Supplementary Appendix

Supplement to: Luetkemeyer AF, Donnell D, Dombrowski JC, et al. Postexposure doxycycline to prevent bacterial sexually transmitted infections. Engl J Med 2023;388:1296-306. DOI: 10.1056/NEJMoa2211934

This appendix has been provided by the authors to give readers additional information about the work.

Supplementary Appendix to Manuscript Entitled

Doxycycline to prevent bacterial sexually transmitted infections

Table of Contents

DoxyPEP Team and Additional Acknowledgments	2
Supplemental Analyses:	4
Per protocol analyses	4
Recurrent and multiple STIs	4
Figure 1. Primary endpoint of one or more STI per quarter by individual STI	5
Figure 2. Anatomic distribution of incident STIs	6
Table 1. Proportion of culture-positivity and tetracycline antimicrobial resistance in participants diagnosed with <i>N. gonorrhoeae</i> infection	
Table 2. Proportion of culture-positivity and doxycycline resistance in S. aureus isolates frombaseline and follow-up by arm	8
Table 3. Laboratory monitoring of CBC and liver function tests	9
Table 4. Adverse Events	9
Table 5. Symptoms reported at quarterly visits1	0
Table 6. Baseline characteristics of study participants living with HIV1	0
Table 7. Representativeness of the participant sample1	2
Supplement References1	3

DoxyPEP Team and Additional Acknowledgments

<u>DoxyPEP Data Team</u> Deborah Donnell, Cole Grabow, Kathy Thomas, Eric Vittinghoff

SAN FRANCISCO

<u>San Francisco City Clinic, San Francisco Department of Public Health</u> Stephanie Cohen (Co-investigator, Site PI), Melody Nassar, Nikolas Alves da Costa e Silva, D. Cimmiyotti, Alison Cohee, Elizabeth Faber, Sally Grant, Yvonne Piper

<u>Zuckerberg San Francisco General</u> Annie Luetkemeyer (Co- PI), Carolina Lopez, Emma Bainbridge Doug Black, Kat Christopoulos, Jay Dwyer, Diane Havlir, Cecilia Rivas Alfaro, Jaime Velasco Veronica Viar

<u>San Francisco Department of Public Health</u> Susan Buchbinder, Kenneth Coleman, Godfred Masinde, Trang Nguyen, Madeline Sankaran, Hyman Scott, Janie Vinson

Zuckerberg San Francisco General Clinical Lab Barb Haller, Mary Allen Eugenio, Phong Pham

<u>UCSF Hair Lab</u> Monica Gandhi, Hideaki Okochi

<u>Chan-Zuckerberg BioHub</u> Chaz Langelier, Yanedth Sanchez Guerrero

<u>Core Immunology Lab</u> Christina Gonzaga and all of the CIL staff.

SEATTLE

<u>Madison Clinic Harborview Medical Center</u> Connie Celum (Co-PI), Rodney Perkins, Clare Brown, Sheila Dunaway, Deborah Donnell, Rob Fredericksen, Lindsay Legg, Sharon Martens, Jia Wong

<u>Sexual Health Clinic, Public Health Seattle- King County</u> Julie Dombrowski (Co-investigator, Site PI), Cheryl Malinski, Rafael Padilla

UW Microbiology Olusegun Soge

<u>UW ICRC</u> Elena Rechkina, Marie Bauer, Daphne Hamilton, Matthew Ikuma, Jin Kim

Seattle DPH Christina Thibault

Additional Acknowledgments

Jared Baeten, Ruanne Barnabas, Elizabeth Barash, Rachel Bender-Ignacio, Jade Boyer, Chase Cannon, Sheila Dunaway, John Friend, Matt Golden, Harald Haugen, Ellie Hawman, Susannah Herrmann, Matt Hickey, Mary-Lawrence Hicks, Edward 'Jake' Jacobs, Rachel Johnson, Colleen Kimsey, Savannah Lawton, Julia Mathis, Mari Metter, Jean-Michel Molina, Brandi Moretz, Negusse Ocbamichael, Michael Peluso, Meena Ramchandani, Luis Reyes-Umana, Selorm Tamakloe, Sundos Yassin

Supplemental Analyses:

Per protocol analyses

Two per protocol analyses were conducted.

1) Per protocol analysis excluding those with doxycycline discontinuation.

In a prespecified analysis, for each cohort the doxycycline PEP arm was restricted to study time prior to the first discontinuation of study drug by self-report or documented on the study CRFs. A discontinuation was defined as a clinician-directed product hold or a participant-reported cessation of doxycycline usage lasting for more than a week. Doxycycline PEP was temporarily held during STI treatment with doxycycline (e.g., for *Chlamydia trachomatis* diagnosis) and was not considered as a discontinuation. In an analysis limited to participants who did not have doxycycline discontinued (1233 quarters, 467 participants: 320 doxy-PEP, 148 SOC), the relative reduction of incident STI's per quarter with doxy-PEP was 0.32 (95%CI 0.23, 0.44) per quarter in the PrEP cohort and 0.37 (95%CI:0.23, 0.59) in the PLWH cohort.

2) Per protocol analyses by self- reported adherence

In an analysis limited to participants who reported always taking doxycycline after sex (1002 quarters, 413 participants: 265 doxy-PEP, 148 SOC) the relative reduction of incident STI's per quarter with doxy-PEP was 0.26 (95%CI 0.18, 0.38) per quarter in the PrEP cohort and 0.32 (95%CI: 0.19, 0.54) in the PLWH cohort.

Recurrent and multiple STIs

Among SOC participants, 37.3% (77/206) had at least one quarter with \geq 1 STIs diagnosed, and 21.4% (44/206) were diagnosed with STIs in more than one quarter. Of SOC participants who had a primary STI endpoint, 20% (24/121) had multiple STIs diagnosed during the quarter with a primary endpoint. In the doxy-PEP arm, 18.8% (81/431) had at least one quarter with \geq 1 STIs diagnosed, and 3.7% (16/431) had STIs diagnosed in more than one quarter. Among those assigned to doxy-PEP who had a primary STI endpoint, 6.2% (6/97) had more than one STI diagnosed during the quarter with a primary endpoint.

Figure 1. Primary endpoint of one or more STI per quarter by individual STI *Note:* Randomization was 2:1 doxy-PEP vs. SOC. There was a significant reduction in STI incidence with doxyPEP despite a similar number of endpoints in the doxy-PEP and SOC arms

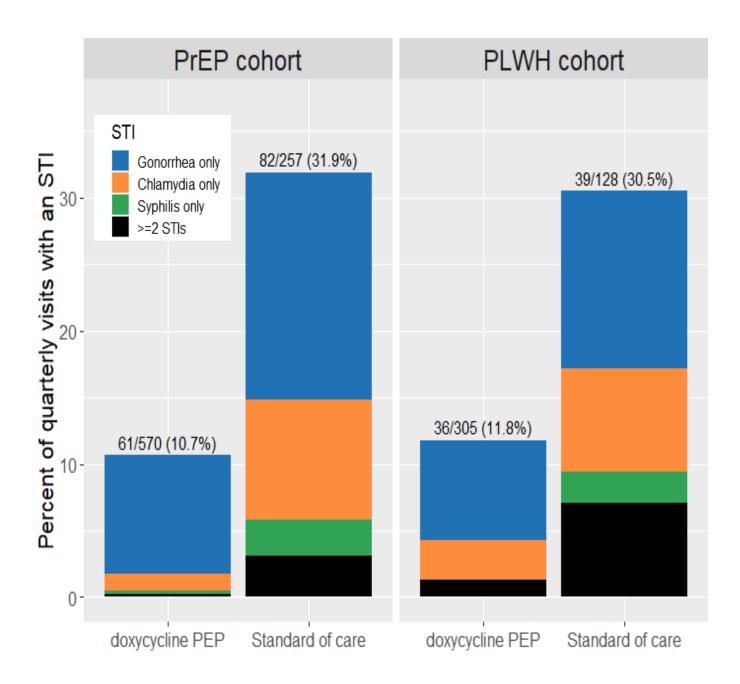
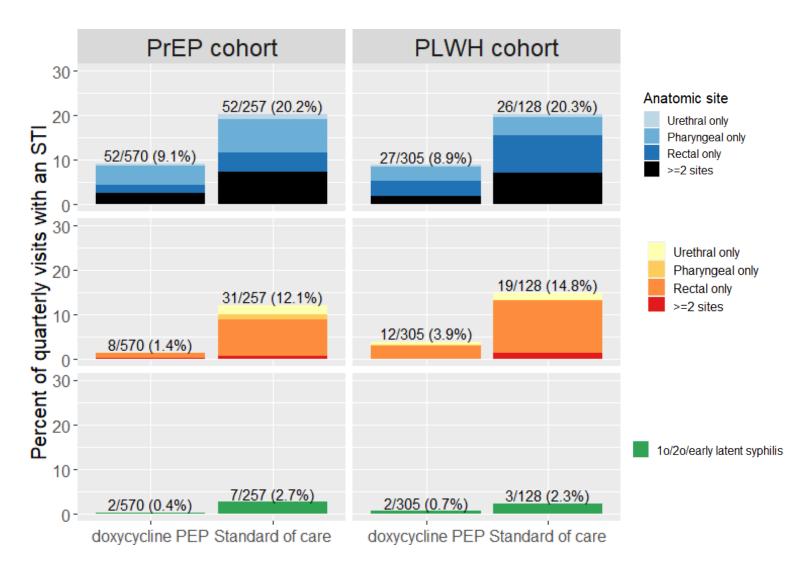



Figure 2. Anatomic distribution of incident STIs.

		PrEP		PLWH		Total	
		Doxy PEP	SOC	Doxy PEP	SOC	Doxy PEP	SOC
	GC infections	40	20	25	14	65	34
Baseline	GC cultures with resistance testing available	5	4	2	4	7	8
	Tetracycline-resistant	2 (40.0%)	1 (25.0%)	0 (0%)	1 (25.0%)	2 (28.6%)	2 (25.0%)
	GC infections	52	52	27	26	79	78
On Study	GC cultures with resistance testing available	7	10	6	6	13	16
	Tetracycline-resistant	3 (42.9%)	1 (10.0%)	2 (33.3%)	1 (16.7%)	5 (38.5%)	2 (12.5%)

Table 1. Proportion of culture-positivity and tetracycline antimicrobial resistance in participants diagnosed with *N. gonorrhoeae* infection

Table 2. Proportion of culture-positivity and doxycycline resistance in S. aureus isolates from baseline and follow-up by arm

		PrEP		PLWH		Total	
		Doxy PEP	SOC	Doxy PEP	SOC	Doxy PEP	SOC
1	Total samples	209	104	117	53	326	157
	S. aureus growth	83	46	56	30	139	76
	Doxycycline- resistant	8 (9.6%)	7 (15.2%)	4 (7.1%)	6 (20%)	12 (8.6%)	13 (17.1%)
Baseline	MSSA ¹	73	43	45	24	118	67
	Doxycycline- resistant	7 (9.6%)	7 (16.3%)	4 (8.9%)	2 (8.3%)	11 (9.3%)	9 (13.4%)
	MRSA ²	9	3	11	6	20	9
	Doxycycline- resistant	1 (11.1%)	0 (0%)	0 (0%)	4 (66.7%)	1 (5.0%)	4 (44.4%)
	Total samples	122	47	70	28	192	75
	S. aureus growth	34	16	17	13	51	29
	Doxycycline- resistant	10 (29.4%)	1 (6.3%)	1 (5.9%)	2 (15.4%)	11 (21.6%)	3 (10.3%)
Month 6	MSSA	30	15	12	11	42	26
	Doxycycline- resistant	9 (30.0%)	1 (6.7%)	1 (8.3%)	1 (9.1%)	10 (23.8%)	2 (7.7%)
	MRSA	4	1	5	2	9	3
	Doxycycline- resistant	1 (25.0%)	0 (0%)	0 (0%)	1 (50.0%)	1 (11.1%)	1 (33.3%)
	Total samples	74	37	37	14	111	51
	<i>S. aureus</i> growth	21	17	10	7	31	24
	Doxycycline- resistant	4 (19.0%)	1 (5.9%)	1 (10.0%)	1 (14.3%)	5 (16.1%)	2 (8.3%)
Month 12	MSSA	20	15	9	6	29	21
	Doxycycline- resistant	4 (20.0%)	1 (6.7%)	1 (11.1%)	0 (0%)	5 (17.2%)	1 (4.8%)
	MRSA	1	2	1	1	2	3
	Doxycycline- resistant	0 (0%)	0 (0%)	0 (0%)	1 (100%)	0 (0%)	1 (33.3%)

¹ MSSA: Methicillin sensitive *S. aureus*

² MRSA: Methicillin resistant *S. aureus*

	Doxy	Standard of care	
	Month 3	Month 9	First observation ²
Laboratory results (median [IQR])	308	198	74
Complete blood count			
Total leukocyte count (x10 ⁹ /L)	5.8 (4.94–6.97)	6.01 (5.09–6.9)	5.94 (5.03–7)
Absolute neutrophil count (x10 ⁹ /L)	3.14 (2.52– 3.87)	3.14 (2.52–3.91)	3.08 (2.38–4.01)
Total hemoglobin (g/dL)	15.1 (14.4– 15.7)	15 (14.4–15.6)	15.3 (14.4–16)
Platelet count (x10 ⁹ /L)	253.5 (220– 295)	255 (217–286)	250 (222–297)
Liver function tests			
Total bilirubin (mg/dL)	0.6 (0.5–0.8)	0.6 (0.4–0.7)	0.6 (0.6–1.5)
AST (SGOT) (IU/L)	24 (20–29)	25 (21–30)	23 (19–24)
ALT (SGPT) (IU/L)	24 (19–31)	25 (19–32)	24 (18–33)
Alkaline phosphate (IU/L)	69 (57–81)	70 (58.5–84)	63 (56–78)

Table 3. Laboratory monitoring of CBC and liver function tests

1 CBCs and LFTs were scheduled to be done at month 3 and month 9 visit for participants in the doxy-PEP arm; if a participant missed that visit, CBCs and LFTs were scheduled to be made up at month 6 and month 12 visits, respectively. Make-up samples are included in month 3 and 9 scheduled collection here.

2 CBCs were scheduled to be done at least once during follow-up. If testing was done more than once, only the first sample was used in this analysis. LFTs were not conducted as part of DoxyPEP for participants in the standard of care arm; if LFTs were reported as part of standard of care they are included here (N = 7).

Table 4.Adverse Events

Reporting criteria	Event	Determination of relationship
Grade ≥ 2 lab	Elevated ALT (Grade 2)	Possible
abnormality related to		
doxycycline		
Grade ≥ 3 adverse	Diarrhea (Grade 3)	Probable
event related to	Diarrhea (Grade 3)	Possible
doxycycline	Diarrhea (Grade 3)	Possible
	Headache/migraine (Grade 3)	Possible
	Headache/migraine (Grade 3)	Possible
Serious adverse event	Cat bite (req. hospitalization)	Unrelated
	Testicular torsion (req. surgery)	Unrelated
	Hypotension 2o to substance use	Unrelated
	(req. hospitalization)	
	Gastroenteritis (req.	N/A (not in doxy-PEP arm)
	hospitalization)	

Table 5. Symptoms reported at quarterly visits

	Doxy	y-PEP	Standard of Care
	Proportion of quarters with symptoms reported	Proportion of quarters with symptoms reported & attributed to doxy-PEP by clinician	Proportion of quarters with symptoms reported
Skin rash	57/928 (6.1%)	5/928 (0.5%)	23/402 (5.7%)
More readily sunburned	39/928 (4.2%)	21/928 (2.3%)	4/402 (1.0%)
Headache	76/928 (8.2%)	1/928 (0.1%)	37/402 (9.2%)
Changes in vision	22/928 (2.4%)	1/928 (0.1%)	10/402 (2.5%)
Pain with swallowing	20/928 (2.2%)	0/928 (0.0%)	13/402 (3.2%)
Difficulty swallowing	13/928 (1.4%)	1/928 (0.1%)	11/402 (2.7%)
Diarrhea	112/928 (12.1%)	26/928 (2.8%)	37/402 (9.2%)
Nausea	62/928 (6.7%)	14/928 (1.5%)	13/402 (3.2%)
Vomiting	23/928 (2.5%)	3/928 (0.3%)	12/402 (3.0%)
Abdominal pain	38/928 (4.1%)	2/928 (0.2%)	15/402 (3.7%)
Other	57/928 (6.1%)	1/928 (0.1%)	30/402 (7.5%)

Table 6. Baseline characteristics of study participants living with HIV

Baseline characteristics of PLWH	N=174	
N (%) with documented ART usage	173 (99.4%)	
Median (IQR) CD4 ⁺ count (cells/mm ³)	697.5 (499–880)	
N (%) with HIV viral load \leq 50	158 (94.6%)	
Median (IQR) viral load among viremic participants (N=9)	1354 (145–7123)	

	N=174
N (%) with documented ART usage	173 (99.4%)
Median (IQR) CD4⁺ count (cells/mm³)	698 (499–880)
N (%) with HIV viral load ≤ 50	158 (94.6%)
Median (IQR) viral load among viremic participants (N=9)	1354 (145–7123)

Table 7. Representativeness of the participant sample

Category	Example
Category	Example
Disease, problem or condition under	Bacterial sexually transmitted infections (STIs) in men
investigation	who have sex with men (MSM)
Special Considerations related to:	
Sex & Gender	STIs disproportionately impact men who have sex with men[1], with a marked impact on those who are living with HIV[2, 3] or who are taking HIV PrEP[4, 5]. In the US, the plurality of new syphilis diagnosis are in MSM (46%). Chlamydia is more common in women than men, whereas gonorrhea is more common in men than women. However, in people accessing STI clinics, MSM were more commonly diagnosed with chlamydia and gonorrhea than women or men who have sex with women.
Race or ethnic group	Some racial and ethnic groups are more impacted by STIs. In 2021 CDC data[1], non-Hispanic Black/African Americans had the highest case rates of chlamydia and gonorrhea, compared to other racial and ethnic groups, and syphilis was most common in American Indian/Alaska Native and Black/African-Americans.
Geography	The STI epidemic is global[6], with a disproportionate impact described in MSM in the US[1], Australia[7] and Western Europe[8].
Other considerations	· • •
Overall representativeness of this trial	This study enrolled 8% Black, 11% Asian/Pacific Islander, 15% multiple races/other, and 65% White. 30% of participants identified as Hispanic/Latinx. The proportion of black participants were slightly lower than current US population distribution[9], whereas Latinx enrollment exceeded current US Latinx population percentages. Overall, the study enrolled a diverse population that is representative of the US population. Transgender women/gender diverse participant were 4% of the study, an insufficient proportion to draw conclusions about doxy- PEP efficacy in this population. The study enrolled in Seattle and San Francisco, two urban US West Coast cities, thus do not have data from other geographic locations.

Supplement References

- 1. CDC. Sexually Transmitted Disease Surveillance 2020. 2022; Available from: https://www.cdc.gov/std/statistics/2020/default.htm.
- 2. Secco, A.A., et al., Sexually transmitted infections in persons living with HIV infection and estimated HIV transmission risk: trends over time from the DC Cohort. Sex Transm Infect, 2020. **96**(2): p. 89-95.
- 3. Kalichman, S.C., J. Pellowski, and C. Turner, *Prevalence of sexually transmitted coinfections in people living with HIV/AIDS: systematic review with implications for using HIV treatments for prevention.* Sex Transm Infect, 2011. **87**(3): p. 183-90.
- 4. Traeger, M.W., et al., Association of HIV Preexposure Prophylaxis With Incidence of Sexually Transmitted Infections Among Individuals at High Risk of HIV Infection. Jama, 2019. **321**(14): p. 1380-1390.
- 5. Ong, J.J., et al., *Global Epidemiologic Characteristics of Sexually Transmitted Infections Among Individuals Using Preexposure Prophylaxis for the Prevention of HIV Infection: A Systematic Review and Meta-analysis.* JAMA Network Open, 2019. **2**(12): p. e1917134e1917134.
- 6. Zheng, Y., et al., *Global burden and trends of sexually transmitted infections from 1990* to 2019: an observational trend study. Lancet Infect Dis, 2022. **22**(4): p. 541-551.
- 7. Thng, C.C.M., *A Review of Sexually Transmitted Infections in Australia Considerations in 2018.* Acad Forensic Pathol, 2018. **8**(4): p. 938-946.
- 8. Geretti, A.M., et al., *Sexual transmission of infections across Europe: appraising the present, scoping the future.* Sexually Transmitted Infections, 2022. **98**(6): p. 451-457.
- 9. Bureau, U.C., United States Census Quick Facts. 2020.