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REVIEWER COMMENTS 

Reviewer #1 (Remarks to the Author): 

In the study, “Cross-Modal Autoencoder Framework Learns Holistic Representations of Cardiovascular 

State”, Radhakrishnan and colleagues present a strategy for learning signatures of cardiovascular health 

in unstructured data streams by combining information from two distinct domains. The benefit of such 

an approach is the development of meaningful learning from individual data streams, whereby one 

domain is specifically modeled to identify hidden information in another domain. Specifically, the study 

focuses on developing such an approach in UK Biobank, a richly characterized cohort study in the UK, 

using ECGs and cardiac MRI as the parallel data streams of interest. This is an interesting contribution 

with many potential applications. I have some comments for the authors’ consideration, to better clarify 

the value of their work. 

1. The rationale for pursuing such a study is underdeveloped. In my review, I could see many potential 

applications of such cross-domain learning. The intended application also helps determine metrics for 

evaluation as well as possible alternative strategies. For readers of the Journal to appreciate the value of 

the contribution, it may be helpful to create a framework for why such learning may be meaningful - it 

will enhance the value of the work. Currently, 2 distinct tasks are being performed, (1) developing a 

cross-modality training framework, and how it can be used in generative tasks for a missing modality, 

and (2) and how this cross-modality learning can be used for genomic profiling. A setup in the 

introduction, and summary representation in the results, that focuses on the goals of the work could be 

further developed. 

2. Another feature that likely would benefit from further development is the comparator of unimodal 

embeddings. Specifically, a unimodal autoencoder that is at best denoising the individual modalities and 

is trained on the reconstruction loss seems to be a little limited. Specifically, were the embedding for the 

AE optimized using structural phenotypic labels, e.g. demographic features, or structural cardiac 

parameters derived from the MRI (for ECG), or electrocardiographic measures (such as ECG intervals, for 

MRI), as opposed to contrastive cross-domain learning, wouldn’t the unimodal embeddings be more 

informative? I think that would be needed to prove the value of the specific contrastive learning 

approach, by demonstrating value beyond supervised learning on structured labels. 

3. An admittedly fascinating takeaway from the work is the generative nature of the cross-modality 

embedding. However, the metrics to evaluate these generative models could be more meaningful. 

Specifically, if continuous measures are being predicted (on both ECG and MRI), a pairwise correlation 

coefficient (between generated and true representations) may allow more meaningful inference on the 

measures. This could replace the information presented in Figure S2, and potentially could be included 

in the main manuscript. Further, threshold based measures, such as LVEF and LVISD could be set at 

clinical thresholds to demonstrate the ability of the generated images to infer clinical phenotypes of 

interest (such as LV systolic dysfunction and LVH). 



4. Similarly, if possible, a manual review of even a small subset of generated ECGs and/or MRIs for being 

meaningful representations of the originals may further improve the clinical utility of this work. If the 

authors have computed the measurements on cMRI and ECGs using manual review, that would be 

sufficient but wasn’t clear. It may be helpful to clarify how the measurements on ECGs and cMRI were 

obtained. 

5. As a follow-up to point #1 above, an application focus may also allow the methods to be more easily 

followed. As currently written, the strategic value of the results is missed. Specifically, a supervised 

training task that followed the pretraining is mentioned in the results, but the value of the clinical 

problem, and whether such cross-domain learning was actually essential is needed. 

6. The iterative null space projection (INLP) being used as a strategy to address confounders in the 

GWAS inference should be further developed. Since these are different domains, specifically inferring 

genotypic representations from phenotypic embeddings, rather than reported characteristics, the 

mention of word embeddings about sex and race features is not clear. Page 4, “To remove the effect of 

possible confounders, we use the iterated nullspace projection (INLP) method [38], which was used in 

natural language processing for removing features such as race or gender information from word 

embeddings.” 

7. As a follow-up to #6, the challenge with confounders and their association with genotypes is unclear. 

Specifically, if a specific genotypic profile is being predicted from a different domain (ECG and MRI), it is 

certainly conceivable that some demographic and other confounding features are detected by these 

domains, which together lead to the identification of the genotypic variants for a given SNP. It is not 

clear in the study that the reason for the confounder adjustment is the interest in finding a true 

phenotypic representation of a genotype. If that is the case, then an embedding drawn from the data 

makes it challenging to address this directly without focusing on interpretability strategies such as 

saliency maps or other direct visualization. Therefore, the goal of identifying genotypic profiles from a 

cross-modal representation could be better set up, as the goals of the inference would determine the 

nature of confounder adjustment needed. 

8. Figure 2A compares the embeddings of the unimodal ECG and MRI models vs the cross-modal ECG 

and MRI models is not clear. If the unimodal ECG and MRI use distinct model architectures, even if the 

size of the embedding is the same, it is unclear how they are being projected onto the same tSNE plot. Is 

there a strategy being applied to somehow standardize them - it will be helpful to lay out how that 

would be accomplished. 

9. I believe the discussion section would benefit from further development. I think specifically 

highlighting the potential utility of learning cross-modal representations, in clinical and research 

domains may be helpful. Specifically, the community of investigators who will appreciate this research is 

those engaged in multimodal machine learning. The authors should develop why a genotype prediction 

strategy that uses available information using a mixture of experts or another strategy would be less 

useful than their approach. Moreover, the limitations of their approach deserve a clear enumeration. 

These limitations would also draw from the intended application. 



Reviewer #2 (Remarks to the Author): 

This paper proposes an autoencoder based framework for learning representations from multi-modal 

data. Specifically, the authors consider two modalities: MRIs and ECGs. The learned representations are 

applied for phenotype prediction and imputation of MRIs from ECGs. 

The major weaknesses of this work are as follows. 

1. The proposed method lack novelty. It is a combination of previous ideas including contrastive learning 

and data reconstruction, both of which have been broadly investigated for representation learning. 

2. There are plenty of works for learning representations from multi-modal data (see below). The 

authors didn’t compare with any of these baselines. As a result, it is difficult to assess the effectiveness 

of their autoencoder based method. 

[1] Liu et al. Incomplete multi-modal representation learning for Alzheimer's disease diagnosis, 2021. 

[2] Li et al. A survey of multi-view representation learning, 2018. 

[3] Liang et al. Mind the gap: Understanding the modality gap in multi-modal contrastive representation 

learning, 2022. 

[4] Ning et al. Relation-induced multi-modal shared representation learning for Alzheimer's disease 

diagnosis, 2021. 

[5] Zhou et al. Deep multi-modal latent representation learning for automated dementia diagnosis, 

2019. 

3. The motivation of this study -- “Unlike these prior works that focus primarily on integrating images 

and vectorized data such as gene expression, we aim to integrate complex modalities with a temporal 

element (cardiac MRI videos and ECGs)” – mentioned by the authors is unconvincing. Extending previous 

multi-modal representation learning methods to MRI videos and ECGs are straightforward: in these 

methods, one can simply replace encoders of images and vectorized data to encoders of videos and 

time-series data. There are no fundamental technical challenges in doing this. I suggest the authors to 

give more convincing justification on their study. 



4. Since the authors position this work as multi-modal representation learning, at least three modalities 

should be used to demonstrate the effectiveness of the proposed method. Currently, only two 

modalities are used, which make the experiments unconvincing. 

5. There is no external evaluation of the proposed method. Given the multi-modal representation 

learning model trained on UK Bank, does it generalize well on patient data in other hospitals? 

6. In Figure 2c, there are no error bars. It is difficult to assess whether the improvement over baselines is 

statistically significant. 

Overall, this work needs substantial improvement and revision. 

Reviewer #3 (Remarks to the Author): 

In their manuscript „Cross-modal autoencoder framework learn holistic representations of 

cardiovascular state“ by Radhakrishnan et al. the authors contructed a cross-modal computational 

(autoencoder/decoder) workflow from MRI and ECG data to improve the phenotype prediction from i) a 

single dataset (e.g. ECG), ii) MRI data imputed from ESC data and vice versa, iii) create a workflow for 

GWAS using phenotypes derived from the cross-model models. Clinical and phenotypical data were 

derived from the UKBiobank. 

The authors show that the workflow 

- could derive MRI phenotypes from ECG data only, 

- could derive ECG phenotypes from MRI data only (less acurate than MRI from ECG), 

- could predict general phenotypes such as gender and age from either ECG or MRI 

that by using these computational derived MRI/ECG phenotypes, genome wide associations studies 

resulted in lead SNPs that were identified in previous GWAS analyses using the „real“ clinical 

phenotypes. 

Thus, the authors conclude that MRI phenotypes can be imputed from SCG data only. Further their 

cross-modal workflow improved prediction of cardiovascular phenotypes by ECG data only, making this 

approach very useful as ECG phenotype data are easy to aquire compared to MRI and thus can derive 

much more information. Furthermore, by using this computational model to derive clinical phenotypes 

the authors showed that also unsupervised GWAS can be performed. 



Also this reviewer is a non-computational scientist, this manuscript is very intersting and is good to read 

for someone not an expert in this field. Still, some questions and comments came up during reviewing 

the manuscript that should be adapted accordingly. 

1. The authors used MRI and ECG data from the UKBB. Both approaches - in their conduction as well as 

in the evaluation of the images, are prone to inter-operator variability. How was this taken into account 

in the present manuscript? I assume that for research purposes, this variability can be reduced in 

selection the most appropriate data sets, however, for clinical application this needs tob e taken into 

account, please also comment on the steps needed to translate your findings into clinical application. 

2. In the cardiovascular field, some research focuses on circulating biomarkers (such as NTproBNP, 

Troponin, CRP) that can inform about clinical phenotypes. In my opinion, the authors should add 

biomarker as a „third level“ into their analyses and to see, whether ECG plus biomarkers can even better 

predict MRI phenoytpes and general clinical phenoytpes. This would extent the current clinical 

application procedures. 

3. So far, the authors did not focus on a specific clinical disease (such as Arrhythmia/AF, or HF) but the 

structural and electrical features underlying these diseases. Would it be possible at this stage to already 

apply your model to diseased subjects to test whether the clinical diagnosis can indeed be improved? 

4. Analyses performed included all subjects and were not stratified according to sex. I recommend to 

perform the analyses stratified by sex to see whether the models improve. Stratifications would also be 

intresting e.g for different BMI groups 

5. In this regard: the analyses to derive general (categorical and conti) clinical phenotypes was 

performed from EITHER MRI or ECG data. How was decided which clinical measure was used, and were 

there difference observed when using MRI or ECG data? 

6. I assume that the cross-modal tool will be applied to further phenotypes. It would be useful to see if 

related phenotypes/diseases such as neurological phenotypes can also be predicted. This should at least 

be discussed in more detail. 

7. Genome –wide associations: Although provided in the Supplementary tables, I suggest to add an 

overview about the overlapping and distinct SNPs/loci that were identified by normal GWAS and the 

cross-modal GWAs, i.e. how many loci had been identified so far for a specific ECG phenotype with both 

methods, how many are overlapping, how many were not identified by the multi-modal approach? This 

will provide a better impression if the multi-modal approach is really comparable to the normal GWAS 

approach. In my opinion, this would be important, as it is not only interesting to see if SNPs are 

identified but further to establish the role and function of these SNPs or to generate a polygenetic risk 

score. If some loci/SNPs would be missed , important infomation will be lost. 



8. UKBB age range: the age range of the subjects used is between 40-69, which does not represent the 

general population. Please comment on this in the discusssion. 

9. MRI Data: only the 4 chamber long axis has been used. Was the reason for this due to technical 

reasons (as these data were available in all subjects at best quality) or due to a computation reason? 

Please comment on this and include a statement how to integrate further (more complex?) features. 

10. Were the results based on the multi-modal approach confirmed by a clinician, or was it confirmed by 

the ECG/MRI data itself?i.e. I assue that in some cases, the results were not 100% similar between MRI 

features and MRI-imputed features. How was this solved? 



Reviewer #1 response:

In the study, “Cross-Modal Autoencoder Framework Learns Holistic Representations of Cardiovascular
State”, Radhakrishnan and colleagues present a strategy for learning signatures of cardiovascular health
in unstructured data streams by combining information from two distinct domains. The benefit of such
an approach is the development of meaningful learning from individual data streams, whereby one domain
is specifically modeled to identify hidden information in another domain. Specifically, the study focuses
on developing such an approach in UK Biobank, a richly characterized cohort study in the UK, using
ECGs and cardiac MRI as the parallel data streams of interest. This is an interesting contribution with
many potential applications. I have some comments for the authors’ consideration, to better clarify the
value of their work.

We are glad the reviewer found our work interesting and impactful for many applications. We hope
our revision and responses below will help to further clarify the value of our work.

1. The rationale for pursuing such a study is underdeveloped. In my review, I could see many
potential applications of such cross-domain learning. The intended application also helps determine
metrics for evaluation as well as possible alternative strategies. For readers of the Journal to appreciate
the value of the contribution, it may be helpful to create a framework for why such learning may be
meaningful - it will enhance the value of the work. Currently, 2 distinct tasks are being performed, (1)
developing a cross-modality training framework, and how it can be used in generative tasks for a missing
modality, and (2) and how this cross-modality learning can be used for genomic profiling. A setup in the
introduction, and summary representation in the results, that focuses on the goals of the work could be
further developed.

We thank the reviewer for this suggestion and have added the following to the main text to provide
a more detailed rationale for our study. In particular, per the reviewer’s suggestion, we have added text
to the introduction and a summary at the beginning of the results section to emphasize the goals of this
work.

Added to Introduction (Paragraph 1): “In particular, such cross-modal representations provide
an opportunity for a broad range of downstream tasks such as (1) prediction of clinical phenotypes for
diagnostics; (2) imputation of missing modalities in biomedical data; and (3) identification of genetic
variants associated with a given organ system. Using the heart as a model system, we here develop such
an integrative framework and show its effectiveness in these three downstream tasks.”

Added to Introduction (Paragraph 2): “Unlike these prior works that focus primarily on improv-
ing a specific downstream task such as phenotype prediction or modality translation through multi-modal
data integration, we develop a generalized representation that improves performance on several down-
stream applications. We demonstrate the utility of this representation on three important biomedical
tasks: in addition to phenotype prediction and multi-modal data integration and translation, we show
that our cross-modal representation yields a new framework for characterizing genotype-phenotype asso-
ciations. [...] Instead, our approach can identify SNPs that affect cardiac physiology in an unsupervised
and general way. Namely, rather than merely identifying SNPs that affect a single phenotype such as the
QT interval, our approach identifies SNPs that generally impact phenotypes present on ECGs or cardiac
MRIs.”

Added to beginning of Results: “Overview of Results. We develop a cross-modal autoencoder
framework to integrate ECG and cardiac MRI data from the UK Biobank [1]. We then leverage the
resulting cross-modal embeddings to (1) improve prediction of clinical phenotypes; (2) enable modality
translation between ECG and cardiac MRI; and (3) identify genetic variants that are associated with
the cardiovascular system without requiring any labelled data.”

2. Another feature that likely would benefit from further development is the comparator of unimodal
embeddings. Specifically, a unimodal autoencoder that is at best denoising the individual modalities and
is trained on the reconstruction loss seems to be a little limited. Specifically, were the embedding for
the AE optimized using structural phenotypic labels, e.g. demographic features, or structural cardiac
parameters derived from the MRI (for ECG), or electrocardiographic measures (such as ECG intervals,
for MRI), as opposed to contrastive cross-domain learning, wouldn’t the unimodal embeddings be more
informative? I think that would be needed to prove the value of the specific contrastive learning approach,
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by demonstrating value beyond supervised learning on structured labels.
We thank the reviewer for this suggestion. We have performed the suggested experiment, and the

results are presented in Fig. 1 below. They demonstrate that prediction from cross-modal autoencoder
embedddings outperforms prediction from a semi-supervised autoencoder, i.e., a unimodal autoencoder
trained to both reconstruct a given modality and predict labels. This result matches intuition since
prediction of clinical phenotypes and MRI-derived phenotypes is best from MRI embeddings, and our
cross-modal embeddings are trained to integrate ECGs and MRIs.

We added this figure as Supplementary Fig. S3 in the revised manuscript and described it as follows
in the Results section (paragraph 3): “In Supplementary Fig. S3, we additionally demonstrate that
cross-modal representations outperform semi-supervised unimodal autoencoders, i.e., those trained to
simultaneously autoencode and predict labels from the latent space.”

Figure 1: (Supplementary Fig. S3 in the revised manuscript) Prediction from cross-modal ECG em-
bedding outperforms prediction from unimodal ECG embedding and semi-supervised ECG embedding,
i.e., the embedding obtained from an autoencoder that is trained to both reconstruct ECGs and predict
phenotypes.

3. An admittedly fascinating takeaway from the work is the generative nature of the cross-modality
embedding. However, the metrics to evaluate these generative models could be more meaningful. Specif-
ically, if continuous measures are being predicted (on both ECG and MRI), a pairwise correlation coeffi-
cient (between generated and true representations) may allow more meaningful inference on the measures.
This could replace the information presented in Figure S2, and potentially could be included in the main
manuscript. Further, threshold based measures, such as LVEF and LVISD could be set at clinical thresh-
olds to demonstrate the ability of the generated images to infer clinical phenotypes of interest (such as
LV systolic dysfunction and LVH).

We thank the reviewer for this comment. Since small translations of pixels can lead to a low pairwise
correlation coefficient between generated and true MRIs, we felt that it would be more meaningful to
compare the pairwise correlation coefficients of phenotypes predicted from generated and true MRIs and
ECGs. An example of such an analysis was given in Fig. 3c of our manuscript. We thank the reviewer for
the suggestion regarding adding an additional analysis using threshold based measures. We performed
this analysis (see Fig 2 below); the results show again the benefit of using our cross-modal framework
as compared to a unimodal or supervised framework. We added this figure as Supplementary Fig. S5 to
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the revised manuscript and added the following text to the Methods section to describe these results.

“Prediction of left ventricular hypertrophy and left ventricular systolic dysfunction. We
used LVM to derive thresholds for Left Ventricular Hypertrophy (LVH) and LVEF to derive thresholds for
Left Ventricular Systolic Dysfunction (LVSD). To provide a binarized label for LVH, we first normalized
all LVM measurements by dividing by body surface area (derived using the Mosteller method). We then
stratified by sex and set the LVH label to be 1 if the normalized LVM was greater than 72 if the sex was
male, respectively 1 if the normalized LVM was greater than 55 if the sex was female [2]. Supplementary
Fig. S5 shows that using logistic regression from cross-modal embeddings leads to the highest AUROC
of 0.756 for predicting LVH. For LVSD, the binarized label was obtained as an indicator of whether the
LVEF was less than 45%. Again, logistic regression from cross-modal embeddings leads to the highest
AUROC of 0.572. In both analyses, standard deviations were computed over 10-fold cross-validation.”

AUROC Values for Left Ventricular Hypertrophy Classification
Cross-modal ECG Unimodal ECG Supervised ECG

LVH AUROC 0.756 ± 0.022 0.716 ± 0.012 0.692 ± 0.016

LVSD AUROC 0.572 ± 0.052 0.535 ± 0.028 0.558 ± 0.023

Figure 2: (Supplementary Fig. S5 in the revised manuscript) Logistic regression using cross-modal ECG
embeddings leads to improved prediction of Left Ventricular Hypertrophy (LVH) and Left Ventricular
Systolic Dysfunction (LVSD) over logistic regression from unimodal ECG embeddings and supervised
learning from ECGs directly.

4. Similarly, if possible, a manual review of even a small subset of generated ECGs and/or MRIs for
being meaningful representations of the originals may further improve the clinical utility of this work. If
the authors have computed the measurements on cMRI and ECGs using manual review, that would be
sufficient but wasn’t clear. It may be helpful to clarify how the measurements on ECGs and cMRI were
obtained.

In our experiments, we used the ECG and cMRI measurements provided directly by the UK Biobank [1]
for validating the generated ECGs and cMRIs. In particular, in Fig. 2 in our manuscript, we trained
models to predict these provided measurements from the generated ECGs and cMRIs and then evaluated
the performance of these predictions on a held out test set. We clarified this by adding the following
sentence in the Results section: “All MRI- and ECG-derived phenotypes as well as the categorical and
continuous-valued physiological phenotypes were obtained from the UK Biobank.”

In addition, we evaluated the quality of the generated modalities by verifying that decoding trans-
lations in the latent space leads to interpretable shifts in the original modalities. For example, in Sup-
plementary Fig. S10a, we showed that generating ECGs from embeddings shifted along the latent space
direction of increasing QT interval leads to a corresponding increase in QT interval in the generated
ECG. Similarly, in Fig. 3 and Supplementary Fig. S10b, we showed that the generated cMRIs accurately
reflect changes upon increasing or decreasing LVM, RVEDV, and BMI.

5. As a follow-up to point #1 above, an application focus may also allow the methods to be more
easily followed. As currently written, the strategic value of the results is missed. Specifically, a supervised
training task that followed the pretraining is mentioned in the results, but the value of the clinical
problem, and whether such cross-domain learning was actually essential is needed.

We thank the reviewer for this suggestion. To further emphasize the value of supervised learning
from pretrained embeddings for clinical problems, we added the following sentence to the Results section
summarizing some of our results: “Our results demonstrate the value of cross-modal embeddings for
improving the prediction of clinical phenotypes including diseases such as left ventricular hypertrophy
(LVH), left ventricular systolic dysfunction (LVSD), and hypercholesterolemia..”.

Another key contribution of our work is improving the representational power of inexpensive ECGs
for predicting clinical phenotypes by leveraging few cMRI samples. To emphasize this contribution,
we added the following sentence to the Results section: “Overall, our cross-modal embeddings improve
the representational power of inexpensive and prevalent ECGs for predicting clinical phenotypes by
leveraging just a few MRI samples.”
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6. The iterative null space projection (INLP) being used as a strategy to address confounders in the
GWAS inference should be further developed. Since these are different domains, specifically inferring
genotypic representations from phenotypic embeddings, rather than reported characteristics, the mention
of word embeddings about sex and race features is not clear. Page 4, “To remove the effect of possible
confounders, we use the iterated nullspace projection (INLP) method [38], which was used in natural
language processing for removing features such as race or gender information from word embeddings.”

We thank the reviewer for this suggestion. To further clarify the INLP strategy for removing con-
founders, we added the following to the main text in the results section: “To remove the effect of possible
confounders, we use the iterated nullspace projection (INLP) method [38]. This method was originally
developed in the natural language processing domain to protect against biases (such as gender stereo-
types) from appearing in word embeddings. We leverage INLP in the medical domain to ensure that
confounders such as principal components of ancestry cannot be easily predicted from cross-modal em-
beddings, thereby ensuring that such features do not arise as confounders in the GWAS.”

7. As a follow-up to #6, the challenge with confounders and their association with genotypes is
unclear. Specifically, if a specific genotypic profile is being predicted from a different domain (ECG and
MRI), it is certainly conceivable that some demographic and other confounding features are detected
by these domains, which together lead to the identification of the genotypic variants for a given SNP.
It is not clear in the study that the reason for the confounder adjustment is the interest in finding a
true phenotypic representation of a genotype. If that is the case, then an embedding drawn from the
data makes it challenging to address this directly without focusing on interpretability strategies such
as saliency maps or other direct visualization. Therefore, the goal of identifying genotypic profiles from
a cross-modal representation could be better set up, as the goals of the inference would determine the
nature of confounder adjustment needed.

The challenge with confounders is that they are so easily predicted from latent embeddings that they
can hide almost all genetic signal, as is shown in Supplementary Fig. S13b. To emphasize this point we
added the following sentence to the Results section: “Without accounting for confounders, MANOVA is
unable to recover genetic signal from the latent embeddings (see Supplementary Fig. S13a,b).”

Indeed, our Fig. 2c demonstrates that confounders such as sex can be almost perfectly identified from
embeddings. This was a key motivation for utilizing INLP to remove such confounders from the data.
An important finding of our work is that such adjustment was sufficient for identifying the majority of
genes associated with a cardiovascular phenotype, as is shown in Fig. 4b and Supplementary Fig. S12.

While interpretability strategies such as saliency maps or direct visualization can be useful for iden-
tifying the phenotypic impact of a given SNP, these require manual review and would be incredibly
time-intensive given the number of SNPs. On the other hand, our Fig. 4b and d demonstrate that we
can automatically identify and cluster SNPs by their phenotypic effect, thereby drastically streamlining
this process. To emphasize this point, we added the following text to the Results section of the revised
manuscript: “While we so far demonstrated that we can perform GWAS on one-dimensional traits using
our cross-modal embedding, we note two limitations of this approach. The first limitation is that genetic
variants are often pleiotropic, affecting many traits at the same time. Indeed, a variant can have a small
effect on a pair of traits and looking at one trait alone would not provide sufficient power for identifying
this variant. The second limitation is that one-dimensional traits, even in aggregate, are an incomplete
characterization of the information in a diagnostic modality. For example, in ECGs, we aim to not
only identify variants that impact the measured phenotypes such as the QT interval but variants that
affect the ECG in any way. In the following, we therefore develop an unsupervised GWAS methodology
that provides a principled approach for automatically discovering genetic variants from rich diagnostic
modalities without using any labelled phenotype measurements or turning to manual, time-intensive
interpretability strategies such as saliency maps or direct visualization of ECGs and MRIs.”

8. Figure 2A compares the embeddings of the unimodal ECG and MRI models vs the cross-modal
ECG and MRI models is not clear. If the unimodal ECG and MRI use distinct model architectures,
even if the size of the embedding is the same, it is unclear how they are being projected onto the same
tSNE plot. Is there a strategy being applied to somehow standardize them - it will be helpful to lay out
how that would be accomplished.

To generate Fig. 2a, we simply performed t-SNE on the ECG and MRI embeddings obtained from
the corresponding unimodal autoenconders. These embeddings all have the same number of dimensions
(256) by construction. The key message of this figure is that, unsurprisingly, there is no guarantee
of alignment between the two modalities without coupling them with a cross-modal autoencoder. We
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added the following sentence to the Results section to clarify this point: “We can use a combined t-SNE
visualization of the two modalities also for the latent space embedding obtained from the unimodal
autoencoders, since our ECG and MRI autoencoders both use latent embeddings of the same size (256
dimensions).”

9. I believe the discussion section would benefit from further development. I think specifically
highlighting the potential utility of learning cross-modal representations, in clinical and research domains
may be helpful. Specifically, the community of investigators who will appreciate this research is those
engaged in multimodal machine learning. The authors should develop why a genotype prediction strategy
that uses available information using a mixture of experts or another strategy would be less useful
than their approach. Moreover, the limitations of their approach deserve a clear enumeration. These
limitations would also draw from the intended application.

We thank the reviewer for these helpful suggestions. We added the following text to the Discussion
section to (1) further highlight the utility of cross-modal representations; (2) clarify the benefit of our
method for genotype prediction over alternative strategies relying on labelled data such as mixture-of-
experts methods; and (3) further clarify the limitations of our approach:

“The reliable performance boost in phenotype prediction from a cross-modal embedding further
highlights its applicability to aid in diagnostics. An interesting future application of our framework is
to determine the extent to which cross-modal ECG embeddings can be translated to a hospital setting
and, in conjunction with other biomarkers, improve the prediction of specific cardiovascular diseases.”

“The proposed unsupervised GWAS method provides an effective and efficient approach to genetic
discovery as it has the same computational cost as performing a single GWAS and, in contrast to existing
methods for GWAS, it does not require any labelled phenotype data.”

“However, we acknowledge that a current limitation of our work is that UK Biobank samples are
limited in their diversity with individuals primarily falling between the ages of 40 to 69. In addition, the
UK Biobank is known to contain racial and socioeconomic biases, which can lead to problematic inequities
in terms of healthcare [3]. It would therefore be important to re-train or update our model on a more
diverse population and perform a careful analysis of how well our model generalizes to underrepresented
cohorts in future work before translating this method to hospital settings.”
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Reviewer #2 Response:

This paper proposes an autoencoder based framework for learning representations from multi-modal
data. Specifically, the authors consider two modalities: MRIs and ECGs. The learned representations
are applied for phenotype prediction and imputation of MRIs from ECGs.

We thank the reviewer for the comments. We would like to highlight an additional key novelty of
our work, namely the development of a method to enable performing unsupervised GWAS using the
cross-modal latent space. We feel this is a key novelty in our work: as far as we are aware, our work is
the first to present a general, computationally efficient approach to performing GWAS from any given
modality without needing labelled phenotype data.

The major weaknesses of this work are as follows.
1. The proposed method lack novelty. It is a combination of previous ideas including contrastive

learning and data reconstruction, both of which have been broadly investigated for representation learn-
ing.

As described above, a key novelty of our work is that we develop a novel method for performing
unsupervised GWAS from the cross-modal embedding. In addition, we would like to point out that
the proposed framework for integrating ECGs and cardiac MRIs is a novel application of cross-modal
autoencoders and contrastive learning. As also remarked by the reviewer in the following point, the
literature on multi-modal learning is vast; this is due to the fact that this field is complex and different
methods are needed for different data modalities and different downstream tasks.

2. There are plenty of works for learning representations from multi-modal data (see below). The
authors didn’t compare with any of these baselines. As a result, it is difficult to assess the effectiveness
of their autoencoder based method.

1. Liu et al. Incomplete multi-modal representation learning for Alzheimer’s disease diagnosis, 2021.

2. Li et al. A survey of multi-view representation learning, 2018.

3. Liang et al. Mind the gap: Understanding the modality gap in multi-modal contrastive represen-
tation learning, 2022.

4. Ning et al. Relation-induced multi-modal shared representation learning for Alzheimer’s disease
diagnosis, 2021.

5. Zhou et al. Deep multi-modal latent representation learning for automated dementia diagnosis,
2019.

We would like to reiterate the importance of the downstream task for multi-modal data integration
methods. None of the above works develop techniques to use the latent embedding to perform a GWAS
and thus cannot be used as a point of comparison with our work. Also with regard to phenotype predic-
tion the above papers differ from ours in their aim: a major goal of our work is to boost the predictive
performance of a single data modality that is highly prevalent (namely ECG data) by using only few
samples from both modalities (ECG and the much more costly cardiac MRI samples). This is in stark
contrast to the works referenced by the reviewer, which aim to boost performance of disease prediction
(such as Alzheimer’s) from all modalities together. In the following, we provide a brief summary of each
of these prior works and highlight key differences to our work in more detail.

Liu et al. Incomplete multi-modal representation learning for Alzheimer’s disease di-
agnosis, 2021. This work presents a multi-modal integration framework to improve prediction of
Alzheimer’s disease. Namely, this work utilizes autoencoders to learn latent representations of features
extracted from PET and MRI modalities, develops a method to impute missing modalities based on
kernel matrices from latent representations, and uses a kernel canonical correlation analysis (CCA) to
learn a common representation for predicting the disease. The scope of this work is mainly the prediction
of disease from an integrated representation of two data modalities. In contrast to our work, their frame-
work cannot directly be applied to translate between modalities. In addition, they do not consider the
problem of performing GWAS from the latent representation or improving prediction of disease from a
single modality resulting from a cross-modal representation obtained from few paired samples of different
modalities.
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Li et al. A survey of multi-view representation learning, 2018. This work presents a survey
of a variety of multi-modal representation learning approaches, including CCA and fusion with multi-
modal autoencoders. The methods reviewed in this work are either primarily focused on downstream
prediction tasks using the multimodal embedding or translating between embeddings/data modalities.
This survey does not contain methods for performing GWAS from latent representations. In addition, the
applications considered in this survey are primarily in computer vision and natural language processing
and are far removed from the healthcare applications considered in our work.

Liang et al. Mind the gap: Understanding the modality gap in multi-modal contrastive
representation learning, 2022. This paper demonstrates that modern constrastive learning models
(such as CLIP [4]) that integrate text and image data result in embeddings that separate both image
and text data by a fixed distance. This so-called modality gap is a result of model initialization and
persists through contrastive learning and depends on hyper-parameters such as temperature. The paper
also demonstrates that adjusting the size of this gap can have marginal effects on downstream tasks
such as evaluating model biases. This work is a study of a phenomenon arising in existing contrastive
learning models applied to image and text data. Moreover, this work does not consider any models used
in a healthcare settings, nor does it consider the task of translating between different data modalities or
performing a GWAS analysis in the latent space.

Ning et al. Relation-induced multi-modal shared representation learning for Alzheimer’s
disease diagnosis, 2021. This work develops a matrix factorization based framework for integrating
features extracted from PET and MRI in order to predict Alzheimer’s disease. This work does not
use modality specific convolutional autoencoders but rather works with matrix factorization on features
extracted from the modalities. As such, it cannot be used for translating between modalities. In addition,
this work does not consider the problem of performing GWAS. Furthermore, this work is primarily
focused on the prediction of Alzheimer’s disease from all modalities rather than boosting the predictive
performance from a single, easily accessible modality using only few multi-modal samples.

Zhou et al. Deep multi-modal latent representation learning for automated dementia
diagnosis, 2019. This work presents a deep non-negative matrix factorization approach for integrating
features extracted from PET and MRI in order to predict varying levels of cognitive impairment. As the
previous paper, this work does not use modality specific convolutional autoencoders but rather works
with matrix factorization on features extracted from the modalities. As such, it cannot be used for
translating between modalities. In addition, this work does not consider the problem of identifying
genetic variants associated with cognitive impairment. Furthermore, this work is primarily focused on
the prediction of disease from all modalities rather than improving predictive performance from a single,
easily accessible modality using only few multi-modal samples.

We thank the reviewer for providing these references, which we now added in the Introduction of
the revised manuscript. We also added a summary of the key differences to prior work, highlighting the
novelty of our work: “Multi-modal data integration is a rich field with a variety of methods developed for
specific applications. A survey of multi-modal approaches is presented in [5]. Unlike multi-modal data
integration approaches based on classical methods such as canonical correlation analysis (CCA) [6–9]
or non-negative matrix factorization [10, 11], our approach relies on a class of machine learning models
called autoencoders [...] Unlike these prior works that focus primarily on improving a specific down-
stream task such as phenotype prediction or modality translation through multi-modal data integration,
we develop a generalized representation that improves performance on several downstream applications.
We demonstrate the utility of this representation on three important biomedical tasks: in addition to
phenotype prediction and multi-modal data integration and translation, we show that our cross-modal
representation yields a new framework for characterizing genotype-phenotype associations.”

3. The motivation of this study – “Unlike these prior works that focus primarily on integrating images
and vectorized data such as gene expression, we aim to integrate complex modalities with a temporal
element (cardiac MRI videos and ECGs)” – mentioned by the authors is unconvincing. Extending
previous multi-modal representation learning methods to MRI videos and ECGs are straightforward: in
these methods, one can simply replace encoders of images and vectorized data to encoders of videos and
time-series data. There are no fundamental technical challenges in doing this. I suggest the authors to
give more convincing justification on their study.

The sentence referenced by the reviewer should be considered within its context. One of the aims of
our work is to integrate complex modalities with a temporal element: we mentioned this to contrast our
work from previous work. The computational challenges of training large-scale models to embed these
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more complex modalities that have a temporal element such as cardiac MRI videos and ECGs should
not be underestimated. But the main goal of our work is to provide a general framework for integrating
modalities that can be used for three downstream tasks, namely: (1) improve phenotype prediction from
the joint embedding; (2) enable translation between modalities; and (3) simplify the discovery of genetic
variants. To clarify the rationale for our work, we added the following text in the revised manuscript.

Added to Introduction (paragraph 1): “In particular, such cross-modal representations provide
an opportunity for a broad range of downstream tasks such as (1) prediction of clinical phenotypes for
diagnostics; (2) imputation of missing modalities in biomedical data; and (3) identification of genetic
variants associated with a given organ system. Using the heart as a model system, we here develop such
an integrative framework and show its effectiveness in these three downstream tasks.”

Added to Introduction (paragraph 2): “Unlike these prior works that focus primarily on improv-
ing a specific downstream task such as phenotype prediction or modality translation through multi-modal
data integration, we develop a generalized representation that improves performance on several down-
stream applications. We demonstrate the utility of this representation on three important biomedical
tasks: in addition to phenotype prediction and multi-modal data integration and translation, we show
that our cross-modal representation yields a new framework for characterizing genotype-phenotype asso-
ciations. While various prior works have conducted genome-wide association studies (GWAS) to identify
single nucleotide polymorphisms (SNPs) associated with cardiovascular diseases [12, 13], features mea-
sured on ECGs [14, 15], or features measured on cardiac MRI [16, 17], these GWAS approaches have
relied on labelled data derived from individual modalities. Instead, our approach can identify SNPs that
affect cardiac physiology in an unsupervised and general way. Namely, rather than merely identifying
SNPs that affect a single phenotype such as the QT interval, our approach identifies SNPs that generally
impact phenotypes present on ECGs or cardiac MRIs.”

Added to beginning of the Results section: “Overview of Results. We develop a cross-
modal autoencoder framework to integrate ECG and cardiac MRI data from the UK Biobank [1]. We
then leverage the resulting cross-modal embeddings to (1) improve prediction of clinical phenotypes; (2)
enable modality translation between ECG and cardiac MRI; and (3) identify genetic variants that are
associated with the cardiovascular system without requiring any labelled data.”

4. Since the authors position this work as multi-modal representation learning, at least three modal-
ities should be used to demonstrate the effectiveness of the proposed method. Currently, only two
modalities are used, which make the experiments unconvincing.

As suggested by the reviewer, we performed an additional analysis, where we integrated three modal-
ities, namely: (1) ECGs; (2) long axis views of cardiac MRIs; and (3) short axis views of cardiac MRIs.
This analysis demonstrates that our framework can easily be used when more than two modalities are
available. The results of this analysis are shown in Fig. 3 below. It shows that integrating a short axis
view of cardiac MRIs provides a boost to the prediction of general phenotypes such as BMI or sex, but, as
expected, reduces the predictive power on other phenotypes that are hard to predict from the short axis
view alone. For example, the prediction of intervals derived from ECGs worsens when integrating short
axis views, which is expected since the short axis view provides little information on this phenotype and
may in fact add noise to the prediction task. We added Fig. 3 as Supplementary Fig. S2 in the revised
manuscript, and we added the following sentence to reference this analysis in the main text: “While we
mainly apply our framework to integrate two modalities (ECGs and cardiac MRIs), we demonstrate that
it can also be applied to three or more modalities in Supplementary Fig. S2.”

9



Figure 3: (Supplementary Fig. S2 in the revised manuscript) A comparison of phenotype prediction from
bi-modal embeddings of ECGs and long axis views of cardiac MRIs (LAX) and tri-modal embeddings
of ECGs, LAX, and short axis view of cardiac MRIs (SAX). We observe that predictive performance
of general phenotypes such as BMI and sex improves when using tri-modal embeddings since SAX is
informative about these phenotypes. On the other hand, prediction of ECG intervals (e.g., QT, RR, and
PQ intervals) from tri-modal embeddings decreases since SAX contains little information about these
phenotypes and may add noise to the prediction task.
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5. There is no external evaluation of the proposed method. Given the multi-modal representation
learning model trained on UK Bank, does it generalize well on patient data in other hospitals?

While collecting and analyzing data from an external cohort is outside the scope of our current work,
we agree that an external evaluation on patient data in other hospitals is an important avenue for future
work. To emphasize this point, we added the following text in the Discussion section: “the UK Biobank
is known to contain racial and socioeconomic biases, which can lead to problematic inequities in terms
of healthcare [3]. It would therefore be important to re-train or update our model on a more diverse
population and perform a careful analysis of how well our model generalizes to underrepresented cohorts
in future work before translating this method to hospital settings.”

6. In Figure 2c, there are no error bars. It is difficult to assess whether the improvement over baselines
is statistically significant.

We thank the reviewer for this comment. To better demonstrate the effectiveness of our method over
baselines, we added error bars to Figure 2c in the revised manuscript based on 5-fold cross-validation.
The updated figure is shown below in Fig. 4. The error bars further demonstrate that prediction from
cross-modal embeddings outperforms prediction from unimodal embeddings and standard supervised
learning.
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Figure 4: Improvement of phenotype prediction from cross-modal representations over unimodal repre-
sentations or supervised learning from the original modalities. (a) A t-SNE visualization of the cross-
modal embeddings for the ECG and MRI samples demonstrates that the modality specifc embeddings
are well-mixed, unlike the modality specific embeddings obtained from the unimodal autoencoders. (b)
Ranking each MRI by its cosine similarity with a given ECG in the latent space, we visualize the accu-
racy that the ground truth MRI appears in the top k neighbors among 4752 test ECG-MRI pairs from
the UK Biobank. (c) Kernel regression on cross-modal representations outperforms kernel regression on
unimodal representations and supervised deep learning methods on 4 different tasks: (1) prediction of
ECG derived phenotypes from MRIs only; (2) prediction of MRI derived phenotypes from ECG only; (3)
prediction of general physiological phenotypes that are of categorical nature from either ECG or MRI;
and (4) prediction of general physiological phenotypes that are of continuous nature from either ECG
or MRI. All MRI phenotype abbreviations are defined in Methods 1.3. Error bars are computed using
5-fold cross-validation. (d) Analysis of the scaling law when utilizing our framework for predicting MRI
derived phenotypes from ECGs only. We observe that increasing the number of unlabelled ECG-MRI
pairs for pre-training boosts the mean R2 prediction of 9 MRI derived phenotypes by twice as much as
increasing the number of labelled MRI samples. This analysis highlights the benefit of collecting more
unlabelled ECG-MRI pairs as compared to paired labelled examples for this task.
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Reviewer #3 Response:

In their manuscript “Cross-modal autoencoder framework learn holistic representations of cardiovas-
cular state” by Radhakrishnan et al. the authors contructed a cross-modal computational (autoen-
coder/decoder) workflow from MRI and ECG data to improve the phenotype prediction from i) a single
dataset (e.g. ECG), ii) MRI data imputed from ESC data and vice versa, iii) create a workflow for
GWAS using phenotypes derived from the cross-model models. Clinical and phenotypical data were
derived from the UKBiobank. The authors show that the workflow

- could derive MRI phenotypes from ECG data only,
- could derive ECG phenotypes from MRI data only (less accurate than MRI from ECG),
- could predict general phenotypes such as gender and age from either ECG or MRI
that by using these computational derived MRI/ECG phenotypes, genome wide associations studies

resulted in lead SNPs that were identified in previous GWAS analyses using the “real” clinical phenotypes.
Thus, the authors conclude that MRI phenotypes can be imputed from SCG data only. Further their
cross-modal workflow improved prediction of cardiovascular phenotypes by ECG data only, making this
approach very useful as ECG phenotype data are easy to aquire compared to MRI and thus can derive
much more information. Furthermore, by using this computational model to derive clinical phenotypes
the authors showed that also unsupervised GWAS can be performed.

Also this reviewer is a non-computational scientist, this manuscript is very interesting and is good
to read for someone not an expert in this field. Still, some questions and comments came up during
reviewing the manuscript that should be adapted accordingly.

We thank the reviewer for their positive comments and in particular, for finding our work interesting
and a good read for non-experts in this field. We hope the following point-by-point response addresses
the raised questions.

1. The authors used MRI and ECG data from the UKBB. Both approaches - in their conduction as
well as in the evaluation of the images, are prone to inter-operator variability. How was this taken into
account in the present manuscript? I assume that for research purposes, this variability can be reduced
in selection the most appropriate data sets, however, for clinical application this needs to be taken into
account, please also comment on the steps needed to translate your findings into clinical application.

We thank the reviewer for raising the question about inter-operator variability in human-based inter-
pretation of ECGs and MRIs and during data collection. In this specific application, variability due to
human-based interpretation is less of a concern, since the majority of phenotypes we consider (e.g. MRI-
derived and ECG-derived phenotypes) are reported by the UK Biobank using fully automated methods.
To reduce effects of inter-operator variability during data collection, we first restricted to those individu-
als who had ECGs and MRI data taken on the same day in a fixed assessment center. There are 38, 686
such individuals. We additionally performed pre-processing of the data (described in Methods) to reduce
noise in the data. An example is using median ECG wave-forms in order to reduce the effects of ECG
drift. For future clinical applications, one option is to use transfer learning approaches to efficiently
adapt our model to the variability present in other hospital data. We added the following sentence to the
Methods section to emphasize that the measurements for each individual occur in the same assessment
center: “The ECG and MRI data for an individual are collected in the same assessment center.”

2. In the cardiovascular field, some research focuses on circulating biomarkers (such as NTproBNP,
Troponin, CRP) that can inform about clinical phenotypes. In my opinion, the authors should add
biomarker as a “third level” into their analyses and to see, whether ECG plus biomarkers can even
better predict MRI phenoytpes and general clinical phenoytpes. This would extend the current clinical
application procedures.

We thank the reviewer for this suggestion. We performed an additional analysis to evaluate the
impact of including circulating biomarkers when predicting MRI derived phenotypes or general clinical
phenotypes. The results are shown in Fig. 5 below, which we added as Supplementary Fig. S6 to
the revised manuscript. In particular, in the UK Biobank we had access to CRP and LDL but not
to NTproBNP and Troponin. Utilizing CRP and LDL, we found that the predictive performance for
BMI and age improved in all models, while the performance remained comparable for the prediction
of MRI derived phenotypes, sex, hypertension, and hypercholesterolemia. We note that the prediction
of hypercholesterolemia and hypertension may not have improved significantly since unexpectedly in
the 2994 training samples LDL was negatively correlated with hypertension and hypercholesterolemia
incidence rates: those with hypercholesterolemia had a mean LDL of 0.78 (standard deviation of 1.54) and
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those without hypercholesterolemia had a mean LDL of 2.78 (standard deviation of 1.64); similarly, those
with hypertension had a mean LDL of 1.22 (standard deviation of 1.75) and those without hypertension
had a mean LDL of 2.35 (standard deviation of 1.83). While it is seemingly counter-intuitive that
individuals with a diagnosis of hypercholesterolemia would have lower LDL, we presume this is because
they are being treated with a lipid lowering medication.

We included this analysis in Supplementary Fig. S6 together with the following sentences in the
Results section: ”In addition, in Supplementary Fig. S6, we showcase the impact of incorporating circu-
lating biomarkers such as C-reactive protein (CRP) and low-density lipoproteins (LDL) on phenotype
prediction. In general, we find that CRP and LDL improve performance for predicting age and BMI.”

Without LDL & CRP With LDL & CRP

Cross-modal Unimodal Supervised Cross-modal Unimodal Supervised

LVM 0.536 0.475 0.439 0.536 0.485 0.440

LVEDV 0.451 0.382 0.381 0.442 0.379 0.383

LVEF 0.103 0.080 0.049 0.098 0.085 0.044

LVESV 0.380 0.324 0.327 0.368 0.325 0.326

LVSV 0.316 0.246 0.231 0.315 0.244 0.233

RVEF 0.129 0.116 0.065 0.129 0.120 0.063

RVESV 0.445 0.388 0.374 0.447 0.399 0.380

RVSV 0.320 0.245 0.236 0.320 0.248 0.239

RVEDV 0.490 0.409 0.407 0.490 0.418 0.413

Average 0.352 0.296 0.279 0.349 0.300 0.280

Without LDL & CRP With LDL & CRP

Cross-modal Unimodal Supervised Cross-modal Unimodal Supervised

BMI 0.362 0.320 0.192 0.461 0.426 0.330

Age 0.264 0.253 0.105 0.278 0.253 0.117

Average 0.313 0.286 0.148 0.370 0.340 0.224

Prediction of MRI Derived Phenotypes from ECG (R2) Prediction of General Phenotypes from ECG (R2)

Without LDL & CRP With LDL & CRP

Cross-modal Unimodal Supervised Cross-modal Unimodal Supervised

Sex 0.961 0.937 0.911 0.962 0.947 0.909

Hypercholesterolemia 0.635 0.629 0.598 0.630 0.625 0.572

Hypertension 0.696 0.713 0.684 0.706 0.703 0.685

Average 0.764 0.760 0.731 0.766 0.758 0.722

Prediction of General Phenotypes from ECG (AUROC)

Figure 5: (Supplementary Fig. S6 in the revised manuscript) Impact of two circulating biomarkers,
namely low-density lipoprotein (LDL) and C-reactive protein (CRP), on the prediction of phenotypes
from ECG. Generally, we observe that the inclusion of these biomarkers consistently increases the R2-
value for predicting BMI and age across all models but does not generally increase prediction accuracy
for MRI derived phenotypes or sex, hypercholesterolemia, and hypertension.

3. So far, the authors did not focus on a specific clinical disease (such as Arrhythmia/AF, or HF)
but the structural and electrical features underlying these diseases. Would it be possible at this stage
to already apply your model to diseased subjects to test whether the clinical diagnosis can indeed be
improved?

To apply our model for the prediction of a specific disease such as AF or HF, we need few labeled
samples of patients with and without the disease. Using such data together with our framework, one
can then build a predictor for a given disease in the multi-modal embedding. To provide preliminary
evidence that our model can be used to improve AF or HF prediction, we show that the cross-modal
representation improves the performance of predictive models trained using labels of AF and HF provided
by the UK Biobank. These results are shown in Fig. 6 below (which we added as Supplementary Fig. S8
in the revised manuscript) and described in the Results section as follows: “Lastly, in Supplementary
Fig. S8, we demonstrate that the cross-modal representation can improve prediction for diseases such as
atrial fibrillation (AF) or heart failure (HF) using labels provided by the UK Biobank.”

Figure 6: (Supplementary Fig. S8 in the revised manuscript) Cross-modal representation leads to im-
proved performance of atrial fibrillation (AF) and heart failure (HF). Labels of AF and HF were provided
by the UK Biobank.

We also added a further use-case of the cross-model framework in the revised manuscript, demon-
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strating that it can be used to improve the prediction accuracy of Left Ventricular Hypertrophy (LVH)
and Left Ventricular Systolic Dysfunction (LVSD). These results are shown in Fig. 2 (Supplementary
Fig. S5 in the revised manuscript) and described in the Methods section of the revised manuscript as
follows:.

“Prediction of left ventricular hypertrophy and left ventricular systolic dysfunction. We
used LVM to derive thresholds for Left Ventricular Hypertrophy (LVH) and LVEF to derive thresholds for
Left Ventricular Systolic Dysfunction (LVSD). To provide a binarized label for LVH, we first normalized
all LVM measurements by dividing by body surface area (derived using the Mosteller method). We then
stratified by sex and set the LVH label to be 1 if the normalized LVM was greater than 72 if the sex was
male, respectively 1 if the normalized LVM was greater than 55 if the sex was female [2]. Supplementary
Fig. S5 shows that using logistic regression from cross-modal embeddings leads to the highest AUROC
of 0.756 for predicting LVH. For LVSD, the binarized label was obtained as an indicator of whether the
LVEF was less than 45%. Again, logistic regression from cross-modal embeddings leads to the highest
AUROC of 0.572. In both analyses, standard deviations were computed over 10-fold cross-validation.”

We also added the following sentence to the Discussion section to clarify how only a few labelled
samples are needed to fine-tune our framework for the effective prediction of different clinical phenotypes:
“While we showed how our cross-modal embedding of ECG and cardiac MRI data can be used to improve
the prediction of clinical phenotypes such as LVH, LVSD, and hypercholesterolemia, our framework is
general and only requires a few labelled samples to be applicable to other clinical phenotypes.”

4. Analyses performed included all subjects and were not stratified according to sex. I recommend
to perform the analyses stratified by sex to see whether the models improve. Stratification would also
be interesting e.g for different BMI groups.

We thank the reviewer for this suggestion. We performed an additional analysis to evaluate the
effect of stratification by sex and high vs. low BMI for predicting MRI derived phenotypes from ECG
embeddings. The results are shown in Fig. 7 below and were added as Supplementary Fig. S7 in the
revised manuscript. As suggested by the reviewer, we indeed observe that stratifying by sex and BMI
leads to improved performance for all models. However, the use of cross-modal ECG embeddings still
leads to the best prediction performance of MRI derived phenotypes for all models. This result was
summarized as following in the Results section in the revised manuscript: “Furthermore, in Supplemen-
tary Fig. S7, we demonstrate that there is a boost in the prediction of MRI-derived phenotypes when
stratifying phenotypes by sex and BMI.”

Without Sex With Sex

Cross-modal Unimodal Supervised Cross-modal Unimodal Supervised

LVM 0.535 0.469 0.433 0.594 0.576 0.490

LVEDV 0.452 0.387 0.391 0.506 0.495 0.415

LVEF 0.109 0.095 0.049 0.123 0.112 0.052

LVESV 0.388 0.344 0.352 0.437 0.428 0.369

LVSV 0.311 0.240 0.220 0.345 0.319 0.241

RVEF 0.131 0.111 0.061 0.146 0.140 0.073

RVESV 0.438 0.382 0.370 0.493 0.489 0.404

RVSV 0.312 0.242 0.222 0.356 0.337 0.246

RVEDV 0.479 0.403 0.399 0.542 0.530 0.436

Average 0.351 0.297 0.277 0.394 0.381 0.303

Prediction of MRI Derived Phenotypes from ECG (R2)

Without BMI With BMI

Cross-modal Unimodal Supervised Cross-modal Unimodal Supervised

LVM 0.535 0.469 0.433 0.566 0.513 0.475

LVEDV 0.452 0.388 0.391 0.471 0.428 0.400

LVEF 0.108 0.094 0.049 0.111 0.085 0.048

LVESV 0.388 0.344 0.352 0.401 0.359 0.346

LVSV 0.312 0.242 0.222 0.328 0.286 0.241

RVEF 0.131 0.113 0.061 0.132 0.099 0.066

RVESV 0.439 0.382 0.370 0.445 0.398 0.367

RVSV 0.313 0.244 0.223 0.340 0.296 0.250

RVEDV 0.480 0.403 0.400 0.499 0.446 0.409

Average 0.351 0.298 0.278 0.366 0.323 0.289

Prediction of MRI Derived Phenotypes from ECG (R2)

Figure 7: (Supplementary Fig. S7 in the revised manuscript) Impact of stratification by sex and BMI
on the prediction of MRI-derived phenotypes from ECG. In general, we observe that such stratification
increases the prediction accuracy as measured by R2-values.

5. In this regard: the analyses to derive general (categorical and conti) clinical phenotypes was
performed from EITHER MRI or ECG data. How was decided which clinical measure was used, and
were there difference observed when using MRI or ECG data?

Our focus was primarily on the prediction of phenotypes from ECG data alone, since ECGs are easier
and less expensive to collect than cardiac MRIs. Nevertheless, for completeness, we also discussed the
prediction of phenotypes from MRI data. The bottom row of Fig. 2c highlights the difference between
prediction from ECG and MRI for general clinical phenotypes. In general, as expected, we observe that
for these clinical phenotypes, prediction accuracy is the highest for cross-modal MRI. But importantly,

14



we observe that prediction from cross-modal ECG embeddings outperforms the prediction from unimodal
ECG embeddings and supervised learning directly from ECG data. This has an important implication,
namely that we are able to improve the representational power of ECGs and improve prediction of
clinical phenotypes given little cardiac MRI data. To emphasize this point, we added the following
sentence in the Results section of the revised manuscript:“Overall, our cross-modal embeddings improve
the representational power of inexpensive and prevalent ECGs for predicting clinical phenotypes by
leveraging just a few MRI samples.”.

6. I assume that the cross-modal tool will be applied to further phenotypes. It would be useful to
see if related phenotypes/diseases such as neurological phenotypes can also be predicted. This should at
least be discussed in more detail.

Indeed, our cross-modal framework is a general method that can be applied to predict other pheno-
types including neurological diseases. While out of scope for the current work, we agree that it would be
very interesting in future work to analyze the predictive performance of the cross-modal ECG and cardiac
MRI embedding for other phenotypes/diseases including neurological phenotypes/diseases. We added
the following sentences is the Discussion section to highlight this important future research direction.

“While we showed how our cross-modal embedding of ECG and cardiac MRI data can be used to
improve the prediction of clinical phenotypes such as LVH, LVSD, and hypercholesterolemia, our frame-
work is general and only requires a few labelled samples to be applicable to other clinical phenotypes. As
such, an interesting direction for future research is to understand the extent to which related neurological
phenotypes can be predicted from cross-modal ECG and MRI embeddings.”

7. Genome –wide associations: Although provided in the Supplementary tables, I suggest to add an
overview about the overlapping and distinct SNPs/loci that were identified by normal GWAS and the
cross-modal GWAs, i.e. how many loci had been identified so far for a specific ECG phenotype with
both methods, how many are overlapping, how many were not identified by the multi-modal approach?
This will provide a better impression if the multi-modal approach is really comparable to the normal
GWAS approach. In my opinion, this would be important, as it is not only interesting to see if SNPs are
identified but further to establish the role and function of these SNPs or to generate a polygenetic risk
score. If some loci/SNPs would be missed, important information will be lost.

We thank the reviewer for this suggestion. We added Fig. 8 below (which is Supplementary Fig. S15
in the revised manuscript) as suggested, which demonstrates the difference in SNPs found by the cross-
modal unsupervised GWAS and the SNPs found by the supervised GWAS on ECG-derived phenotypes.
Overall, we note that the SNPs not found by our method are close to the significance cutoff of 5× 10−8

(equivalent to a negative log p-value of 7.25. On the other hand, we note that the SNPs found by our
method and supervised GWAS have high negative log p-values (e.g., for QRS duration, the maximum
log p-value of SNPs found by both methods is 44.9887). We added the following text to the Results
section to reference this figure: “In Supplementary Fig. S15, we provide Venn diagrams comparing the
SNPs found by the unsupervised GWAS and those found by the supervised GWAS on ECG-derived
phenotypes.”
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Figure 8: (Supplementary Fig. S15 in the revised manuscript) Venn diagrams illustrating the difference
in SNPs found by the cross-modal unsupervised GWAS and SNPs found by the supervised GWAS on
ECG-derived phenotypes. Overall, we observe that the SNPs not found by our method are near the
significance cutoff of 5× 10−8.
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8. UKBB age range: the age range of the subjects used is between 40-69, which does not represent
the general population. Please comment on this in the discussion.

We thank the reviewer for this important comment. We added the following sentences to the Discus-
sion section to acknowledge the limitation in terms of diversity with respect to age, but also ethnicity
and socioeconomic status in the UK Biobank.

“[...] we acknowledge that a current limitation of our work is that UK Biobank samples are limited
in their diversity with individuals primarily falling between the ages of 40 to 69. In addition, the UK
Biobank is known to contain racial and socioeconomic biases, which can lead to problematic inequities
in terms of healthcare [3]. It would therefore be important to re-train or update our model on a more
diverse population and perform a careful analysis of how well our model generalizes to underrepresented
cohorts in future work before translating this method to hospital settings.”

9. MRI Data: only the 4 chamber long axis has been used. Was the reason for this due to technical
reasons (as these data were available in all subjects at best quality) or due to a computation reason?
Please comment on this and include a statement how to integrate further (more complex?) features.

We chose to use the long axis view of the cardiac MRI, since it is informative of the MRI-derived
phenotypes considered in this work (e.g., LVM, RVEDV, etc.). Indeed, other views such as the short axis
view can be informative for more general phenotypes such as BMI. To demonstrate this, we added an
analysis, where we used our framework to integrate three modalities, short axis views, long axis views,
and ECGs; see Fig. 3 above. In general, we observe that including the short axis view as a third modality
improves the prediction of phenotypes such as BMI and sex, which are more accurately predicted from
this view alone. We added Fig. 3 as Supplementary Fig. S2 in the revised manuscript together with
the following sentence referencing the figure: “While we mainly apply our framework to integrate two
modalities (ECGs and cardiac MRIs), we demonstrate that it can also be applied to three or more
modalities in Supplementary Fig. S2.”

10. Were the results based on the multi-modal approach confirmed by a clinician, or was it confirmed
by the ECG/MRI data itself?i.e. I assume that in some cases, the results were not 100% similar between
MRI features and MRI-imputed features. How was this solved?

In our experiments, we used the ECG and cMRI measurements provided directly from the UK
Biobank [1] for validating the generated ECGs and cMRIs. In particular, in Fig. 2 in our manuscript,
we trained models to predict these provided measurements from the generated ECGs and cMRIs and
then evaluated the performance of these predictions on a held out test set. We clarified this by adding
the following sentence in the Results section: “All MRI- and ECG-derived phenotypes as well as the
categorical and continuous-valued physiological phenotypes were provided by the UK Biobank.”

In addition, we evaluated the quality of the generated modalities by verifying that decoding trans-
lations in the latent space leads to interpretable shifts in the original modalities. For example, in Sup-
plementary Fig. S10, we showed that generating ECGs from embeddings shifted along the latent space
direction of increasing QT interval leads to a corresponding increase in QT interval in the generated
ECG. Similarly, in Fig. 3 and Supplementary Fig. S10, we showed that the generated cMRIs accurately
reflect changes upon increasing or decreasing LVM, RVEDV, and BMI.
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REVIEWERS' COMMENTS 

Reviewer #1 (Remarks to the Author): 

The authors have adequately addressed my comments with additional analyses and/or acknowledgment 

of limitations, as appropriate. I have no further comments. 

Reviewer #3 (Remarks to the Author): 

Thanks to the authors for providing a good reply to my comments and performance of additonal 

analyses. 

In my view the manuscript has been improved. 

I recommend the follow two points to be added to the discussion: 

- Inclusion of biomarkers/LDL: add the "unexpacted" findings to lower LDL in subjects with hyperchol 

(maybe due to lipid-lowering medication) in the discussion. One possibility would be to adjust for lidpi-

lowering medication; I assume that these data are not available in the UKBB. 

- Overlap of GWAS findings with "normal" GWAS Data. As shown in the Venn Diagrams there is a large 

proportion of SNPs that had previously not be identified (much larger than the number of SNPs 

previously been known but not identified by the new approach). 

Add this to the discussion including possible explanations. 



Reviewer #1 response:

The authors have adequately addressed my comments with additional analyses and/or acknowledgment
of limitations, as appropriate. I have no further comments.

We are glad to have addressed the reviewer’s comments.

Reviewer #3 response:

Reviewer Comments:
Thanks to the authors for providing a good reply to my comments and performance of additonal

analyses. In my view the manuscript has been improved.
We are glad to have addressed the reviewer’s comments and have updated the manuscript according

to their recommendations below.
I recommend the follow two points to be added to the discussion: - Inclusion of biomarkers/LDL:

add the ”unexpected” findings to lower LDL in subjects with hyperchol (maybe due to lipid-lowering
medication) in the discussion. One possibility would be to adjust for lipid-lowering medication; I assume
that these data are not available in the UKBB.

We have now added the following to the discussion regarding this point.
Added to Discussion: “For deployment in such settings, it is critical to account for potential con-

founding factors. For example, in our dataset, LDL was negatively correlated with incidence of hyperc-
holesterolemia, which is presumably due to these individuals taking lipid lowering medications.”

- Overlap of GWAS findings with ”normal” GWAS Data. As shown in the Venn Diagrams there is a
large proportion of SNPs that had previously not be identified (much larger than the number of SNPs
previously been known but not identified by the new approach). Add this to the discussion including
possible explanations.

Indeed, each traditional GWAS is only able to capture SNPs associated with a single phenotype. On
the other hand, by working with modalities directly, our unsupervised GWAS is able to more broadly
capture SNPs associated with the cardiovascular system. Thus, our method is able to capture the
majority of SNPs found by traditional GWAS. We have now added the following to the discussion.

Added to Discussion: “Our unsupervised GWAS was able to leverage information across ECGs and
cardiac MRIs to capture a wide range of SNPs that had an impact on the cardiovascular system. Sub-
sets of these SNPs were previously found by traditional supervised approaches on individual phenotypes.
Given that our approach is cross-modal, we also identified SNPs that had not been found by previous
GWAS approaches. This novel framework for performing unsupervised GWAS in cross-modal representa-
tions also opens important avenues for future work. Investigating the differences in the identified SNPs
between unsupervised and traditional GWAS is an interesting direction for future work and requires
careful consideration of potential confounders. ”
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