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Table S1. Blood pressure effects of sGC activation in the ZSF1 rat. Related to Figure 1. 

Treatment Baseline MAP 
(mmHg) 

Post-application 
MAP (mmHg) 

Vehicle 120.4 ± 4.8 112.6 ± 1.9 
Runcaciguat 
(3 mg/kg) 

122.4 ± 4.0 110.7 ± 1.8 

Mean arterial blood pressure (MAP) measured in mmHg with telemetric implants in ZSF1 rats treated with either 

vehicle (n=6) or 3 mg/kg runcaciguat (n=5); data are shown as mean ± SEM registered over 1 hour before the 

application for baseline (hour -1 to 0) and 5 hours after application (hour +1 to +6). 
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Figure S1. Diabetic ZSF1 rats recapitulate phenotypic changes of DKD with marked disease improvement by 

sGC activators. Related to Figure 1. 

(a) Body weight; p values are given for Kruskal-Wallis test (Benjamini, Krieger, Yekutieli-corrected); Ob, Obese. 

(b) Urinary protein/creatinine ratio; p values are given for Kruskal-Wallis test (Benjamini, Krieger, Yekutieli-

corrected); Ob, Obese. 

(c)  Explorative proteomics analysis of 92 plasma proteins using a multiplexed proximity extension assay (Olink); 

p values are given for one-way ANOVA (Benjamini, Krieger, Yekutieli-corrected); NPX, normalized protein 

expression; Ob, Obese. 
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Figure S2. Single-cell transcriptomic landscape of the diabetic ZSF1 rat. Related to Figure 2. 

(a) Violin plots showing number of informative genes (nFeature_RNA), unique molecular identifiers 

(nCount_RNA), and percentage of mitochondrial genes (percent.mt) per single cell. 

(b) Principal component (PC) representation (left) and violin plots of corresponding embeddings values (right) 

before (top) and after batch correction (bottom) using Harmony, stratified by individual sample. 

(c) Same as in (b), stratified by experimental group. 

(d) Integrated UMAP corresponding to Fig. 2a, stratified by sample. 

(e) Integrated UMAP corresponding to Fig. 2a, annotated by low-level clustering, experimental group, cell cycle 

phase, and mitochondrial percentage (%mt), respectively; GEC, glomerular endothelial cell; AA/LA/EA, 

afferent arteriole/large artery/efferent arteriole; Podo, podocyte; Fib, fibroblast; Peri, pericyte; SMC; smooth 

muscle cell; PCT, proximal convoluted tubule; PST(S2); proximal straight tubule (segment 2); PTinj, injured 

proximal tubule; PTnov, novel PT; DTL, descending thin limb; ATL, ascending thin limb; TAL, thick 

ascending limb; DCT, distal convoluted tubule; CNT, connecting tubule; PC, collecting duct principal cell; IC-

A, collecting duct intercalated cell type A; CD-Trans, collecting duct transitional cell; IC-B, collecting duct 

intercalated cell type B; Immune, immune cell. 

(f) Heatmap of top 10 differentially expressed genes for low-level clustering, corresponding to Fig. 2b. 
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Figure S3. Cell fraction changes. Related to Figure 2. 

(a) Fractions of high-level clustering cell types across samples, experimental groups, and cell cycle phase, 

respectively; Endo, endothelial cell; Podo, podocyte; Stroma, stromal cell; Prox tub, proximal tubule; LOH, 

loop of Henle; DCT/CNT/PC, distal convoluted tubule/connecting tubule/collecting duct principal cell; IC, 

collecting duct intercalated cell; Immune, immune cell. 

(b) Integrated UMAP (top) and density plots (bottom) corresponding to Fig. 2a, stratified by experimental group. 

(c) Integrated UMAP stratified by experimental group and colored by individual sample demonstrates negligible 

within-group heterogeneity. 

(d) Cell fractions of high-level clusters stratified by experimental group. Statistical significance for comparisons 

was derived using differential proportion analysis, with a mean error of 0.1 over 100,000 iterations; p values 

are given for comparisons between Lean and (un-)treated Obese groups and between untreated Obese and 

treated Obese groups, respectively; ns, not significant. 
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Figure S4. Differentially expressed genes. Related to Figure 2. 

(a-c) Volcano plots of differentially expressed genes (DEGs) comparing Obese vs. Lean (a), Obese+sGCact vs. 

Obese (b), and Obese+sGCstim vs. Obese samples (c), respectively. Comparisons are given separately for 

high-level cell types. X axes indicate log2-fold change (Model-based Analysis of Single-cell Transcriptomics, 

MAST) and y axis indicates statistical significance-adjusted p = -log10. Endo, endothelial cell; Podo, podocyte; 

Stroma, stromal cell; Prox tub, proximal tubule; LOH, loop of Henle; DCT/CNT/PC, distal convoluted 

tubule/connecting tubule/collecting duct principal cell; IC, collecting duct intercalated cell; Immune, immune 

cell. 
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Figure S5. ZSF1 rat integration with human DKD. Related to Figure 2. 

(a) UMAP representations of ZSF1 rat reference with low-level clustering (top left) and human DKD query dataset 

(Wilson et al.) projected onto ZSF1 rat reference dataset (other subpanels). Human DKD subpanels are 

annotated/colored by ZSF1 rat reference clustering (top right), by original clustering (bottom left), and by 

predicted cell type score (bottom right). 

(b) Pearson correlation coefficient (PCC) matrix of average cell type gene expression between ZSF1 rats (Lean 

and Obese samples only) and a corresponding human snRNA-seq dataset from the Kidney Precision Medicine 

Project (KPMP, Lake et al.) with Control and DKD kidney samples; ATL, ascending thin limb; CNT, 

connecting tubule; DCT, distal convoluted tubule; DTL, descending thin limb; Endo/EC, endothelial cell; IC, 

collecting duct intercalated cell; LEUK, leukocyte; LOH, loop of Henle; MES, mesangial cells; PC, collecting 

duct principal cell; PEC, parietal epithelial cell; Podo/POD, podocytes; Prox tub/PT, proximal tubule; TAL, 

thick ascending limb. 

(c) Similar UMAP representations as in (a), but with dataset from Kidney Precision Medicine Project (KPMP, 

Lake et al.). 

(d) Similar correlation analysis as in (b), but with PT and stromal cell subclustering. aFIB, “adaptive” fibroblast; 

aPT, “adaptive epithelial state” proximal tubule; cycEPI, cycling epithelial cells; dPT, “degenerative” proximal 

tubule; DTL, descending thin limb; dVSCM, “degenerative” vascular smooth muscle cell; FIB, fibroblast; Int, 

interstitial cell; MC, mesangial cell; Mesench, mesenchymal cell; mitoPT, high mitochondrial gene PT; MyoF, 

myofibroblast; PCT, proximal convoluted tubule; PST, proximal straight tubule; PT, proximal tubule; PTinj, 

injured PT; ProfibPT, profibrotic PT; DediffPT, dedifferentiated PT; PT(Spp1+), Spp1+ PT; REN, Renin-

positive juxtaglomerular granular cell; SMC, smooth muscle cell; VSCM/P, vascular smooth muscle 

cell/pericyte. 
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Figure S6. GO term analysis of tensor decomposition factor 1-loading genes and PT and stromal cell type 

specificity of sGC gene expression. Related to Figure 2. 

(a) Gene ontology (GO) terms of factor 1-loading genes in proximal tubule and stromal cells. 

(b) Expression dot plots for sGC genes, stratified by experimental group (rows) and high-level clustering 

(columns); dot size denotes percentage of cells expressing the marker. Color scale represents average gene 

expression values. 

(c) Feature plots corresponding to (b). 

(d) Expression dot plots for NO/sGC/cGAMP pathway genes in human DKD (left) and murine DKD (right) 

datasets, corresponding to Fig. 2g; dot size denotes percentage of cells expressing the marker. Color scale 

represents average gene expression values. 
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Figure S7. Podocyte subclustering. Related to Figure 2. 

(a) Integrated UMAP of 2,065 high-quality podocyte nuclei from 12 rat kidney samples. Black line indicates 

Slingshot-inferred trajectory from clusters 1 through 5. 

(b) Pseudotime values across podocyte clusters 1 through 5. Colors correspond to (a). 

(c) Heatmaps shows enrichment of top pseudotime-specific GO biological processes and KEGG pathways. 

(d) Pearson correlation coefficient (PCC) matrix of average cell type gene expression between podocyte clusters 

1 through 5. 

(e) Cell fractions of podocyte clusters stratified by experimental group. Colors correspond to (a). 

(f) Scoring of gene sets corresponding to representative pathways from (c). Left panels show pathway enrichment 

along the podocyte trajectory. Right panels show gene set scores by podocyte cluster. Colors correspond to (a). 
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Figure S8. PT and stromal cell subclustering. Related to Figure 3. 

(a) Violin plots showing number of informative genes (nFeature_RNA), unique molecular identifiers 

(nCount_RNA), and percentage of mitochondrial genes (percent.mt) per single cell. 

(b) Principal component (PC) representation (left) and violin plots of corresponding embeddings values (right) 

before (top) and after batch correction (bottom) using Harmony, stratified by individual sample. 

(c) Same as in (b), stratified by experimental group. 

(d) Integrated UMAP corresponding to Fig. 3a, stratified by sample. 

(e) Integrated UMAP corresponding to Fig. 3a, annotated by sample, experimental group, cell cycle phase, and 

mitochondrial percentage (%mt), respectively. 

(f) Heatmap of top 10 differentially expressed genes for subclusters. PCT, proximal convoluted tubule; PST(S2), 

proximal straight tubule (segment 2); PST, proximal straight tubule; PTinj, injured PT; ProfibPT, profibrotic 

PT; DediffPT, dedifferentiated PT; mitoPT, high mitochondrial gene PT; PT(Spp1+), Spp1+ PT; Int, interstitial 

cell; Mesench, mesenchymal cell; SMC, smooth muscle cell. 

(g) Cell fractions of PT and stromal cell subclusters stratified by experimental group. Colors correspond to (f). 

(h) Bar graphs representing the number of genes differentially expressed (DEG) between Obese and Lean samples 

in coarse-grained, high-level cell types. Percentages indicate absent or present rescue effect (normalization) 

for DEG comparison between sGC modulator-treated rats (sGCstim, sGCact) and vehicle-treated rats. 
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Figure S9. Trajectory analysis highlights dynamic changes of PT cells towards profibrotic and mesenchymal 

cell states. Related to Figures 3 and 4. 

(a-b) REACTOME “cGMP effects” (a) and GOBP “negative regulation of oxidative stress” scores (b) in the 

integrated ZSF1 rat DKD dataset by experimental groups; p values are given for one-way ANOVA (Tukey-

corrected). 

(c) Corresponding scatterplot for correlation of GOBP “negative regulation of oxidative stress” score (y axis) and 

REACTOME “cGMP effects” score (x axis); p value is given for linear regression. 

(d-e) REACTOME “cGMP effects” (d) and GOBP “negative regulation of oxidative stress” scores (e) in a human 

kidney bulk RNA-seq dataset by DKD severity; p values are given for one-way ANOVA (Tukey-corrected). 

(f) Corresponding scatterplot for correlation of GOBP “negative regulation of oxidative stress” score (y axis) and 

REACTOME “cGMP effects” score (x axis); p value is given for linear regression; error bands represent 95% 

confidence interval. 

(g) Expression dot plot for NO/sGC/cGAMP pathway genes in stroma subclusters (rows), corresponding to Fig. 

3e. Dot size denotes percentage of cells expressing the marker. Color scale represents average gene expression 

values. Mesang, mesangial cell; JGA, juxtaglomerular apparatus cell; Fib, fibroblast; PT, proximal tubule; 

GEC, glomerular endothelial cell; Myofib, myofibroblast; VSCM, vascular smooth muscle cell; Peri, pericyte. 

(h) Feature plots for Gucy1b1 and Gucy1b2 in UMAP space. 

(i-j) Monocle3-derived PT-Mesench trajectory, colored by cell clusters along the trajectory (i) and by pseudotime 

(j), respectively. PST, proximal straight tubule; PTinj, injured PT; ProfibPT, profibrotic PT; DediffPT, 

dedifferentiated PT; Int, interstitial cell; Mesench, mesenchymal cell. 

(k) Expression heatmap of top 5 differentially expressed genes (DEGs) along Monocle3-derived pseudotime. 

Rows represent DEGs, columns represent individual PT cells in bins along pseudotime. 

(l) Pearson correlation coefficient (PCC) matrix of top 100 DEG expression between pseudotime bins along 

Monocle3-derived trajectory. 

(m) Corresponding enrichment of top pseudotime-specific GO biological processes and KEGG, Pathway 

Interaction Database (PID), and HALLMARK pathways, respectively. 

(n) Monocle2-derived PT-Mesench trajectory (top) and corresponding heatmap visualizing pseudotiome-

dependent gene expression along lineages 1 and 2, respectively. R denotes root node, B denotes branching 

point, 1 and 2 denote end points of lineages 1 and 2, respectively. 

(o-p) Gene ontology (GO) terms derived from top PTinj_1 (o) and PTinj_2-specific (p) DEGs, corresponding to Fig. 

3e. 

(q) GO terms enriched in PTinj_1 and PTinj_2, respectively, in latent semantic space. 
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Figure S10. Cell-cell communication analysis identifies a secretory phenotype of profibrotic PT. Related to 

Figure 5. 

(a) Importance of signaling (sender, receiver, mediator, influencer) roles, as computed by CellChat centrality 

scores, stratified by cell clusters along the PT-Mesench trajectory, corresponding to Fig. 5. PST, proximal 

straight tubule; PTinj, injured PT; ProfibPT, profibrotic PT; DediffPT, dedifferentiated PT; Int, interstitial cell; 

Mesench, mesenchymal cell. 

(b) Communication probability between source/sender (rows) and target/receiver cell clusters (columns) along the 

PT-Mesench trajectory, displayed individually for various signaling pathways. 

(c) Communication patterns for outgoing (top) and incoming (bottom) signaling. Degree of contribution is plotted 

by cell clusters along the trajectory (left) and by signaling pathways (right), respectively. 
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Figure S11. Secretory and ECM-receptor phenotypes of profibrotic PT and mesenchymal cells, respectively. 

Related to Figure 5. 

(a, c)  Relative contribution of secreted extracellular matrix (ECM) factors (a) and ECM-receptor signaling (b). 

(b, d) Feature plots for representative secreted ECM factor genes (Hbegf, Il19, Il24) (b) and representative core 

matrisome genes (Col3a1, Prelp, Fbln5) (d) along the trajectory in diffusion map space, corresponding to Figs. 

5g, j. ProfibPT, profibrotic PT; Mesench, mesenchymal cell. 
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Figure S12. Gene regulatory network analysis highlights cell type-specific transcription factors driving the 

PT-to-mesenchymal trajectory and prioritizes cell types of action for sGC modulation. Related to Figure 6. 

(a) t-distributed stochastic neighbor embedding (t-SNE) reduction plot of regulon-derived clustering of cell types 

along the PT-Mesench trajectory. PST, proximal straight tubule; PTinj, injured PT; ProfibPT, profibrotic PT; 

DediffPT, dedifferentiated PT; Int, interstitial cell; Mesench, mesenchymal cell. 

(b) tSNE representation of regulon density as a surrogate for stability of regulon states. 

(c) Regulons ranked according to their specificity scores (rss) for individual cell types along the PT-Mesench 

trajectory. The top 5 specific regulons per cell type are annotated. 

(d) Dot plot of regulons (rows) according to cell types along the PT-Mesench trajectory (columns). Dot size 

denotes regulon specificity score (RSS), color denotes z-scored RSS. 



PS
T

PT
in
j_
1

Pr
of
ib
PT

PT
in
j_
2

D
ed
iff
PT

_1 In
t

M
es
en
ch

−0.01

0.00

0.01

0.02

0.03

0.04

0.05

MEturquoise  module

M
E

PS
T

PT
in
j_
1

Pr
of
ib
PT

PT
in
j_
2

D
ed
iff
PT

_1 In
t

M
es
en
ch

−0.02

−0.01

0.00

0.01

0.02

0.03

0.04

MEblack  module
M
E

PS
T

PT
in
j_
1

Pr
of
ib
PT

PT
in
j_
2

D
ed
iff
PT

_1 In
t

M
es
en
ch

−0.02

−0.01

0.00

0.01

0.02

0.03

0.04

MEblue  module

M
E

PS
T

PT
in
j_
1

Pr
of
ib
PT

PT
in
j_
2

D
ed
iff
PT

_1 In
t

M
es
en
ch

−0.02

−0.01

0.00

0.01

0.02

0.03

0.04

MEyellow  module

M
E

PS
T

PT
in
j_
1

Pr
of
ib
PT

PT
in
j_
2

D
ed
iff
PT

_1 In
t

M
es
en
ch

−0.02

−0.01

0.00

0.01

0.02

0.03

0.04

0.05

MEbrown  module

M
E

PS
T

PT
in
j_
1

Pr
of
ib
PT

PT
in
j_
2

D
ed
iff
PT

_1 In
t

M
es
en
ch

0.00

0.05

0.10

0.15

0.20

0.25

MEgreen  module

M
E

PS
T

PT
in
j_
1

Pr
of
ib
PT

PT
in
j_
2

D
ed
iff
PT

_1 In
t

M
es
en
ch

0.00

0.02

0.04

0.06

MEred  module

M
E

c

d

0

250

500

750

1000

WGCNA module

N
um

be
r o

f g
en

es
Fig. S13 a b

-0
.6

-0
.4

-0
.2 0.0 0.2 0.4

red

green

black

brown

yellow

blue

turquoise

kME

W
G

C
N

A 
m

od
ul

e

Gucy1a2

-0
.5 0.0 0.5

kME

Gucy1b1

-0
.4

-0
.2 0.0 0.2 0.4 0.6

kME

Gucy1b2

UMAP1

U
M

AP2

module_turquoise

module_brown

module_black

module_green

module_blue

module_red

module_yellow

kME

highlow

PST

ProfibPT

DediffPT_1
Mesench

ProfibPT ProfibPT

Mesench



 28 

Figure S13. WGCNA analysis in PT-Mesench trajectory metanuclei. Related to Figure 7. 

(a) Bar graph depicting the number of genes in WGCNA-derived modules. 

(b) Intramodular connectivity (kME) values of Gucy1a2, Gucy1b1, and Gucy1b2. 

(c) Module eigengene (ME) scores of WGCNA modules displayed as Tukey box plots (outliers denoted as dots 

outside box plot whiskers) by cell clusters along the PT-Mesench trajectory (n=3,120 metanuclei). PST, 

proximal straight tubule; PTinj, injured PT; ProfibPT, profibrotic PT; DediffPT, dedifferentiated PT; Int, 

interstitial cell; Mesench, mesenchymal cell. 

(d) kME values of individual WGCNA modules visualized in UMAP space. 
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Figure S14. WGCNA-derived sGC co-expression modules correlate with human DKD outcome variables. 

Related to Figure 7. 

(a) Enrichment ratios of top enriched KEGG pathway and GO terms, derived by overrepresentation analysis of 

WGCNA module genes. The graph is split into subpanels by WGCNA module. 

(b) Expression of sGC genes (Gucy1a1, Gucy1a2, Gucy1b1, Gucy1b2) (top) and kME values of composite 

WGCNA score (bottom) visualized in UMAP space. Insert (bottom right) indicates cell types along the PT-

Mesench trajectory. PST, proximal straight tubule; PTinj, injured PT; ProfibPT, profibrotic PT; DediffPT, 

dedifferentiated PT; Int, interstitial cell; Mesench, mesenchymal cell. 

(c-d) Principal component analysis (PCA) plots stratifying microdissected kidney tubule RNA-seq samples from 

human individuals with and without DKD by disease severity (c) and by WGCNA score (d). 

(e) Ordinal logistic regression showed that as WGCNA score increased, probability of human subjects to have any 

form of albuminuria increased and probability to be normoalbuminuric decreased. 

(f) Scatterplot for correlation of WGCNA score (y axis) and REACTOME “cGMP effects” score (x axis); p value 

is given for linear regression, error bands represent 95% confidence interval. 


