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SUMMARY
Pancreatic ductal adenocarcinoma (PDAC) has been left behind in the evolution of personalized medicine.
Predictive markers of response to therapy are lacking in PDAC despite various histological and transcrip-
tional classification schemes. We report an artificial intelligence (AI) approach to histologic feature examina-
tion that extracts a signature predictive of disease-specific survival (DSS) in patients with PDAC receiving
adjuvant gemcitabine. We demonstrate that this AI-generated histologic signature is associated with out-
comes following adjuvant gemcitabine, while three previously developed transcriptomic classification sys-
tems are not (n = 47). We externally validate this signature in an independent cohort of patients treated
with adjuvant gemcitabine (n = 46). Finally, we demonstrate that the signature does not stratify survival out-
comes in a third cohort of untreated patients (n = 161), suggesting that the signature is specifically predictive
of treatment-related outcomes but is not generally prognostic. This imaging analysis pipeline has promise in
the development of actionable markers in other clinical settings where few biomarkers currently exist.
INTRODUCTION

The prognosis for patients diagnosed with localized pancreatic

ductal adenocarcinoma (PDAC) remains poor even after suc-

cessful surgical resection.1 Adjuvant chemotherapy regimens,

including modified FOLFIRINOX (5-fluorouracil, irinotecan, and

oxaliplatin)-2 and gemcitabine-based regimens,3 have improved

overall survival (OS) when compared with observation, but most

patients still experience disease recurrence within 2 years.

Increasingly, neoadjuvant chemotherapy with or without addi-

tional post-operative chemotherapy is being utilized, though

the optimal regimen or sequence of regimens remains uncer-

tain.4 Intense study of PDAC tumor genomics has revealed

several distinct and reproducible transcriptomic profiles, but to

date, there are no validated predictive biomarkers to guide
Cell Re
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recommendation of one chemotherapy regimen over another

in clinical practice.5–8 There is a need for improved predictive

PDAC tumor biomarkers that can prospectively identify patients

most likely to benefit from existing chemotherapy regimens us-

ing bioanalytes available in the standard-of-care setting.

The advent of digital pathology involving the scanning and

computational analysis of digitized whole-slide images has

created an opportunity for the discovery and exploitation of

novel, sub-visual morphologic biomarkers.9 Quantified morpho-

logic features can identify novel associations to patient out-

comes using artificial intelligence (AI).10,11 Morphometric ana-

lyses can uncover histologic features associated with response

to a particular treatment when a dataset comprises patients

treated with a specific agent and outcomes are known.12 More

recently, modern deep learning toolkits have enabled rapid
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Figure 1. Constructing an experimental

approach to identify an AI-derived histolog-

ic biomarker associated with outcomes

following adjuvant gemcitabine

(A) AI-derived biomarkers could be identified from

digitized slides of pancreatic tumor resections,

which might guide adjuvant treatment selection.

(B) Data from three patient cohorts were used for

this study: (1) TCGA (n = 93 patients), which served

as the source for a training set (n = 46) to develop a

histologic signature and for a test set (n = 47) to

evaluate the performance of the histologic signa-

ture; (2) a retrospective cohort from UPMC, which

served as a test set external to the data source

used for training; and (3) a cohort from a study in

Copenhagen, which included patients who

received no adjuvant treatment, serving as a

negative control.
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segmentation and classification of individual cell types.13 The

potential to use deep learning in conjunction with morphometric

analysis to identify novel associations between specific cellular

compartments in the tumor microenvironment and responses

to treatment can enable identification of treatment-specific bio-

markers, such as an association between the spatial arrange-

ment of tumor-infiltrating lymphocytes and immune checkpoint

inhibitor response.14

In this study, we investigated whether an AI-driven approach

to quantitative morphologic feature extraction with modern

deep learning toolkits could identify a histologic signature asso-

ciated with outcomes following administration of a particular

adjuvant treatment (gemcitabine) in resected PDAC. We also

explored the degree to which an AI-derived histologic signature

was associated with adjuvant gemcitabine treatment outcomes

and compared its performance with existing transcriptomic sub-

types. We then examined the performance of the AI-derived his-

tologic signature in an external cohort of patients who underwent

resection of PDAC followed by adjuvant gemcitabine to deter-
2 Cell Reports Medicine 4, 101013, April 18, 2023
mine whether our results could be gener-

alized. Finally, we evaluated the signature

in another cohort where patients received

no adjuvant treatment to ensure that the

association with disease-related out-

comes was predictive (specific to treat-

ment) and not prognostic (related to the

underlying disease process).

RESULTS

Development of a histologic
signature known as the visual
pancreatic gemcitabine (VPG)
signature from TCGA training set
To construct a histologic signature asso-

ciated with disease-specific survival

(DSS) after adjuvant gemcitabine, we

analyzed a dataset of scanned whole-

slide images and the associated clinical
data from a cohort of 93 patients with PDAC treated with adju-

vant gemcitabine in The Cancer Genome Atlas (TCGA) (Fig-

ure 1A).15 Subsequently, the performance of the signature in

stratifying patients was assessed in two external validation co-

horts (Figure 1B). One external cohort included 46 patients

who underwent PDAC resection followed by gemcitabine treat-

ment at the University of Pittsburgh Medical Center (UPMC) for

whom digitally scanned tissue microarrays of tumor specimens

were available. The second external cohort included 161 pa-

tients from Copenhagen, whose tumors were resected between

1978 and 2008, when adjuvant treatment was not administered

as part of the standard of care.16–18

We developed a histologic signature capable of stratifying pa-

tients by disease-related outcomes following adjuvant gemcita-

bine through an image analysis pipeline implemented within

TCGA cohort (Figure 2A). Within this dataset, the image analysis

pipeline involved nuclei segmentation, extraction of 816 features

describing nuclear morphology, feature selection using least ab-

solute shrinkage and selection operator (LASSO) regression,



Figure 2. An image analysis pipeline yields a histologic signature

that stratifies disease-specific survival (DSS) following adjuvant

gemcitabine
(A) In the image analysis pipeline for this study, whole-slide images (WSIs) from

tumor resections were converted to smaller patches before cell-level seg-

mentation and geometric feature extraction describing cellular morphology at

the patient level. 816 features are extracted for each individual patient from the

available digitized slide. Downstream statistical analysis of these features

enables identification of a histologic signature.

(B) Kaplan-Meier curves for the test set from TCGA cohort (n = 47) stratified by

the presence or absence of the AI-derived histologic signature. The p value

(p = 0.01) corresponds to the log rank test. The median DSS for signature+

patients was 67.9 months (95% CI: [16.2, not reached]), and the median DSS

for signature� patients was 16 months (95% CI: [9.3, 22.8]).

Report
ll

OPEN ACCESS
training a cox proportional hazardsmodel incorporating selected

features in a training set of 46 patients, and testing the perfor-

mance of the signature in the test set of the remaining 47 pa-

tients. Segmentation of nuclei was performed using a previously

published model (HoVer-Net),13,19 and representative images of

segmentation in TCGA and all other cohorts are reported in

Figures S1–S3. Patients were randomly assigned to the training

or test sets, and characteristics were similar between the two

groups (Table S1). Through this pipeline, we identified a histolog-

ic signature, which we refer to as the VPG signature; the signa-

ture incorporates a single feature that describes the variance in

nuclear morphology among a tumor’s neoplastic cells. We
defined VPG positivity using a threshold determined by the me-

dian patient in the training set (positive patients defined by

feature quantification greater than the median patient’s feature

value of 0.053 units, negative patients defined by feature quanti-

fication lower than themedian patient). Image examples of VPG+

and VPG� samples are included in Figure S4.

The VPG signature stratifies DSS outcomes following
adjuvant gemcitabine treatment
We proceeded to assess the performance of this histologic

signature in a test set of 47 patients from TCGA cohort. In this

test set, VPG+ patients (n = 23) did not differ from VPG� patients

(n = 23) in age, gender, or grade of tumor and duration of adju-

vant gemcitabine therapy (Table S2). We found that the VPG

signature was strongly associated with DSS in the internal vali-

dation cohort (log rank p % 0.001) (Figure 2B). The hazard ratio

for death for VPG� patients was 2.94 (95% confidence interval

[CI]: [1.21, 7.14]). VPG+ patients had a median DSS of

67.9 months (95% CI: [16.2, not reached]), while VPG� patients

had a median DSS of 16 months (95% CI: [9.3, 22.8]).

This VPG signature stratifies outcomes following
adjuvant gemcitabine where known RNA sub-types
cannot
We then evaluated the performance of this signature in the test

set relative to three known RNA sequencing (RNA-seq) classifi-

cation systems described by Moffitt et al.,7 Collisson et al.,6

and Bailey et al.8 To make this comparison, we focused on a

sub-group of 39 patients within the test set who had RNA-seq

data and classification (performed by TCGA group) available.15

We calculated Kaplan-Meier estimators among VPG+ and

VPG� patients, again finding that DSS differed between the

two groups (log rank test p value = 0.02, signature + median

DSS = 67.9 months, 95% CI [15.3, not reached] vs.

signature � median DSS = 16 months [8.0, 22.8]) (Figure S5).

There was no difference in DSS between stratifications using

any of the three traditional RNA-seq classification approaches

(log rank test p values: Moffitt p = 0.28, Collisson: p = 0.30,

Bailey: p = 0.96) (Figures 3A–3C). To confirm that the stratifica-

tion of the RNA-seq clusters was not unique to the patients in

the test set, we stratified by the same clusters across the entire

gemcitabine-treated TCGA dataset of patients with RNA-seq

data available (n = 79) and again failed to observe a difference

in survival outcomes across clusters (Figure S6). Of note, the

RNA-seq cohorts also did not correlate with DSS among all

TCGA patients with RNA-seq data, including those who did not

receive adjuvant treatment or who received an adjuvant therapy

other than gemcitabine, though there was a trend toward signif-

icance among Moffitt sub-sets (Figure S7). We sought to assess

whether there was an association between the signature and the

RNA-seq clusters by examining the classifications of the signa-

ture and RNA-seq clusters among all patients in TCGA cohort

with RNA-seq data (n = 79 patients). In this group, the chi-

squared values describing the association between the pres-

ence of the signature and the Moffitt, Collisson, and Bailey

RNA-seq clusters were 2.03 (p = 0.15), 0.71 (p = 0.70), and

2.36 (p = 0.50) respectively, suggesting that the signature is

not associated with the RNA-seq clusters (Figures 3D–3F).
Cell Reports Medicine 4, 101013, April 18, 2023 3



Figure 3. Known RNA-seq sub-types do not stratify patients by outcomes following adjuvant gemcitabine and do not associate with the

histologic signature

(A–C) Kaplan-Meier curves describing a sub-group of TCGA test set with RNA-seq data available (n = 39) stratified by (A) RNA-seq clusters previously described

by Moffitt et al., (B) RNA-seq clusters previously described by Collisson et al., and (C) RNA-seq clusters previously described by Bailey et al.

(D–F) Among patients with RNA-seq data available across the entire TCGA cohort (n = 79), the proportion of patients falling into the (D) Moffitt clusters, (E)

Collisson clusters, and (F) Bailey clusters is graphed among all patients, those who are signature+, and those who are signature�.
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The VPG signature validates in an external cohort of
gemcitabine-treated patients but not untreated patients
To investigate performance beyond TCGA dataset, we tested our

model in a retrospective cohort of adjuvant-gemcitabine-treated

patients at UPMCand a retrospective cohort of untreated patients

from Copenhagen. The DSS in patients identified as VPG+ was

superior to the DSS of those who were VPG� in the UPMC cohort

(log rank test p value = 0.02; Figure 4A). Themedian DSS of VPG+

patients was 43.1 months (95%CI: [26.8, 63.9]), while the median

DSS of VPG� patients was 16months (95%CI: [10.8, 50.1]). Clin-

ical characteristics were similar among patients with and without

the signature (see Table S3). 22 of 46 patients in the UPMC cohort

had received neoadjuvant chemotherapy prior to resection; in a

sub-group analysis of the 24 patients without neoadjuvant

chemotherapy, the DSS remained significantly different between

VPG+ and VPG� patients (log rank test p = 0.03) (Figure 4B).

When performing a similar analysis using the clinically meaningful

alternate endpoint of time to recurrence, there was still a differ-

ence in the outcomes between VPG+ and VPG� patients (log

rank test p = 0.01) (Figure 4C). In order to assess the independent

effect of the VPG signature in the UPMC cohort, we constructed a

multivariate Cox proportional hazards model of DSS comprising

the VPG signature and the covariates of age, performance status
4 Cell Reports Medicine 4, 101013, April 18, 2023
as defined by ECOG score, and CA19-9 level before treatment. In

themodel, the VPG signature was statistically significantly associ-

ated with improved DSS (hazard ratio [HR] = 0.41 [0.19, 0.88],

p = 0.02), along with the clinical covariate of age. In contrast, in

the Copenhagen cohort of untreated patients, the log rank test

comparing DSS between VPG+ and VPG� patients showed no

association (log rank test p = 0.59), suggesting that the VPGsigna-

ture is not a prognostic factor for untreated tumors (Figure 4D).

The median DSS of VPG+ patients in this cohort was 13.2 months

(95%CI: [10.4, 18.6]), and the median DSS of VPG� patients was

12.3 months (95% CI: [10.4, 19.8]). VPG+ (n = 74) and VPG�
(n = 87) patients in this cohort were similar in age, gender, and

tumor grade (Table S4). It should be noted that the DSS in the un-

treated Copenhagen cohort did differ from the adjuvant gemcita-

bine-treated UPMC and TCGA cohorts, as would be expected

(Figure S8).

DISCUSSION

In this study, we applied a modern AI digital pathology approach

to identify a histology-based morphological signature associ-

ated with treatment outcomes following post-operative treat-

ment with gemcitabine in patients with resected PDAC. The



Figure 4. The signature generalizes to external cohorts of gemcitabine-treated patients but not untreated patients

(A) Kaplan-Meier curves describing DSS among patients receiving adjuvant gemcitabine-based therapy in the UPMC cohort (n = 46) when stratified by the

histologic signature. The p value (p = 0.02) corresponds to the log rank test. Median DSS of signature+ patients was 43.1 months (95% CI: [26.8, 63.9]), and the

median DSS of signature� patients was 16 months (95% CI: [10.8, 50.1]).

(B) Kaplan-Meier curves describing DSS among patients in the UPMC cohort who had received no therapy prior to surgery (n = 24) (log rank test p = 0.03). Median

DSS of signature+ patients was 40.2 months (95% CI: [16.4, not reached]), and the median DSS of signature� patients was 12.9 months (95% CI: [8.1, not

reached]).

(C) Kaplan-Meier curves describing time to recurrence among patients who received adjuvant gemcitabine-based therapy (n = 46) (log rank test p = 0.01). Median

time to recurrence of signature+ patients was 22.6 months (95% CI: [14.1, 44.8]), and the median time to recurrence among signature� patients of 9.1 months

(95% CI: [6.4, 14.7]).

(D) Kaplan-Meier curves describing DSS among patients in the Copenhagen cohort who were untreated (log rank test p = 0.59; signature+ median DSS:

13.2 months [10.4, 19.8], signature� median DSS: 12.3 [10.4, 19.8]).
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VPG signature developed in this study successfully stratified pa-

tients’ DSS following adjuvant gemcitabine and was validated in

an external cohort of patients with the additional endpoint of time

to recurrence.

The isolation of the VPG signature has several potential clinical

implications should the signature be validated in prospective

studies. First, given the significant difference in disease-related

outcomesbetweenVPG+andVPG�patients acrossmultiple co-

horts tested in this study, this signature may help clinicians iden-

tify which patients will benefit from gemcitabine-based therapy

after resection. The differences in outcomes between VPG+

and VPG� patients across multiple cohorts tested in this study

point toward it being a predictive biomarker in apopulationwhere

currently noneexists. Second, theVPGsignaturemay, on a larger

scale, improve the process of designing clinical trials for resected

PDAC. Randomizing a large cohort of patients with molecularly

heterogeneous tumors to treatment armswithout predefinedbio-

markers compromises results and leads to inefficiency aswell as

being a waste of precious resources. Third, the VPG signature

can be tested and refined for application in other clinical settings,

for example in metastatic or borderline resectable PDAC, when

FOLFIRINOX and gemcitabine/nab-paclitaxel are both accept-

able frontline regimens without a reliable predictive biomarker

to help clinicians to recommend one over the other.

Importantly, the VPG signature is derived from images of H&E

slides, which are routinely generated for all patients with PDAC.

Since no additional tissue or complex molecular testing is

required to apply this AI algorithm, both turnaround time and

cost are much lower than one would expect for predictive

biomarker testing. Validation in the UPMC cohort, in which tissue

microarray specimens were used to generate images, shows

that feature extraction is feasible across different techniques of

tissue preparation.

The favorable performance of this signature, when compared

with existing RNA-seq-based clusters, in stratifying disease-

related outcomes in patients treated with gemcitabine validates

pursuing modalities other than genomics and transcriptomics as

potential predictive biomarkers. PDAC RNA-seq sub-types were

developed to provide an improvedmolecular taxonomy of PDAC

and, in turn, inform therapeutic development. These sub-types

have been correlated with prognosis, including a recent study

of the basal and classical sub-types in a multicenter trial,20 but,

to our knowledge, their association with prognosis was never

previously assessed in TCGA. The prospective COMPASS trial

demonstrated that the Moffitt basal and classical sub-types

have different outcomes following first-line chemotherapy.21

Subsequent analysis from the same trial revealed that the basal

and classical sub-types stratify patients who received modified

FOLFIRINOX but not those who received gemcitabine plus

nab-paclitaxel.22 While the COMPASS trial featured patients

with metastatic disease, our study showed similar results for

gemcitabine-treated patients after surgical resection and

confirmed that the Bailey and Collisson systems fail to stratify

outcomes among gemcitabine-treated patients. Our results

paired with those from COMPASS suggest that prevailing

molecular taxonomies do not provide adequate predictive strat-

ification for patients treated with gemcitabine-based regimens.

Interestingly, our analysis showed that previously designated
6 Cell Reports Medicine 4, 101013, April 18, 2023
sub-types did not appear to be prognostic, even when analyzing

other treatments. Possible explanations include a smaller pro-

portion of patients in TCGA cohort who received fluoropyrimi-

dine-based therapy or differences between treatment effect in

the adjuvant and metastatic settings. Regardless, the perfor-

mance of the VPG signature in this study validates the capacity

for digital pathology approaches to identify biomarkers predic-

tive of treatment response when existing molecular approaches

have not been proven to do so. Indeed, published data in other

tumor types have shown that digital pathology can predict re-

sponses to chemotherapy23,24 and immunotherapy.14Moreover,

the ability to construct such a signature in a training set of fewer

than 50 patients illustrates that clinically meaningful tools can be

generated from relatively small cohorts of patients and that the

same technology can be applied to other clinical contexts.

Results in the untreated Copenhagen cohort suggest that the

VPG signature is not a prognostic marker of a tumor’s underlying

biology. Instead, the validation of the VPG signature in an

external cohort of gemcitabine-treated patients in combination

with the data from the Copenhagen cohort suggest that the

VPG signature is likely specific to chemotherapy treatment.

Limitations of the study
One limitation of our study is the absence of patients who

received adjuvant FOLFIRINOX or other non-gemcitabine regi-

mens. Future evaluation of the VPG signature in such patients

is planned and would assess the degree to which the VPG signa-

ture associates with outcomes following other chemotherapy

regimens as well as the degree to which the signature is specific

to gemcitabine alone. In addition, determining the disease-

related outcomes of VPG+ patients treated with FOLFIRINOX

may help clarify when one regimen (gemcitabine-based therapy

or modified FOLFIRINOX) is preferred over the other. Including

only patients with resected PDAC, who represent a minority of

the PDAC population, is another limitation of our study. Ulti-

mately, a tool addressing the question of whether a patient

benefits from gemcitabine-based chemotherapy may have

greatest relevance for the needle biopsy specimens used to

diagnose more advanced or metastatic disease. Our study

also did not account for potential differences in gemcitabine

dosing, which may have identified a dose-response relationship

between the VPG signature and gemcitabine therapy. The

absence of data on dosing and the number of cycles received

also limits our ability to draw conclusions about the degree of

similarity in treatment received between the internal and external

test sets. In addition, the lack of important clinical covariates in

our dataset, such as performance status, limits the degree to

which we can assess whether the VPG signature is, in fact, an in-

dependent predictor of outcomes. It should be noted that differ-

ences in the quality of surgical resection represent an important

contributor to outcomes that can explain differences between

sites but could not be captured with the data available for anal-

ysis in this study. Finally, our study does not delve into mecha-

nisms linking the VPG signature and disease-related outcomes.

Future investigation into themolecular underpinnings of our VPG

signature may facilitate further refinement of the signature while

also offering avenues to develop novel therapeutic approaches

to improve upon or replace existing therapies.
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In summary, this study identifies an AI-based histologic signa-

ture that stratifies disease-related outcomes among patients

who have received adjuvant gemcitabine after resection of

PDAC, where transcriptional profiling-based sub-typing fails to

do so. This signature, if validated in prospective cohorts, has

the potential to become one of the first clinically applicable pre-

dictive biomarkers in PDAC. Finally, if validated in PDAC, the im-

aging analysis platform underlying this signature may be gener-

alized to other clinical settings, thereby facilitating the

emergence of biomarkers to predict treatment response in dis-

eases for which few actionable biomarkers currently exist.

STAR+METHODS

Detailed methods are provided in the online version of this paper

and include the following:

d KEY RESOURCES TABLE

d RESOURCE AVAILABILITY
B Lead contact

B Materials availability

B Data and code availability

d EXPERIMENTAL MODEL AND SUBJECT DETAILS

B Datasets

d METHOD DETAILS

B Model construction

d QUANTIFICATION AND STATISTICAL ANALYSIS

B Statistical analysis

B Software

SUPPLEMENTAL INFORMATION

Supplemental information can be found online at https://doi.org/10.1016/j.

xcrm.2023.101013.

ACKNOWLEDGMENTS

The authors thank Anirban Maitra and David Ting for their advice and guid-

ance. Figures 1A, 1B, and 2A were created with BioRender.com. The study

was funded by Valar Labs, Inc.

AUTHOR CONTRIBUTIONS

V.N., Viswesh Krishna, A.J., D.V., P.R., and E.A.C. were involved in developing

the study, and Viswesh Krishna and P.R. were involved in supervising the

study. Vrishab Krishna and E.T. processed the images. Viswesh Krishna and

Vrishab Krishna developed the model and ran the statistical tests. Vrishab

Krishna and V.N. produced the figures. V.N. and Viswesh Krishna drafted

the manuscript. K.S. and A.S. were involved in acquisition of the UPMC sam-

ples, and J.S.J. was involved in the acquisition of the Copenhagen samples. All

authors critically edited the manuscript.

DECLARATION OF INTERESTS

Viswesh Krishna, A.J., D.V., and P.R. are founders of Valar Labs, Inc., and may

own stocks. V.N., Vrishab Krishna, E.T., and H.B. are employees of Valar Labs,

Inc. E.A.C., D.S., and A.H. are advisors to Valar Labs, Inc.

Received: August 31, 2022

Revised: December 31, 2022

Accepted: March 21, 2023

Published: April 11, 2023
REFERENCES
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and demographic details were downloaded from the TCGA. The image identified as the diagnostic slide was used for image analysis.

RNASeq classifications for the TCGA cohort were obtained from prior work with this cohort.18 The dataset was randomly split in half

into a training and test set with no overlap between groups. To be able to make direct comparisons to existing RNA subtypes, 8 pa-

tients without RNASeq data were removed from the test set for a sub-group analysis illustrated in Figures 3A–3C and S5. Tests of

associations between the histologic signature and RNASeq clusters were made using the 79 patients from the entire TCGA cohort

who had RNASeq data available. The UPMC cohort represented a set of 46 patients, who had received gemcitabine after surgical

resection; 24 of the 46 patients were treated with resection followed by adjuvant gemcitabine; 22 of the 46 patients were treated with

additional neoadjuvant therapy prior to resection and gemcitabine therapy after resection. Clinical data was obtained via manual

chart review of the electronic medical record. Digitally scanned tissuemicroarray specimens were used for image analysis. The cores

were 1mmandwere obtained from formalin-fixed, paraffin-embedded (FFPE) samples of extra portions of surgical resections.Whole

tissue resection specimens were unfortunately not available for analysis for this study. Study of this cohort was approved by the Uni-

versity of Pittsburgh Institutional Review Board. The Copenhagen cohort included 161 patients who underwent pancreaticoduode-

nectomy between 1978 and 2008 as part of a previously described study.15–17 Whole tissue sections stained with hematoxylin and

eosin from these patients were scanned using the ImageScope 12.2 (Leica Biosystems, Wetzlar, Germany). Study of this cohort of

patients was approved by a regional ethics committee (reference no. KA-20060181).

METHOD DETAILS

Model construction
Scanned histologic images were analyzed through an imaging pipeline that included tissue segmentation, nuclei segmentation, and

finally geometric feature extraction. Tissue was segmented via color-based thresholding to remove empty regions of the slide.

Patches of size 2132x2132 pixels were extracted from tissue regions and a validated deep learning model developed by Graham

et al. was used to segment and classify each nucleus automatically.13 Specifically, the HoVer-Net model extended and trained on

the PanNuke Dataset was utilized for this study and classified nuclei into five classes (Neoplastic, Connective, Non-Neoplastic/

Epithelial, Necrotic, Inflammatory).19 No modifications were made to the publicly available HoVer-Net segmentation model with re-

ported multi-class Panoptic Quality (mPQ) of 0.4600 and binoptic-class Panoptic Quality (bPQ) of 0.6491 in pancreatic tissue.

Descriptive morphometric features were then computed for each nucleus as described in Vrabac et al. (where the HoVer-Net model

was also used for segmentation).11 Geometric features were then aggregated first at the patch, and subsequently at the patient level

using summary statistics including the mean, standard deviation, skewness and kurtosis to produce the final feature vector for a pa-

tient. This feature vector was used as the input to a cox proportional hazards model that used the least absolute shrinkage and se-

lection operator to identify the most correlated features with DSS along with their coefficients on the training set.

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical analysis
Feature vectors produced from the imaging analysis pipeline were used as inputs into a cox proportional hazardsmodel that used the

least absolute shrinkage and selection operator (with an L1 penalty) to identify features for inclusion in the histologic signature. The

median value of the risk scores calculated from the cox model in the TCGA training set was identified and was used as a threshold to

label signature positive and negative patients. Kaplan-meier estimators were produced for the different cohorts to compare DSS be-

tween signature positive and signature negative patients. The log rank test was used to test for statistically significant differences in

DSS with a p value <0.05 deemed significant; all tests were two-sided. Demographic data for patients in each cohort were compiled

and compared between signature positive and negative groups using the chi-squared test orWilcoxon rank-sum test with a p value of

<0.05 assessed as statistically significant. Associations between the signature and existing RNA subtypes were tested using the chi-

quared test with a p value of <0.05 statistically significant. A multivariate cox proportional hazards model of DSS utilizing age, per-

formance status as defined by ECOG score, and CA19-9 level before treatment in addition to the signature was performed in the

UPMC cohort.

Software
Pytorch was utilized for deep learning model inference. Data processing and survival analysis were done with NumPy, pandas, and

lifelines packages in Python. Statistical testing of demographic differences and associations with RNA subtypes was performed on R

Statistical Software (v4.1.2; R Core Team 2021).
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Supplementary Information

Supplementary Figure 1

Supplementary Figure 1: Example of nuclear segmentation in the TCGA Cohort. Related to Figure 2. A) A
digitally scanned image of a patient sample from the TCGA cohort without nuclear segmentation. B) The digitally
scanned image of the patient sample from the TCGA cohort displayed in panel A with nuclear segmentation: red
labels are neoplastic cells, blue labels are connective tissue cells, green labels are inflammatory cells, orange labels
are non-neoplastic cells, and yellow labels are necrotic cells.



Supplementary Figure 2

Supplementary Figure 2: Example of nuclear segmentation in the Copenhagen Cohort. Related to Figure 2.
A) A digitally scanned image of a patient sample from the Copenhagen cohort without nuclear segmentation. B) The
digitally scanned image of the patient sample from the Copenhagen cohort displayed in panel A with nuclear
segmentation: red labels are neoplastic cells, blue labels are connective tissue cells, green labels are inflammatory
cells, orange labels are non-neoplastic cells, and yellow labels are necrotic cells.



Supplementary Figure 3

Supplementary Figure 3: Example of nuclear segmentation in the UPMC Cohort. Related to Figure 2. A) A
digitally scanned image of a patient sample from the UPMC cohort without nuclear segmentation. This patient did
not receive neoadjuvant chemotherapy prior to resection. B) The digitally scanned image of the patient sample from
the UPMC cohort displayed in panel A with nuclear segmentation: red labels are neoplastic cells, blue labels are
connective tissue cells, green labels are inflammatory cells, orange labels are non-neoplastic cells, and yellow labels
are necrotic cells. C) A digitally scanned image of a patient sample from the UPMC cohort without nuclear
segmentation. This patient did receive neoadjuvant chemotherapy prior to resection. D) The digitally scanned image
of the patient sample from the UPMC cohort displayed in panel C with nuclear segmentation: red labels are
neoplastic cells, blue labels are connective tissue cells, green labels are inflammatory cells, orange labels are
non-neoplastic cells, and yellow labels are necrotic cells.



Supplementary Figure 4

Supplementary Figure 4: Examples of histologic images for VPG+ and VPG- slides. Related to Figure 2. A) A
digitally scanned image of a VPG+ slide from the TCGA cohort. The feature contributing to the VPG signature
describes variation in nuclear morphology and demonstrates significant variation visually, as compared to: B) A
digitally scanned image of a VPG- slide from the TCGA cohort. Both slides correspond to patients with tumor grade
of G3.



Supplementary Figure 5

Supplementary Figure 5: The histologic signature stratifies patients by outcome following adjuvant
gemcitabine among a sub-population of the TCGA test cohort with RNA Seq data available. Related to
Figure 3. Kaplan meier curve describing DSS among patients in a sub-population of the TCGA cohort test set with
RNASeq data available (n=39, the same population of patients discussed in Figure 3A-C).



Supplementary Figure 6



Supplementary Figure 6: RNASeq clusters do not stratify patients by DSS following adjuvant gemcitabine
across the entire gemcitabine-treated TCGA dataset. Related to Figure 3. A-C) Kaplan meier curves describing
DSS among all patients in the TCGA cohort with RNASeq data available (n=79) when stratified by A) Moffitt
clusters, B) Collisson clusters, and C) Bailey clusters.



Supplementary Figure 7



Supplementary Figure 7: RNASeq clusters do not stratify patients by DSS across the entire TCGA dataset
regardless of adjuvant treatment (n=143). Related to Figure 3. A-C) Kaplan meier curves describing DSS among
all patients in the TCGA cohort with RNASeq data available regardless of adjuvant treatment received (n=143)
when stratified by A) Moffitt clusters, B) Collisson clusters, and C) Bailey clusters.



Supplementary Figure 8

Supplementary Figure 8: Adjuvant gemcitabine-treated cohorts have different DSS from an untreated
cohort. Related to Figure 4. A) Kaplan meier curves describing DSS among all TCGA cohort patients (n=93) and
all Copenhagen cohort patients (n=161). The p-value for the log-rank test is <0.01. B) Kaplan meier curves
describing DSS among all UPMC cohort patients (n=24) and all Copenhagen cohort patients (n=161). The p-value
for the log-rank test is 0.01. C) Kaplan meier curves describing DSS among all TCGA cohort patients (n=161) and
all UPMC cohort patients (n=24). The p-value for the log-rank test is 0.68.



Supplementary Figure 9

Supplementary Figure 9: Examples of images of microarray specimens from the UPMC cohort (external
validation set). Related to Figure 4. A, B, C) Three representative examples of scanned images of tissue
microarray samples included in the external validation set (UPMC Cohort).



Supplementary Table 1

Training Test

n 46 47

Age, Median (IQR) 65 (56, 74.8) 65 (60, 71) p=0.65

Gender (%) p=0.26

Female 23 (50) 17 (36)

Male 23 (50) 30 (64)

Tumor Grade (%) p=0.09

G1 2 (4) 10 (21)

G2 30 (65) 22 (47)

G3 13 (28) 14 (30)

G4 1 (2) 1 (2)

Adjuvant Regimen Received
(%) p=0.98

Gemcitabine alone 43 (93) 45 (96)

Gemcitabine in combination
another agent 3 (7) 2 (4)

Length of Adjuvant Therapy
(%) p=0.26

<3 months 19 (41) 27 (57)

3-6 months 10 (22) 9 (19)

> 6 months 17 (37) 11 (23)

Supplementary Table 1: Clinical characteristics of the training and test sets from the TCGA. Related to
Figure 2. Table describing clinical characteristics among patients in the TCGA training and test sets. Patients were
randomly divided between the two groups. P-values correspond to chi-squared tests run with the exception of the
variable age, for which a Wilcoxon Rank Sum Test was run.



Supplementary Table 2

Signature + Signature -

n 23 24

Age, Median (IQR) 67 (59, 71) 65 (62, 71) p=0.72

Gender (%) p=0.62

Female 7 (30) 10 (42)

Male 14 (70) 16 (58)

Tumor Grade (%) p=0.60

G1 4 (17) 6 (25)

G2 12 (52) 10 (42)

G3 6 (26) 8 (33)

G4 1 (4) 0 (0)

Adjuvant Regimen Received
(%) p=1

Gemcitabine alone 22 (96) 23 (96)

Gemcitabine in combination
another agent 1 (4) 1 (4)

Length of Adjuvant Therapy
(%) p=0.40

<3 months 11 (48) 16 (67)

3-6 months 7 (30) 4 (17)

> 6 months 5 (21) 4 (17)

Supplementary Table 2: Clinical characteristics of the internal test set from the TCGA. Related to Figure 2.
Table describing clinical characteristics among patients in the TCGA test set who were signature + vs. signature -.
P-values correspond to chi-squared tests run with the exception of the variable age, for which a Wilcoxon Rank Sum
Test was run.



Supplementary Table 3

Signature + Signature -

n 29 17

Age, Median (IQR) 60 (55, 71) 66 (54, 71) p=0.59

Gender (%) p=0.47

Female 13 (45) 5 (29)

Male 16 (55) 12 (71)

ECOG (%) p=0.37

0 6 (21) 1 (6)

1 4 (14) 2 (12)

Not available 19 (66) 14 (82)

Tumor Grade (%) p=0.05

G1 3 (10) 0 (0)

G2 23 (79) 10 (59)

G2-3 0 (0) 2 (12)

G3 3 (10) 5 (29)

Neoadjuvant Therapy
Received p=0.67

None 15 (52) 9 (53)

5-FU Backbone 6 (21) 5 (29)

Gemcitabine
Backbone 8 (28) 3 (18)

Adjuvant Regimen Received
(%) p=0.45

Gemcitabine alone 21 (72) 11 (65)



Gemcitabine in combination
with another agent 6 (21) 6 (35)

Gemcitabine in combination
with radiation 2 (7) 0 (0)

Length of Adjuvant Therapy
(%) p=0.96

<3 months 6 (21) 4 (24)

3-6 months 19 (66) 10 (59)

> 6 months 3 (10) 2 (12)

Date not available 1 (3) 1 (6)

Supplementary Table 3: Clinical characteristics of the external test set from UPMC. Related to Figure 4.
Table describing clinical characteristics among patients in the UPMC cohort who were signature + vs. signature -.
P-values correspond to chi-squared tests run with the exception of the variable age, for which a Wilcoxon Rank Sum
Test was run.



Supplementary Table 4

Signature + Signature -

n 74 87

Age, Median (IQR) 62 (53, 69) 63 (57, 69) p=0.54

Gender (%) p=0.86

Female 36 (49) 40 (46)

Male 38 (51) 47 (54)

Tumor Grade (%) p=0.09

G0 0 (0) 1 (1)

G1 27 (36) 19 (22)

G2 15 (20) 24 (28)

G3 32 (43) 39 (45)

G4 0 (0) 4 (5)

Supplementary Table 4: Clinical characteristics of the external test set from Copenhagen. Related to Figure 4.
Table describing clinical characteristics among patients in the Copenhagen cohort who were signature + vs.
signature -. P-values correspond to chi-squared tests run with the exception of the variable age, for which a
Wilcoxon Rank Sum Test was run.
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