to reasonable values after correction.
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PQ Interval QRS Duration QT Interval QTC Interval RR Interval

Cross-modal ECG + MRI 0.43 0.71 0.47 0.75 0.39
Cross-modal ECG 0.53 0.64 0.47 0.75 0.44

Cross-modal MRI 0.23 0.32 0.20 0.19 0.33

PQ Interval 1.00 0.29 0.20 0.25 0.33

QRS Duration 0.17 1.00 0.03 0.25 0.06

QT Interval 0.13 0.04 1.00 0.44 0.78
QTC Interval 0.09 0.14 0.23 1.00 0.17

RR Interval 0.13 0.04 0.47 0.19 1.00

Verweij et al. 2020. 0.45 0.54 0.47 0.62 0.44

Comparison of Lead SNPs Across Embeddings/Phenotypes

Cross-modal 
ECG + MRI

Cross-modal 
ECG

Cross-modal
MRI

PQ Interval QRS Duration QT Interval QTC Interval RR Interval Verweij et al.
2020.

93 86 33 22 23 18 24 11 72

Number of Lead SNPs from GWAS

(a)

(b)

Supplementary Fig. S14: (a) Unsupervised GWAS of cross-modal representations identifies several lead
SNPs associated with the heart and includes those found from GWAS on ECG derived phenotypes and
from [2]. Entry (i, j) of the table represents the percentage of lead SNPs identified via GWAS of the
phenotype in column j that also arise when performing GWAS of the embedding/phenotype in row i. We
observe that lead SNPs identified by unsupervised GWAS of cross-modal representations include several
of those from GWAS of PQ interval, QRS duration, QT interval, QTC interval, and RR interval. On
the other hand, GWAS based on specific phenotypes (e.g. PQ interval, QRS duration, etc.) identifies
lead SNPs that do not overlap much with those from GWAS of other ECG derived phenotypes. Our
single unsupervised GWAS of cross-modal ECG representations identifies several of the same lead SNPs
as those identified from 500 GWAS of ECG values from [2] upon Bonferroni correction. (b) A count of
the number of lead SNPs identified by our unsupervised GWAS compared to GWAS on labelled ECG
phenotypes. Our method recovers many more significant SNPs and includes those found via traditional
GWAS approaches.
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82 11 11

Cross-modal SNPs

PQ Interval SNPs

SNP Name -log10 (p value)

rs561865301 9.59139

rs1482749 9.91033

rs12257568 11.8906

rs4544423 11.895

rs2480714 12.525

rs11148128 7.3769

rs116234738 11.1465

rs7647178 12.0674

rs35712872 10.4323

2:8749400_CCTACT_C 13.8834

rs12117603 8.1044

SNP Name -log10 (p value)

rs7583029 8.79006
71 22 1

Cross-modal SNPs

QRS Duration SNPs

SNP Name -log10 (p value)

rs1817500 7.84502

rs4811601 7.95739

rs72677052 8.67822

rs758890 16.2342

rs1805128 17.9248

rs9388010 13.6019

rs978202 10.909

82 11 7

Cross-modal SNPs

QT Interval SNPs

SNP Name -log10 (p value)

rs62421398 7.81142

rs7017753 7.98811

rs34144937 7.68253

rs3907208 10.4725

rs2349556 13.0059

rs2072413 20.4642

rs1805128 25.2669

17:57463523_AT_A 13.1894

rs79273934 9.00469

78 15 9

Cross-modal SNPs

QT Interval SNPs

SNP Name -log10 (p value)

rs60512978 11.8665

rs6701735 7.82161

rs4811602 8.56389

rs17180489 7.88167

rs9388001 14.406

rs78601210 8.67573

88 5 6

Cross-modal SNPs

RR Interval SNPs

Supplementary Fig. S15: Venn diagrams illustrating the difference in SNPs found by the cross-modal
unsupervised GWAS and SNPs found by the supervised GWAS on ECG-derived phenotypes. Overall,
we observe that the SNPs not found by our method are near the significance cutoff of 5×10−8. Reported
p-values are given by two-sided t-tests.
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(a)

(b)

(c)

Supplementary Fig. S16: A visualization of the differences between Manhattan plots resulting from
unsupervised GWAS. (a) Cross-modal ECG representations show enriched signals for genes associated
with vasculature development, the heart muscle protein, myosin, and ion channels (KCND3, and SCN5A)
as compared to unimodal ECG representations. (b) Difference between unsupervised GWAS of cross-
modal ECG representations and cross-modal MRI representations shows stronger signals for the cross-
modal ECG. (c) BMI-adjustment increases strength of the sodium ion channel SCN5A but also shows
reduced significance at sites associated with height.
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QT interval related SNPs:
e.g. NOS1AP, KCNQ1, KCNQ4

P-wave related SNPs:
e.g. ALPK3 and SCN10A

Multiple Cardiac Traits:
e.g. BAG3, SLC351, KCND3

(a)

(b)

Supplementary Fig. S17: (a) Hierarchical clustering of SNPs by signature, i.e., the vector pointing from
the mean embedding of homozygous reference samples to the mean embedding of heterozygous and
homozygous alternate samples. Darker colors indicate highly correlated SNP signatures. Several clusters
arise including those corresponding to genes associated with the QT interval, genes related to the P-wave,
and genes with effects on multiple cardiac traits. (b) Hierarchical clustering on a smaller subset of lead
SNPs confirms the robustness of the identified clusters by showing that the SNPs fall into the same
phenotypic clusters as in (a).
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