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Robust SARS-CoV-2 T cell responses with common
TCRa3 motifs toward COVID-19 vaccines in patients
with hematological malignancy impacting B cells
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In brief

Nguyen et al. define antibody, B, and

T cell responses following COVID-19
vaccination in patients with
hematological malignancy that are
immunocompromised and vulnerable to
severe COVID-19 infection. COVID-19
vaccination induces robust T cell
immunity in hematology patients with
diseases and treatments impacting B cell
immunity irrespective of B cell numbers
and antibody responses.
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SUMMARY

Immunocompromised hematology patients are vulnerable to severe COVID-19 and respond poorly to vacci-
nation. Relative deficits in immunity are, however, unclear, especially after 3 vaccine doses. We evaluated
immune responses in hematology patients across three COVID-19 vaccination doses. Seropositivity was
low after a first dose of BNT162b2 and ChAdOx1 (~26%), increased to 59%-75% after a second dose,
and increased to 85% after a third dose. While prototypical antibody-secreting cells (ASCs) and T follicular
helper (Tfh) cell responses were elicited in healthy participants, hematology patients showed prolonged
ASCs and skewed Tfh2/17 responses. Importantly, vaccine-induced expansions of spike-specific and pep-
tide-HLA tetramer-specific CD4+/CD8+ T cells, together with their T cell receptor (TCR) repertoires, were
robust in hematology patients, irrespective of B cell numbers, and comparable to healthy participants. Vacci-
nated patients with breakthrough infections developed higher antibody responses, while T cell responses
were comparable to healthy groups. COVID-19 vaccination induces robust T cell immunity in hematology
patients of varying diseases and treatments irrespective of B cell numbers and antibody response.

INTRODUCTION in the early period following hematopoietic stem cell transplanta-

tion (HCT) and chimeric antigen receptor T (CAR-T) therapy are
Patients with hematological malignancies such as chronic lym-  at higher risk for viral respiratory tract infections, including
phocytic leukemia (CLL) and multiple myeloma (MM) and those  COVID-19."~° Up to half of hematology patients with COVID-19

':L Cell Reports Medicine 4, 101017, April 18, 2023 © 2023 The Author(s). 1
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present with severe disease and require hospital admission,
15% require intensive care, and mortality rates can reach
30%-40%. " Furthermore, immune suppression from underly-
ing disease, immune reconstitution following cellular therapies
(HCT, CAR-T), and ongoing treatments such as anti-CD20
monoclonal antibody therapies continue to drive risk for
COVID-19 infection but concurrently impact protective re-
sponses from vaccination.”® To prevent severe SARS-CoV-2
(severe acute respiratory syndrome coronavirus 2) infection in
this immunosuppressed high-risk group of patients, there is an
urgent need to comprehensively profile their immune response
to COVID-19 vaccination to better understand the interplay be-
tween underlying disease, treatment and optimal correlations
of protection so that vaccination strategies can be enhanced.

Detection of circulating SARS-CoV-2-specific receptor-bind-
ing domains (RBDs) and neutralizing antibodies are widely uti-
lized as surrogate endpoints for evaluation of vaccine efficacy
in hematology patients,”:® yet it is unclear whether these are
appropriate endpoints, especially in the setting of B cell deple-
tion. Patients with B cell hematological malignancies such as
CLL, patients in the early period following HCT and CAR-T ther-
apy, and those receiving active therapy and B cell-depleting
therapies (anti-CD20, BTK inhibitors) within 12 months have
low humoral response rates to SARS-CoV-2 vaccination.”"

Serological endpoints offer only a glimpse of the potential
breadth of immune response to vaccination and may not be
the best predictor of efficacy. Cellular responses reported to
date relied on limited measurements of SARS-CoV-2-specific
T cell responses.”™'" Early data suggest a lack of correlation be-
tween humoral and cellular responses in patients with hemato-
logical malignancy, and cellular responses tend to be higher in
B cell-depleted patients than non-B cell-depleted patients.®'?
Furthermore, the majority of studies in hematology patients
were performed following 2 COVID-19 vaccine doses.'*'®

In hematology patients hospitalized with COVID-19, robust
CD8" T cell responses correlated with better outcomes,
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including among those treated with anti-CD20 therapy.'®
Similarly, in patients with multiple sclerosis (MS), SARS-CoV-2-
specific antibody and memory B cell responses were reduced
in patients on monoclonal anti-CD20 treatment following
SARS-CoV-2 mRNA vaccination; however, all patients gener-
ated robust spike-specific CD4* and CD8* T cell responses.'”

We have previously compared and contrasted ex vivo
SARS-CoV-2-specific CD8" and CD4* T cell responses and their
T cell receptor (TCR) repertoires in SARS-CoV-2-infected chil-
dren and adults,'®?' pre-pandemic children and adults,'®'®
and following COVID-19 mRNA vaccination versus infection,
revealing diverse TCR repertoires with prominent TCRaf3 motifs
that were shared between different individuals.'®?°** Whether
these prominent TCRa. signatures are observed in hematology
patients following COVID-19 vaccination remains to be eluci-
dated, particularly in those with B cell malignancies or following
ChAdOx1 vaccination.

We evaluate the breadth of immune responses following
COVID-19 vaccination in hematology patients with diseases
and treatments impacting B cell immunity, where scant data
exist after the third dose. Our study shows that hematology
patients who fail to seroconvert and generate memory B cell
responses post-vaccination can still generate robust SARS-
CoV-2-specific T cell immunity to protect against severe and
fatal COVID-19.

22,23

RESULTS

COVID-19 vaccination cohort

To assess immunological responses toward COVID-19 vaccines
in hematology patients, 95 SARS-CoV-2-unexposed, seronega-
tive patients were recruited between April and December 2021
(Figure 1A; Table S1). Patients were predominantly male
compared with healthy individuals (71% versus 29%). For com-
parison, 58 healthy SARS-CoV-2-unexposed, seronegative par-
ticipants were recruited during the same period (26 ChAdOx1, 32
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BNT162b2). During the study, 12 patients and 8 healthy individ-
uals had breakthrough SARS-CoV-2 infection (Table S1).
ChAdOx1 and BNT162b2 vaccine responses were analyzed
separately or grouped together with different symbols. Subjects
labeled as having BNT162b2 or ChAdOx1 were based on their
two doses.

Hematology patients have reduced RBD-specific IgG
antibodies, memory spike-specific B cells, and
neutralizing antibodies following COVID-19 vaccination
Given the heterogeneity in the hematology cohort, blood B cell
numbers varied in patients compared with healthy individuals
(Figure 1B), with higher numbers in patients with CLL not on
treatment but lower numbers in CAR-T patients, patients with
CLL on venetoclax, patients with CLL on zanubrutinib, and pa-
tients with Waldenstrom macroglobulinemia on zanubrutinib.
ELISA immunoglobulin G (IgG) antibody responses directed at
RBDs corresponding to the ancestral vaccine strain (herein
called RBD IgG) were lower in BNT162b2-vaccinated hematolo-
gy patients compared with healthy individuals prior to the sec-
ond vaccine dose (T3) but were comparable after the second
and third doses (Figure 1C). RBD IgG antibody responses in
ChAdOx1-vaccinated patients were lower than healthy individ-
uals at all time points. Patient seropositivity was lower after first
dose (26%, T3, n = 87), then increased to 65% 1 month after the
second dose (T5, n = 82) and 87% 1 month after the third dose
(T7, n = 30). Seropositivity remained stable at 84% ~3-4 months
post-third dose (T8, n = 56), indicating that a small proportion of
patients, particularly patients with CLL on zanubrutinib (CLL/
zanu), still did not have any robust RBD IgG antibody responses
after 3 COVID-19 vaccinations. Healthy individuals were 91%
seropositive after the primary vaccination and 100% seroposi-
tive after the second- (T5) and third-dose vaccinations (T7 and
T8). Heterogeneity of RBD IgG antibody responses were
observed when hematology patients were grouped by low,
normal, or high B cell numbers or by disease/treatment group
(Figures S1A-S1C).

COVID-19 vaccination induced gradual significant increases
in memory spike probe-specific IgD™ B cells in both healthy indi-
viduals and hematology patients of the same magnitude range
(Figures 1D and S2A). However, hematology patients’ spike-
specific B cell responses were significantly lower than healthy in-
dividual responses after vaccination due to some of the patients

Cell Reports Medicine

not having detectable memory spike-specific B cell responses,
particularly those with B cell malignancies (CLL, Waldenstrom
macroglobulinemia [WM], MM) (Figures 1D and 1E) or abnormal
B cell numbers (Figure S1D). Total B cell numbers and fre-
quencies of memory spike-specific B cells correlated with RBD
IgG antibody titers in hematology patients ~1 month after the
second vaccine, but only memory spike-specific B cell fre-
quencies correlated with antibody titers in healthy individuals
given the narrower range in B cell numbers (Figures 1F and
1G). Patients’ RBD IgG antibody titers strongly correlated with
microneutralizing titers (MNTSs) against the ancestral strain (Fig-
ure 1H) and, to a lesser extent, the Delta strain (rs = 0.5994,
p < 0.0001, data not shown), whereas ancestral and Delta
MNTs were strongly correlative (Figure 1H).

Ancestral surrogate virus neutralization test (sVNT) neutral-
izing antibodies increased following COVID-19 vaccination in
both healthy individuals and hematology patients, but increases
in Omicron (B.1.1.529; BA.1-like) sVNT antibodies were only
observed in healthy individuals (Figure 1l). Neutralizing sVNT re-
sponses were lower in hematology patients compared with
healthy individuals after the second and third doses using the
ancestral strain and were also lower ~3-4 months after the third
dose using the B.1.1.529 Omicron strain.

Correlation matrix of antibody and B cell responses showed B
cell numbers only correlating with spike-specific memory B cells
in hematology patients (Figure 1J). Correlations of spike-specific
memory B cells with antibody responses were also stronger for
healthy individuals compared with patients. Thus, antibody and
B cell responses following COVID-19 vaccination were reduced
compared with otherwise healthy individuals, likely due to their
disease state and immunosuppressive treatment, thus explain-
ing the low B cell numbers.

COVID-19 vaccination induces non-prototypical
activation of ASCs, Tfh cells, and CD8* T cells in
hematology patients

Transient activation of CD27"CD38" antibody-secreting cells
(ASCs) and circulating PD-1*ICOS* CXCR5* T follicular helper
(Tfh) cells peak in the blood ~7-10 days after SARS-CoV-2 infec-
tion using whole-blood flow cytometry assays.?>**® Induction of
activated Tth cells also occurs in the blood and draining lymph
nodes following COVID-19 mRNA vaccination.”>*” Dual ASC
and Tfh cell responses have also been observed following

Figure 1. RBD-specific IgG antibodies, neutralizing antibodies, and memory spike-specific B cell responses following COVID-19 vaccination

(A) Study design and sampling timepoints.

(B) B cell numbers per pL with median and interquartile range (IQR) shown (hematology n = 94; healthy n = 39). Statistical significance determined by Dunn’s

multiple comparisons set on healthy versus all other disease groups.

(C) Endpoint IgG titers of ancestral RBD antibodies (hematology n = 94, 24 BNT162b2, 70 ChAdOx1; healthy n = 53, 27 BNT162b2, 26 ChAdOx1). Seropositive

cutoff defined by baseline mean + 2 SD per group.

(D and E) Spike-probe staining of spike-specific memory B cells in (D) healthy (n = 16) and hematology groups (n = 64) and (E) per malignancy and treatment

groups.

(F and G) Spearman’s correlation (rs) of RBD IgG titers with (F) B cell numbers (hematology n = 82; healthy n = 45) and (G) spike-specific memory B cells

(hematology n = 64; healthy n = 16).

(H) rs of RBD IgG titers with ancestral MNT and ancestral versus Delta MNT (hematology n = 82).
(I) Percentage sVNT inhibition assay against wild-type (WT) ancestral and Omicron strains (haematology n = 63; healthy n = 29).

(J) rs matrix of B cell and antibody parameters at T1/T5/T7/T8.

Statistical significance determined by Wilcoxon test for time point comparisons against T1 or by Mann-Whitney for comparisons between healthy and patient time
points. ***p < 0.0001. Experiments were performed once for each sample. Refer to Figure S2A.
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influenza virus infection®® and influenza vaccination,?® with the
predominant Tfh subset being Tfh type 1 cells (Tfh1 cells;
CXCR3*CCR6™). We performed whole-blood staining on a sub-
set of 30 hematology patients that underwent intense blood
sampling to capture transient acute responses following first
and second COVID-19 vaccination doses (Figures 2A and S2B).

Healthy individuals showed prototypical vaccine-induced
responses with transient increases in CD27"CD38" ASCs,
PD-1*ICOS*-activated Tfh1 cells, and HLA-DR*CD38"-acti-
vated CD8" and CD4" T cells acutely observed at ~7 days after
the first (T2) and second COVID-19 vaccination doses (T4) when
compared with baseline T1 levels (Figure 2B). In hematology pa-
tients, ASCs only increased at ~7 days after the second dose
(T4) and remained high at ~1 month post-second dose (T5)
(Figures 2A and 2B). PD-1*ICOS* Tfh responses were skewed
toward type 2 (Tfh2; CXCR3 CCR67) and type 17 subsets
(Tfh17; CXCR3~CCR6"), which similarly increased and remained
high after the second dose (Figure 2C). Since hematology
patients had higher baseline levels of activated HLA-
DR*CD38*CD8" T cells compared with healthy individuals,
HLA-DR*CD38*CD8* T responses were not further induced by
two doses of COVID-19 vaccination (Figure 2B). In contrast,
HLA-DR*CD38" CD4* T cell responses were prototypical of
those observed in healthy individuals with acute transient in-
creases after the first and second doses (Figure 2B).

Numbers of ASCs typically correlated with Tfh numbers
across all time points measured (T1-T5) in healthy individuals,
but this correlation was only observed at ~7 days post-second
dose (T4) in hematology patients (Figure 2D). At T4, ASCs corre-
lated with each Tfh subset in healthy individuals, whereas Tfh1
cells, but not Tfh2 or Tfh17 cells, correlated with ASCs in hema-
tology patients (Figure S3A), even though we did not observe
significant increases in Tfh1 responses but rather observed sig-
nificant increases in the other Tfh2/17 subsets. HLA-DR*CD38*
CD8" and CD4* T cells correlated with each other across all time
points in both healthy individuals and hematology patients
except for ~7 days after the first vaccine dose (T2) in hematology
patients (Figure S3B).

Overall, hematology patients needed two vaccination doses to
generate ASC and Tfh responses, but there was prolonged acti-
vation of ASCs, skewing of Tfh2/17 responses, and high basal
levels of activated CD8" T cells.

Comparable spike-specific CD4* and CD8* T cell
responses in hematology patients and healthy
individuals post-COVID-19 vaccination

To evaluate COVID-19 vaccine-induced spike-specific T cell re-
sponses, we performed activation-induced marker (AIM) and
intracellular cytokine staining (ICS) assays (Figures 3A, S2C,
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S2D, and S4A). AIM frequency of CD134*CD137"CD4" and
CD69*CD137* CD8" cells increased at ~1 month post-second
dose (T5) compared with baseline (T1) by a mean 32- and
31-fold for healthy individuals and a higher mean 87- and
75-fold for patients, respectively (Figure 3B), which was not
due to any differences in baseline threshold levels at T1. These
increases in AIM CD4* and CD8" T cell responses were main-
tained after the third dose (T7 and T8) in both healthy individuals
and hematology patients. Unlike antibody and memory B cell re-
sponses, there was no difference in AIM responses between
healthy individuals and hematology patients at any time point
(Figure 3B).

Similarly, functional ICS assay showed increased interferon y
(IFNYy)*tumor necrosis factor o (TNF-o)* CD4* and CD8™ T cell re-
sponses for both healthy individuals and hematology patients at
all time points post-COVID-19 vaccination (T5, T7, and T8) with
mean 3- to 19-fold and 6- to 36-fold increases for healthy individ-
uals and mean 11- to 31-fold and 10- to 44-fold for hematology
patients, respectively (Figure 3C). Frequencies of IFNy*TNF-o*
CD4* and CD8™" T cells were higher for patients at baseline (T1)
and ~1 month post-second dose (T5) compared with healthy in-
dividuals, but frequencies were comparable after the third dose.
Importantly, T cell responses were observed across disease
groups by AIM (Figure 3D) or ICS assay (Figure S4B). Autograft
patients had overall higher CD134"CD137* and IFNy*TNF-o*
CD4* T cell frequencies at ~1 month post-second dose (T5)
when compared with healthy individuals, whereas CLL/naive
patients had higher IFNy*TNF-o* CD4* and CD8"* T cell fre-
quencies (Figures 3E and S4C).

Correlations of CD4" versus CD8" T cell responses and of AIM
versus ICS responses were more observed in healthy individuals
compared with hematology patients (Figure S4D). AIM Tth re-
sponses showed increases in CXCR5" Tth and CXCR5"CXCR3*
Tfh1 responses in both groups following COVID-19 vaccination,
while CXCR5"CXCR3~ Tfh2/17 responses decreased (Figures
3F and S5A). Based on serostatus, RBD IgG* patients generated
more robust AIM and ICS CD4* and CD8* T cell responses
compared with RBD IgG™~ patients (Figure 3G). Correlations of
T cellresponses against antibody and B cell responses were stron-
ger and more frequent in healthy individuals compared with hema-
tology patients (Figure 3H).

Spike-specific CD4* and CD8" T cell responses were fairly
similar between ChAdOx1- or BNT162b2-vaccinated patients
and compared with healthy groups (Figures S5B and S5C).
T cell responses were also comparable between hematology pa-
tients with low, normal, or high B cell numbers (Figure S1E). This
was exemplified by volcano plot analyses combining antibodies
with spike-specific memory B and T cell responses (Figures 3l
and S6), where humoral responses were more enriched in

Figure 2. Whole-blood analyses of acute ASC, Tfh cell, and activated CD8" and CD4" T cell responses
(A) RBD IgG ELISA titration curves and fluorescence-activated cell sorting (FACS) plots of ASCs and activated Tfh1/CD8*/CD4* T cells. Orange dotted lines

indicate endpoint titer cutoffs.

(B) Numbers of ASCs and activated Tfh1 cells and CD8" and CD4* T cells per pL (hematology n = 17; healthy n = 39).

(C) Numbers of Tth, Tfh2, and Tfh17 subsets per pL.

(D) rs of ASCs and activated Tfh1 cells per time point T1-T5 (T1/T3/T5 hematology n = 94; T2/T4 hematology n = 17). Statistical significance determined by
Wilcoxon test for time point comparisons against T1 (floating values) or by Mann-Whitney for comparisons between healthy and patient time points (connecting
line). ***p < 0.0001. Experiments were performed once for each sample. Refer to Figures S2B and S3. Zero data points not shown but included in statistics.
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healthy individuals after the second and third doses compared
with hematology patients, irrespectively of whether they had
low or normal to high B cells.

Following three-dose COVID-19 vaccination, hematology pa-
tients of varying diseases and immunosuppressive treatments,
including those with B cell deficiencies, can still generate robust
and functional spike-specific T cell responses.

SARS-CoV-2 peptide-HLA tetramer-specific T cell
responses increase post-COVID-19 vaccination in
hematology patients
To define SARS-CoV-2 epitope-specific CD4* and CD8" T cell
responses, peptide-HLA tetramers combined with tetramer-asso-
ciated magnetic enrichment (TAME)'®2" (Figures 4A and S2E)
were used to measure directly ex vivo CD4* T cell responses
directed against the prominent DPB4/S:s; epitope”"** and
CD8* T cell responses against 6 immunodominant CD8* T cell epi-
topes (A1/8865s A2/8269, A3/S37g, A24/S1208, 815/8919, and B35/
Sgpq). 18720233031 These epitopes originated from the ancestral
SARS-CoV-2 spike and are highly conserved across variant of
concern (VOC) strains.?’*> B15/Sg14 shares similar homology
and is highly cross-reactive to common cold coronaviruses
(HKU1/0C43).7°

Two doses of mMRNA COVID-19 vaccination have previously
been shown to induce robust CD4* and CD8" tetramer™ T cell re-
sponses.”>?>3% We observed robust expansions of pooled
tetramer” CD4* and CD8* T cell frequencies after the third dose
with either vaccine (Figure 4B). Baseline tetramer precursor fre-
quencies weakly correlated with tetramer responses at T5 and
T7/718 (Figure 4C). There was no correlation between tetramer-
specific T cell responses and B cell numbers at T1 or T5, with
weak correlations based on RBD serostatus (Figures 4D and
S7A). Patients’ tetramer™ T cell frequencies increased following
three-dose COVID-19 vaccination, irrespective of RBD IgG seros-
tatus (Figure 4E) or B cell numbers (Figure S1F), similar to healthy
individuals (Figure S7B). Cross-reactive B15/Sg19 epitope had
comparable or lower baseline frequency (mean 3.26 x 1079
than other CD8* epitopes in patients and healthy individuals
(4.47 x 107°), suggesting no numerical cross-reactive advantage.
Importantly, increase and maintenance of SARS-CoV-2-epitope
T cell responses following COVID-19 vaccination were observed
across all malignancy and treatment groups, except for the WM/
naive group, which was small in number and not followed up
with after the second dose (Figure 4F). Most patient groups gener-
ated similar response magnitudes to healthy individuals at T5,
except for CLL/venetoclax (vene) patients and patients with MM
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(Figure 4G). CLL/vene patients also had lower tetramer™ T cell fre-
quencies at T1 baseline and ~3 months post-third dose (T8) (Fig-
ure S7C). Venetoclax also targets T cells, which may explain the
lower responses for CLL/vene patients.

Baseline tetramer* phenotypes differed between healthy and
hematology patients but converged post-vaccination (Figures 4H
and S7D). This was attributed by overall baseline CD4*/CD8"
T cell phenotypes (Figure S7E) rather than individual epitope spec-
ificities (Figure S7F). Baseline tetramer* T cell profiles from healthy
individuals were more of a prototypical CD45RA*CD27*CD95~
naive-like phenotype compared with those of hematology pa-
tients, which gradually decreased post-vaccination. Tetramer*
cells from hematology patients displayed activated profiles, with
elevated baseline CD45RA~CD27™ T effector memory (Tem)-like
and CD45RA*CD27~ T effector memory CD45RA (Temra)-like fea-
tures. Nevertheless, both groups had increasing CD45RA-CD27*
T central memory (Tcm)-like tetramer* populations post-vaccina-
tion (Figure 4H), which is highly desirable for any T cell-based vac-
cine. Differences in phenotype profiles were also somewhat
related to certain disease and treatment groups (Figure 4l).

Overall, hematology patients can generate robust SARS-CoV-
2-specific T cell responses to a range of immunodominant spike
epitopes following vaccination.

Hematology patients with COVID-19 breakthrough
infections generate higher antibody responses than
non-COVID-19 patients
During our study, 12 hematology patients had COVID-19 break-
through infections (Figure 5). 2, 1, and 9 patients had COVID-19
after the first, second, and third vaccine doses, respectively. 3
patients were infected during the Delta period (June-July
2022), 6 during the emergence of Omicron (strain unknown,
December 2021-January 2022), and 3 during the BA.1 Omicron
wave (post-February 2022) where Delta was absent from circu-
lation (Figure 5A). 8 healthy individuals had breakthrough
COVID-19 after the third vaccine dose, which occurred during
or after the emergence of BA.1 Omicron. All had mild COVID-
19 infections, although 1 patient was hospitalized but not treated
with any monoclonal antibodies, and 2 were treated with mono-
clonal antibody sotrovimab as outpatients (Figure 5B).
COVID-19" patients had higher RBD IgG antibodies than
COVID-19™ patients with 100% seropositivity at T8, consistent
with an anamnestic response to the infection (Figure 5C). This
was still significant when the 2 COVID-19* patients treated
with sotrovimab were excluded from the analysis (p = 0.0077,
data not shown). There were no differences in MNT and

Figure 3. Comparable spike-specific CD4" and CD8* T cell responses between hematology patients and healthy individuals

(A) AIM and ICS FACS plots.

(B and C) AIM (B) and ICS (C) frequencies of CD4* and CD8* T cells in healthy (n = 35, 23 BNT162b2, 12 ChAdOXx1) and hematology groups (n = 56, 8 BNT162b2,

48 ChAdOx1).

(D and E) AIM frequency (D) per malignancy and treatment group and (E) at T5 where median and IQR are shown. Statistical significance determined by Dunn’s

multiple comparisons set on healthy versus all other disease groups.
(F) CXCR5*CD4* Tfh response of total CD134*CD137* CD4" T cells.
(G) AIM and ICS frequency between IgG RBD* and RBD ™~ patients.
(H) rs matrix of antibody/B cell and T cell responses.

(l) Volcano plots at T5 and T8 comparing healthy individuals and hematology patients.
Statistical significance determined by Wilcoxon test for time point comparisons against T1 (floating values) or by Mann-Whitney for comparisons between healthy
and patient time points (connecting line). ****p < 0.0001. Experiments were performed once for each sample. Refer to Figures S2C, S2D, and S4-S6.

8 Cell Reports Medicine 4, 101017, April 18, 2023



Cell Reports Medicine

¢? CellPress

OPEN ACCESS

A CD4* HLA-DPB1*04:01/Spike167-181 CD8* HLA-A*02:01/Spike2sg.277
T T5 T7 T8 T T5 T8
o w |104% 0% [ | f423% 55.5% w foor 0.71% 0.29%
£ e — 5 —
© o = i o 7
e E " - s N 5 E
£ 1 ] 3 § & L] 2
F] 5 2 5
:g & foam 5.43% 8 g 0.55% 208% 83.0% 70.1% 3
® F —> < l:l —>
c 8 D
c g <
8 5 i 3 T ey b
=
CD4 BV650 > CD45RA FITC CD8 PerCP Cy5.5 > CD45RA FITC
B BNT162b2 ChAdOx1 C ) Healthy o Haematology D 1mth 2° (T5)
. ) = 1s=0.3597 rs=0.3811 Health
Healthy Haematology Healthy Haematology S 10.:.:_ ps=0.0469 10.;_ p5<0_0001 1gi y
=0.0002 T 103 1073
00004 P & ] o] o g oo
5 prvn =0.0002 p=0.0078 oo i /O e 0] egEgede
S 401 e e e w01 E - £ 105 3 10°54 o
o o 10 % 1069 0
£ 5402 2 - 2 [
5210 g 107+————+——— 107 — 3 4ot
gL s RO R N L e L2l 2 02
5 w10° H OOSOESES SO ESES RPN
% ] 104 8 Freq of Tet* CD4* or CD8* T cells at T5 (+107) o OR8N
o 4 5 - P y
S+ s 5 107, 15204975 1071 1=0.3003 2 Haematology
° 4% 10° 5 102 p=0.0097 102 p=0.0088 3]
28406 5 8 1034 1031 i =
3 <‘-_7 10 3° £ 104 s 104] & A
56 407 N & sl e s °
I 0 T T T T —0— 5 10 Agg 10°% @ © ChAdOX1
w T1TST7T8T1TST7T8 1T5T7T8 = 1091 4 1089 2 BNT162b2
£ 107+—————— 107 —
R 2 RELRd
T1 = Pre-dose 1 T7 = 1 month post dose 3 2 gzﬁg;;z K ,\6’3.9 ,9)\0'5,\@.\6\ N .\Qb@ \0).9‘5\0'»\6\ 3 e
T5 = 1 month post-dose 2 T8 = 3-4 month post dose 3 & F f Tet* CD4* or CD8* T cells at T7 or T8 (+10-7 NZIN BN N N
Open = <10 tetramer " events regior-lel or Gallsa orT8 ( )

Open =RBD IgG™ Closed = RBD IgG+

Freq of Tet* T cells (+107)

E Half closed = RBD IgG not performed
DPB4/S167 A1/Sges A2/S269 A3/Sazg A24/S1208 B15/Sg19 B35/S321
. 10" p=0.0010 10-1 p=0.0010 p=0.0469 _ p=0.0012 p=0.0312 p=0.0469
3 N A
o _1072 .8 1072 z
£ 5 o e
282103 1 103 g°
S 10- &
ol B o o
52 10 € 810° 7/ P
o 9 F o/ Ay
2 1081 g 106 /
\ [
1 0_7 A 10—7 T T T T T T T T 4 ¢
T1T5T7T8 T1T5T7T8 T1T5T7T8 T1T5T7T8 T1T5T7T8 T1T5T7T8 T1T5T7T8
F Healthy Allo-SCT  Autograft CAR-T CLL/naive CLL/vene CLL/zanu WM/naive WM/zanu MM
p=00469  p=0,0078 p=00020  p=0.0312 p=0,0020
5~ 10-1 i p=0.0269 p=0.0034_p=0.0020 p=0.0001 =0.0137 p=00014 p=0.0005 p=0.0234
oF e aE v e+ e e ¥ et v, .
3 ? 1 ° o
ot . A
Lo
ol °
Ci o - <
O 4 1 [}
g8 10" j ?
i © 4p 2 oo
T1TS5T7T8 TITST7T8 T1TST7T8 T1T5T7T8 TIT5T7T8 T1T5T7T8 T1TST7T8 T1TST7T8 TITST7T8 T1TS5T7T8
© ChAdOX1
G 5 BNT162b2 1mth 2° (T5) H Tnaive Tscm Temra Tem-like Tcm-like
101 p=0.0022 p=0.0238 - - -
5 i * _p=0.0103 p=00012 p=0.0024
5 S 102 1004 * p=0.0137
Gy 100 F 7505
L2 o4 & 75 b3
[ 10 3 § ° 2 !
LN g 501% , 8
§ a 10° z &\ s N ?
i O 107 2 25 a N
4
¢ oomaont O LT T T Tt Ts TIT5T7T8 TITST7T8 TIT51778
R 2 BNT162b2
[ Tnaive Tscm Temra Tem-like [J Tem-like
| Healthy Allo-SCT Autograft CAR-T CLL/naive CLL/vene CLL/zanu  WM/naive = WM/zanu MM
0.028( **p=0.0013
p=0.0017**
100 ]]D
g 75 H
3
§ 50
g 25
w
TITET RRTT TETR OUTEE TEYR GRUR GnUR DREP vRTE MEOR

(legend on next page)

Cell Reports Medicine 4, 101017, April 18, 2023 9




¢ CellPress

OPEN ACCESS

sVNT neutralizing responses (Figures 5D and 5E), although
COVID-19" patients had higher sVNT neutralization toward the
ancestral strain at T8 compared with COVID-19~ patients.
Spike-specific T cell responses were comparable between
COVID-19™ and COVID-19* healthy individuals and hematology
patients (Figures 5F, 5G, 5H, S8A, and S8B). Tetramer+ pheno-
types were comparable between breakthrough COVID-19* pa-
tients and healthy individuals, although the activation status of
one patient sampled during acute infection showed increased
PD-1 expression (Figures 51 and S8C). Our hematology patient
data agree with previous reports in healthy individuals,
showing that vaccination or vaccination plus infection can elicit
robust spike epitope-specific T cell responses.

We also performed tetramer staining directed against non-
spike epitopes for 3 breakthrough patients and 3 healthy partic-
ipants (Figure S9A). Spike, ORF1a, and nucleocapsid-specific
CD8" T cells increased in breakthrough patients, while spike
CD8* T cell frequencies were maintained in healthy participants
(Figure S9B) with phenotype changes post-infection (Figure S9C)
but similar activation profiles for spike and non-spike-specific
CD8* T cells (Figure S9D).

SARS-CoV-2-specific T cells in hematology patients
display prominent gene segment usage
TCRap repertoires of dominant SARS-CoV-2 T cell epitopes
have been identified as sharing similar motifs and gene usage
in immunocompetent healthy individuals following SARS-CoV-
2 infection'®?°~?* and COVID-19 mRNA vaccination.® To deter-
mine whether the molecular signatures underpinning epitope-
specific T cell responses were conserved in our cohort of
COVID-19-vaccinated hematology patients, we determined
TCRop repertoires for 3 of the most prominent spike-specific
CD4" and CD8" T cell epitopes, DPB4/S1g7, A2/Syg0, and A24/
S1208, Using single-cell TCRaf multiplex-nested RT-PCR after
ex vivo tetramer enrichment.®* A total of 637 paired TCRa clo-
notypes from up to 17 hematology patients were analyzed
across DPB4/Sg7 (n = 17), A2/Ss69 (N = 17), and A24/S150g (N =
12) epitopes in terms of their clonotype composition and clonal
expansion. These TCRa. repertoires were compared with previ-
ously published TCR datasets from healthy SARS-CoV-2-in-
fected (DPB4/S167, A2/8269, and A24/S1208) and COVID-19-
vaccinated (A2/S,ge and A24/S1.0g only) individuals, 82122

In line with previous reports,”""?> DPB4/S,s7-specific CD4*
T cells in hematology patients displayed a heavy bias for
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TRAV35/TRAJ42 gene segments (Figures 6A and S10;
Table S2), which were paired with different TRBV/TRBJ genes.
The A2/Syeo-specific TCR repertoire in healthy infected and
vaccinated cohorts is generally dominated by TRAV12-1 pairing
with TRBV20-1 or TRBV7-9.'%2"232% |n contrast, TRAV29 had
the highest number of different clonotypes observed in hematol-
ogy patients, followed by TRAV12-1, both of which were paired
with TRBV2. In addition, both TRAV29 and TRAV12-1 were only
observed in 4/17 donors tested with very little clonal expansions,
while some hematology patients had very large clonal expan-
sions of non-TRAV12-1 clonotypes pairing with the common
TRBV20-1 gene (donor P46: 86% TRAV8-1; donor P51: 96%
TRAV13-2) (Table S2). The A24/S,0s-specific CD8* TCR reper-
toire was more diverse in hematology patients, which has been
observed previously2°; however, all 3 cohorts shared common
TRAV19, TRAV21, and TRBV20-1 genes.

TCR sequence similarity network for each epitope identified
prominent sharing of dominant motifs between vaccinated
hematology and healthy infected cohorts for DPB4/S4e7,
followed by a smaller network for A2/S,e9 connecting all 3
cohorts available, and the smallest network was for A24/
Si1208 (Figure 6B). The DPB4/S447 network generated a com-
mon TRAV35/TRAJ42 sequence motif that represented both
vaccinated hematology and healthy infected cohorts when
motifs were analyzed separately per cohort (Figures 6B and
S11), whereas TCRp motifs were very different between
groups. Interestingly, the TCRa and TCRp network motifs for
A2/S,69 Were only observed in the healthy vaccinated and in-
fected cohorts and not in vaccinated hematology patients,
which mainly comprised of TRAV29/TRAJ45 and TRBV2-
TRBJ2-2 motifs. The A24/S{508 TCRa and TCRB network mo-
tifs were only observed in vaccinated hematology patients,
given the low number of sequences identified, while another
TRBV5-6 motif was observed for healthy vaccinated individ-
uals (Figures 6B and S11).

Strikingly, clonal expansions of diverse TCR clonotypes were
most evident in hematology patients for A2/S,g9 and A24/S450g
CD8" T cells compared with healthy infected and healthy vacci-
nated cohorts. However, similarly to the network analyses, these
clonotypes did not cluster as closely with each other compared
with the DPB4/S+¢7 repertoire, which was closely clustered and
sharing the same gene usage but had less evidence of clonal
expansions from either vaccinated hematology and healthy in-
fected cohorts (Figure 6C). Nevertheless, the probability to

Figure 4. COVID-19 vaccination induces expansion of SARS-CoV-2-specific tetramer* T cell responses

(A) FACS plots of TAME-enriched CD4* and CD8* tetramer populations.

(B) Tetramer CD4* and CD8* T cell frequencies of healthy (n = 16, ChAdOx1 = 4, BNT162b2 = 12) and hematology groups (n = 54, ChAdOx1 = 35, BNT162b2 = 19)
per vaccine type. Any samples with <10 tetramer* events are shown as open symbols. 1-3 tetramer responses shown per donor.

(C) rs of T1 tetramer frequencies versus T5 or T7/T8.
(D) rs of tetramer frequencies versus B cell numbers at T5.

(E-G) Tetramer frequencies per (E) epitope, (F) malignancy and immunosuppressive treatment, or (G) at T5 where median and IQR are shown.
(H) Phenotype frequencies of tetramer* cells from healthy (gray line) and hematology patients (orange line).

(I) Tetramer* phenotype per malignancy and immunosuppressive treatment.

The frequency of tetramer* cells are right shifted by 1077 (i.e., no detected tetramer* events displayed as 10~7). Only samples with 10 or more tetramer* events are
included for (H) and (I). Statistical significance determined by Wilcoxon test for time point comparisons against T1 (floating values); Mann-Whitney for com-
parisons between healthy and patient timepoints (connecting line); (G) Dunn’s multiple comparisons set on healthy versus all other disease groups; and (H)
Sidak’s multiple comparison test and (I) Dunnett’s multiple comparison test for time point comparisons against T1. ***p < 0.0001. Experiments were performed
once for each sample. Refer to Figures S2E and S7.
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generate TCRs were comparable across the cohort groups for
each epitope (Figure 6D).

Overall, following COVID-19 vaccination, hematology patients
could generate robust SARS-CoV-2-specific T cells that shared
many common TCR signatures with healthy vaccinated and in-
fected cohorts.

DISCUSSION

Our study provides comprehensive insights into humoral and
cellularimmune responses following COVID-19 vaccination in he-
matology patients with malignancies and treatments expected to
eradicate or profoundly impair B cell function. We demonstrate
that hematology patients mount effective SARS-CoV-2-specific
T cell responses to COVID-19 vaccines irrespective of their B cell
malignancy or B cell-depleting therapies, with which B cell
numbers are greatly affected. Importantly, these T cell responses,
detected directly ex vivo with peptide-HLA tetramers, are compa-
rable to healthy individuals with respect to the magnitude, pheno-
type, TCRaB diversity, clonal composition, and motifs. Conversely,
B cell numbers relating to disease status markedly impacted
SARS-CoV-2-specific antibody levels and memory spike-specific
B cell responses, together with ASC and Tfh skewing.

Our cohort is representative of a hematological malignancy
population with B cell deficiencies arising from disease and/or
therapies. Apart from patients with CLL, WM, and myeloma,
other hematological malignancies and prior treatments are well
represented in our post-cellular therapies cohort (allogeneic
transplant, autologous transplant, and CAR-T therapy), including
patients with non-Hodgkin’s lymphoma treated with prior anti-
CD20 antibody exposure. While our patient group is heteroge-
neous, breakdown of immune response is provided by individual
disease/treatment group in the individual figures to allow a
reader to consider/assess responses by a particular group of in-
terest (Figure S12).

Consistent with previous studies, hematology patients had
lower seroconversion rates following the first and second doses
compared with healthy individuals. We highlight that the third
dose observed close to 90% seropositivity by RBD IgG in hema-
tology patients, which is an excellent outcome for immunocom-
promised patients and comparable to the seropositivity rates
observed after 2 doses in healthy individuals.

Cell Reports Medicine

RBD-specific IgG antibody responses toward two doses of
ChAdOx1 vaccine in hematology patients were lower than
BNT162b2-vaccinated patients, when compared with healthy in-
dividuals, and remained lower after the third mRNA dose. This
could partially be explained by the age difference, where
ChAdOx1-vaccinated patients were older than BNT162b2-
vaccinated patients or healthy individuals. Another explanation
could be related to the type of vaccine, as it has been reported
that two-dose ChAdOXx1 vaccination provides lower protective
efficacy (~60%) in terms of neutralizing antibodies compared
with BNT162b2 (~90%).%° A recent study comparing antibody
and memory B cell responses following two-dose ChAdOx1,
two-dose mRNA, or combined ChAdOx1/mRNA vaccination
also observed inferior antibody responses with the ChAdOXx1
vaccine.*® Importantly, there were no differences in T cell re-
sponses between vaccine type.

Spike-specific CD4* and CD8"* T cell responses following
COVID-19 vaccination were also measured by AIM and ICS
assays, as previously used in other SARS-CoV-2 infection
studies.®”*® The skewing of PD-1*ICOS*-activated Tfh2/
Tfh17 in the whole-blood assay aligned with our AIM data,
where the majority of the AIM Tfh response was made up of
Tth2/Tth17 cells rather than Tfh1 cells. Our data support
Apostolidis et al.’s study'’ where all patients with MS on
anti-CD20 monoclonal antibody treatment (n = 20) generated
robust spike-specific CD4* and CD8* T cell responses
following BNT162b2 or mRNA-1273 mRNA vaccination in
the absence of B cells.

Two doses of mMRNA COVID-19 vaccination can induce robust
CD4* and CD8" tetramer* T cell responses.?>*>*® Here, both
hematology patients and healthy individuals can generate robust
CD4* and CD8* T cell responses to 7 immunodominant spike-
specific epitopes after two doses of ChAdOx1 or BNT162b2
vaccines and after the third dose. Importantly, patients lacking
RBD-specific IgG antibodies could still generate robust
epitope-specific T cell responses. Furthermore, TCR repertoires
from hematology patients shared common TCR signatures with
healthy vaccinated and infected cohorts.

Breakthrough SARS-CoV-2 infections are increasingly
becoming more common in the vaccinated community.
Although SARS-CoV-2-infected patients had higher RBD-
specific 1gG antibody responses, T cell responses were

Figure 5. Vaccine responses between non-COVID-19 and breakthrough COVID-19

(A) COVID-19 following SARS-CoV-2 vaccination.

(B) Clinical symptoms and monoclonal antibody treatment for SARS-CoV-2 breakthrough infections.
(C) Endpoint IgG titers of ancestral RBD antibodies (44 COVID™ and 8 COVID* healthy individuals; 83 COVID™ and 12 COVID™" patients). Seropositive cutoff

defined by baseline mean + 2 SD per group.

(D) MNT titers at T5 against WT ancestral and Delta strains (74 COVID™ and 2 COVID™ patients).
(E) Percentage of inhibition by sVNT assay against WT ancestral and Omicron strains (44 COVID~ and 8 COVID* healthy individuals; 83 COVID~ and 12 COVID*

patients).

(F) AIM between COVID ™~ and COVID* groups (33 COVID ™ and 1 COVID* healthy individuals; 51 COVID™ and 5 COVID* patients).
(G) TAME-enriched FACS plots depicting tetramer and memory and activation phenotypes.
(H) Tetramer frequencies between COVID~ and COVID* groups (12 COVID™ and 3 COVID* healthy individuals; 49 COVID™~ and 5 COVID" patients). 1-2 tetramer

responses per donor.
(I) CD8*tetramer* phenotypes from individuals with breakthrough COVID-19.

The frequency of tetramer* cells has been right shifted by 107 (i.e., no detected tetramer* events displayed as 1077).

Statistical significance determined by Mann-Whitney for comparisons between COVID™~ and COVID* time points (connecting line).

were performed once for each sample. Refer to Figures S8 and S9.
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indistinguishable between infected and non-infected individuals
in both patient and healthy groups, which aligns with previous re-
ports in healthy individuals,”® showing that vaccination alone or
vaccination followed by subsequent infection can elicit compa-
rable spike epitope-specific T cell responses.

Overall, our study shows that hematology patients who fail to
seroconvert and generate memory B cell responses post-vacci-
nation can nevertheless generate robust SARS-CoV-2-specific
T cellimmunity. Our findings are particularly relevant for reducing
disease severity in hematology patients who acquire break-
through infections since robust CD8" T cell responses correlate
with better outcomes in hematology patients hospitalized with
COVID-19, including those treated with anti-CD20 therapy, while
B cells had no impact on survival.'® Our data also support devel-
opment of vaccines targeted to immunocompromised patients,
such as those that have shown to induce potent and prolonged
T cell responses to multiple SARS-CoV-2 antigens in healthy in-
dividuals.®® Therefore, COVID-19 vaccination can still be immu-
nogenic, especially with respect to SARS-CoV-2-specific CD4*
and CD8" T cell responses, in hematology patients of varying
diseases and treatment.

Limitations of the study

Our patient cohort is heterogeneous, and so we were not always
powered to statistically analyze the data per disease, treatment,
or vaccine group for all assays. Some assays were not per-
formed for all patients, but patient numbers per assay are
included in figure legends. Larger prospective studies are
needed to demonstrate protection against severe and fatal dis-
ease with patient stratification based on antibody/B cell and
T cell responses. SARS-CoV-2 infections occurred after 1/2/3
vaccinations in patients but only after 3 vaccinations in healthy
individuals, although numbers are small. ChAdOx1-vaccinated
patients were older than BNT162b2-vaccinated or healthy
individuals.

STARXMETHODS

Detailed methods are provided in the online version of this paper
and include the following:

o KEY RESOURCES TABLE
® RESOURCE AVAILABILITY
O Lead contact
O Materials availability
O Data and code availability
o EXPERIMENTAL MODEL AND SUBJECT DETAILS
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e METHOD DETAILS
O Cellular activation in whole blood
O Assessment of SARS-CoV-2-specific antibodies and
memory B cells
O 24-H stimulation with spike overlapping peptide pools
O Spike and non-spike epitope-specific tetramer* T cell
responses
® QUANTIFICATION AND STATISTICAL ANALYSIS
O TCRup statistical analysis
o STATISTICAL ANALYSIS
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BD Biosciences
BD Biosciences
BD Biosciences
BD Biosciences
BD Biosciences
BD Biosciences
BioLegend
BioLegend
BioLegend

BD Biosciences
BD Biosciences
Beckman Coulter
BD Biosciences
BD Biosciences
BD Biosciences
BD Biosciences
BioLegend

BD Biosciences
BD Biosciences

Jackson ImmunoResearch

Cat#562995; RRID:
Cat#563875; RRID:
Cat#563167; RRID:
Cat#563964; RRID:
Cat#561143; RRID:
Cat#560180; RRID:
Cat#560177; RRID:
Cat#555488; RRID:
Cat#565310; RRID:
Cat#562395; RRID:
Cat#561272; RRID:
Cat#317332; RRID:
Cat#307640; RRID:
Cat#562747; RRID:
Cat#562947; RRID:
Cat#563922; RRID:
Cat#563126; RRID:
Cat#560611; RRID:
Cat#560158; RRID:
Cat#562280; RRID:
Cat#550967; RRID:
Cat#555634; RRID:
Cat#340953; RRID:
Cat#557802; RRID:
Cat#564116; RRID:
Cat#563159; RRID:
Cat#353738; RRID:
Cat#309810; RRID:
Cat#310926; RRID:
Cat#340420; RRID:
Cat#337167; RRID:

AB_2737939
AB_2744425
AB_2738042
AB_2738515
AB_10562031
AB_1645464
AB_1645470
AB_395879
AB_2687497
AB_11153666
AB_10611585
AB_2561943
AB_2561913
AB_2737766
AB_2737912
AB_2738488
AB_2313579
AB_1727454
AB_1645478
AB_11153674
AB_398481
AB_395996
AB_400194
AB_396878
AB_2869551
AB_2738037
AB_2565924
AB_830672
AB_2074956
AB_400027
AB_647424

Cat#IM2708U; RRID:AB_130854
Cat#563903; RRID:AB_2721269
Cat#564437; RRID:AB_2738807
Cat#561314; RRID:AB_10642457
Cat#564230; RRID:AB_2738684
Cat#302829; RRID:AB_11204431
Cat#554061, RRID:AB_10053328
Cat#554067, RRID:AB_10050396

Cat#109-035-098; RRID: AB_2337586
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REAGENT or RESOURCE SOURCE IDENTIFIER
Biological samples

Blood samples (peripheral blood The Royal Melbourne Hospital, N/A

mononuclear cells (PBMCs) and
plasma samples) from COVID-
19-vaccinated adult haematological
malignancy patients and healthy
control individuals

The Austin Hospital, St Vincent’s
Hospital, and The Peter McCallum
Cancer Center

Chemicals, peptides, and recombinant proteins

3,3,5,5'-Tetramethylbenzidine (TMB) Liquid

Substrate System for ELISA, peroxidase substrate
Alkaline phosphatase yellow (pNPP) liquid

substrate for ELISA

Pierce High Sensitivity Streptavidin-HRP

SARS-CoV-2 RBD protein

SARS-CoV-2 Spike protein

SARS-CoV-2 peptides — A1/ORF1a4e37 TTDPSFLGRY;
A1/Sges-s73 LTDEMIAQY; A2/S269 YLQPRTFLL; A3/N3g1
KTFPPTEPK; A3/S3,8 KTFPPTEPK; A24/S1508 QYIKWPWYI;
B7/N105.113 SPRWYFYYL; B15/Sg10.027 NQKLIANQF;

B35/S321-309 QPTESIVRF; and DPB4/S+s; TFEYVSQPFLMDLE
HLA-A*01:01/Sges monomer (SARS-CoV-2, Sgg5, LTDEMIAQY)

HLA-A*01:01/ORF1a4g37 monomer (SARS-CoV-2,
ORF1ayg37, TTDPSFLGRY)

HLA-A*03:01/S375 monomer (SARS-CoV-2, S;75, KCYGVSPTK)

HLA-A*03:01/Ngg1 monomer (SARS-CoV-2, Ngg1, KTFPPTEPK)
HLA-B*07:02/N1095 monomer (SARS-CoV-2, N1gs5, SPRWYFYYL)
HLA-B*15:01/Sg19 monomer (SARS-CoV-2, Sg19, NQKLIANQF)

HLA-A*02:01/S569 monomer (SARS-CoV-2, Sy9, YLQPRTFLL)
HLA-B*35:01/S3,1 monomer (SARS-CoV-2, S3»1, QPTESIVRF)

HLA-A*24:02/S 1508 monomer (SARS-CoV-2, Sq08, QYIKWPWY])

HLA-DPA1*01:03/DPB1*04:01/S4, monomer
(SARS-CoV-2, S167, TFEYVSQPFLMDLE)

Sigma
Sigma

Thermo Fisher Scientific

Amanat et al.,*°

Juno et al.,*”

GenScript

Peptide sequence®’, monomer
[Rossjohn Laboratory]

Peptide sequence*’, monomer”’

Peptide sequence”’, monomer
[Rossjohn Laboratory]

Peptide sequence*?, monomer?'
Peptide sequence*?, monomer'®

Peptide sequence®®, monomer
[Rossjohn Laboratory]

Peptide sequence/monomer'®

Peptide sequence®®, monomer
[Rossjohn Laboratory]

Peptide sequence®’, monomer*®
Peptide sequence/monomer>?

Cat#T0440-1L

Cat#P7998-100ML

Cat#21130
N/A
N/A
N/A

N/A

N/A

N/A

N/A
N/A
N/A

N/A
N/A

N/A
N/A

Software and algorithms

Rv4.2.1
conga package

igraph R package v1.3.2
TCRdist pipeline

Gephi v0.9.7
Corrplot v0.92

rstatix pacakage v0.7.0

EnhancedVolcano v1.14.0

FlowJo v10.5.3
Prism v8.3.1 or v9.1.0

R Core Team,*®

Schattgen et al.**

Csardi and Nepusz*®
Dash et al.*®

Jacomy et al.*’
Wei and Simko*®

Kassambara®®

Blighe et al.*®

FlowJo
GraphPad

https://cran.r-project.org

https://github.com/
phbradley/conga

https://igraph.org/r/

https://github.com/
phbradley/tcr-dist

https://gephi.org/

https://github.com/
taiyun/corrplot

https://CRAN.R-project.
org/package=rstatix

https://github.com/kevinblighe/
EnhancedVolcano

https://www.flowjo.com
https://www.graphpad.com

(Continued on next page)
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REAGENT or RESOURCE SOURCE IDENTIFIER

BD FACS Diva v8.0.1 BD Biosciences https://www.bdbiosciences.
com/en-us/instruments/
research-instruments/
research-software/flow-
cytometry-acquisition/
facsdiva-software

Other

Anti-PE Micro-Beads Miltenyi Biotec Cat# 130-048-801, RRID:AB_244373

Anti-APC Micro-Beads Miltenyi Biotec Cat# 130-090-855, RRID:AB_244367

RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Katherine
Kedzierska (kkedz@unimelb.edu.au).

Materials availability
This study did not generate new unique reagents.

Data and code availability
® The published article includes all datasets generated or analyzed during the study.
® This paper does not report original code.
® Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Victorian blood cancer patients and healthy volunteers that were scheduled for the COVID-19 vaccine, as part of Australia’s
COVID-19 vaccine rollout in 2021, were recruited to the study. Patients with various haematological malignancies were enrolled
at the Peter MacCallum Cancer Centre or St Vincent’s Hospital following ethics approval by the Peter MacCallum Cancer Centre
Human Research Ethics Committee (HREC/74271/PMCC-2021, HREC/74260/PMCC-2021). Healthy volunteers were enrolled at
the Royal Melbourne Hospital or the Austin Hospital with approvals from Melbourne Health (HREC/68355/MH-2020) and Austin
Health (HREC/73256/Austin-2021), respectively. Human ethics was also approved by the University of Melbourne HREC
(21817, 21711, 21626, 21560, 13344). All participants provided written informed consent. Patient and healthy cohort demo-
graphics are summarised in Table S1. Clinical information and limited immune data have been described for a subset of CLL
patients.®’

Participants were vaccinated with 2 doses of the BNT162b2 Comirnaty (Pfizer) vaccine scheduled ~3 weeks apart or the ChAdOXx1
(AstraZeneca) vaccine scheduled ~8-12 weeks apart. One patient also received 2 doses of the mRNA-1273 (Moderna) vaccine. Hep-
arinised peripheral blood and serum were collected prior to vaccination (T1), ~1 week following the first dose (T2, optional bleed), just
prior to the second dose (T3), ~1 week following the second dose (T4, optional bleed), and ~1 month (T5) following the second dose.
Additionally, a subset of patients were bled prior to receiving a third dose of BNT162b2 Comirnaty or mRNA-1273 (T6), 1 month
following the third dose (T7) and 3-4 months following the third dose (T8). Healthy vaccinated adults were recruited as controls.
PBMCs were isolated by Ficoll-Paque separation for cellular assays, plasma was collected for measuring antibodies, serum for mi-
croneutralisation assays and DNA isolated from granulocytes for HLA typing by VTIS (Melbourne, Australia), essentially as
described.?®

The study was conducted in compliance with the conditions of the ethics committee approval, the NHMRC National Statement on
ethical Conduct in Human Research (2007) and the Note for Guidance on Good Clinical Practice (CPMP/ICH-135/95).

METHOD DETAILS
Cellular activation in whole blood

The kinetics of ASCs and activation of Tfh/CD8*/CD4* T cell subsets were measured at T1-T5 timepoints by directly staining whole
blood with antibodies for flow cytometry, essentially as described.?*?%>2
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Assessment of SARS-CoV-2-specific antibodies and memory B cells

Spike and nucleocapsid antibodies were measured using Elecsys Anti-SARS-CoV-2 kit and Roche e601 analyser according to man-
ufacturer’s instructions. Plasma antibodies against wildtype SARS-CoV-2 RBD protein (vaccine strain) were assessed by IgG ELISA
as previously described in detail.'®%->®* MNT activity of serum samples (T1 and T5 only) was assessed as previously described with
the wildtype and delta strains.?®>"5* The sVNT assay was performed with wildtype and B.1.1.529 omicron (Genscript Z03730) strains
essentially as described.*® Spike-specific B cell responses from the vaccine strain were measured on thawed PBMCs or TAME-flow
through fractions. Cells were stained with wildtype Spike recombinant probes conjugated to PE, fixed and acquired on a BD LSRII
Fortessa, essentially as described. %"

24-H stimulation with spike overlapping peptide pools

Thawed PBMCs were plated into a 96-well plate at 1e6 PBMCs/well. For AIM assay, cells were stimulated in complete-RPMI with
10 ng/ml SARS-CoV-2 Spike peptide pool (181 peptides, 0.06 ng/ml per peptide; BEI Resources, NIAID, NIH, SARS-Related Coro-
navirus 2 Spike (S) Glycoprotein, NR-52402) or DMSO (0.1%; Sigma), as a negative control, and cultured at 37°C/5% CO, for 24 h.
Cells were washed and stained with CXCR5-BV421 (562747; BD Biosciences), CD3-BV510 (317332; BioLegend), CD8-BV605
(564116; BD Biosciences), CD4-BV650 (563875; BD Biosciences), CD25-BV711 (563159; BD Biosciences), CXCR3-BV786
(353738; BD Biosciences), CD137-APC (309810; BioLegend), CD27-AF700 (560611; BD Biosciences), CD14/CD19-APC-H7
(560180/560252; BD Biosciences), Live/Dead NIR (L34976; Invitrogen), CD69-PerCPCy5.5 (310925; BiolLegend), CD134-PE
(340420; BD Biosciences), CD95-PE-CF594 (562395; BD Biosciences), CD45RA-PeCy7 (337167; BD Biosciences) before fixing
with 1% PFA.

For ICS, cells were stimulated in complete-RPMI with 100 ng/mL overlapping Spike peptide pool (181 peptides, 0.6 ng/ml per pep-
tide; BEI Resources, NR-52402) or DMSO (1%), as a negative control, in combination with anti-CD28/CD49d (1:100, 347690; BD Bio-
sciences) and 10U/ml IL-2 (11147528001; Roche), with Brefeldin A (/2000 dilution; 555029; BD Biosciences) added after 6 h.
Following further 18 h of the stimulation, cells were washed twice with MACS buffer (PBS/0.5% BSA, 2mM EDTA), then stained
with surface antibodies: CD3-BV510 (317332; BioLegend), CD4-BV650 (563875; BD Biosciences), CD8-PerCPCy5.5 (565310; BD
Biosciences) and Live/Dead NIR (L34976; Invitrogen) for 30 min on ice. Cells were washed twice, then fixed using the BD Cytofix/
Cytoperm kit (554723; BD Biosciences) according to the manufacturer’s instructions, washed twice and intracellularly stained
with IFNy-v450 (560371; BD Biosciences), MIP-13-APC (560656; BD Biosciences) and TNFa-AF700 (557996; BD Biosciences) for
30 min on ice. Following two further washes, lymphocytes were resuspended in MACS buffer and acquisition was on an LSRII For-
tessa. Data were analyzed using FlowJo v10. Values obtained for PBMCs cultured with DMSO under the same conditions (negative
controls) were subtracted from peptide-stimulated values. As a negative control, PBMCs cultured with DMSO also had IL-2, thus this
control accounts for any background cytokine production triggered by IL-2 by CD4* and CD8" T cells.

Spike and non-spike epitope-specific tetramer® T cell responses

HLA class | tetramers HLA-A*01:01/Sges°' (LTDEMIAQY), HLA-A*01:01/ORF1ags;"' (TTDPSFLGRY), HLA-A*02:01/Syee'”
(YLQPRTFLL), HLA-A*03:01/S375"" (KCYGVSPTK), HLA-A*03:01/Ngg1*? (KTFPPTEPK), HLA-A*24:02/S 105> (QYIKWPWY]I), HLA-
B*07:02/N40s"* (SPRWYFYYL), HLA-B*15:01/Sg1°° (NQKLIANQF) and HLA-B*35:01/S3x¢°° (QPTESIVRF) were generated by
Rossjohn laboratory and validated as previously described.’®?° HLA class Il tetramer HLA-DPA1*01:03/DPB1*04:01/S1¢7
(TFEYVSQPFLMDLE) was generated by Rossjohn laboratory and validated as previously described.?

Cryopreserved PBMCs (5-10x10°) underwent tetramer-associated magnetic enrichment (TAME) following staining with a class |
and/or DP4 class Il Spike tetramer on PE and/or another class | tetramer on APC as described.'® Class | and class Il tetramers on
PE were exclusively stained on CD8" or CD4™" T cells, respectively, with minimal to zero non-specific binding. Flow-through fractions
were cryopreserved for Spike-specific B cell probe analysis, as previously described”’ which were negative for tetramer* cells. Sam-
ples were acquired on an LSRII Fortessa using the software BD FACS DIVA v8.0.1 and flow cytometry data were analyzed using
FlowJo v10 software.

Enriched HLA-A*02:01/S5g9, HLA-A*24:02/S 508 and HLA-DPB1*04:01/S+¢7 tetramer™ T cells were indexed single-cell sorted on a
BD FACSAria Il for TCR analysis essentially as described.'®?'" CDR3a and CDR3p regions from single cells were amplified using
multiplex-nested RT-PCR'®* analyzed by IMGT/V-QUEST.

As in our study, we had a limited number of PBMCs from hematology patients (and healthy controls), our baseline T1 tetramer-pos-
itive T cell population correspond to a few events (<10 events) for some individuals. For transparency, we show any samples with <10
tetramer* events as open symbols. Only samples with more than 10 tetramer® events are included in the phenotypic analysis
(Figures 4H and 4l).

QUANTIFICATION AND STATISTICAL ANALYSIS
TCRou statistical analysis
Single-chain alpha and beta TCR sequences were analyzed by TCRdist for modeling amino acid motifs, TCR landscapes,

neighbor distance distribution and probabilities of generation (Pgen).46 For comparisons, published TCR datasets from
unvaccinated SARS-CoV-2-infected individuals in the blood were sourced from Rowntree et al.,>’ Nguyen et al.,'® Rowntree
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et al.?? (HLA-A*02:01/Spge, HLA-A*24:02/S 1,05 and HLA-DPB1*04:01/S1¢7), Minervina et al.?® (HLA-A*02:01/S,69 and HLA-A*24:02/
S1208) and Mudd et al.?? (HLA-DPB1*04:01/S+s7). Published TCR datasets from COVID-19-vaccinated uninfected individuals were
sourced from Minervina et al.”® (HLA-A*02:01/Soee and HLA-A*24:02/S+,05). TCRdist*® was used to calculate pairwise distances
between clonotypes, sequence logos was created with conga python package’’ network was generated with igraph R package
(v. 1.3.2)*° and visualized with Gephi (v.0.9.7).*’

STATISTICAL ANALYSIS

Statistical significance of nonparametric datasets (two-tailed) were determined using GraphPad Prism v9 software. Mann-Whitney
U-test (unpaired) and Wilcoxin signed-rank test (paired) were used for comparisons between two groups. Kruskal-Wallis test
(unmatched) with Dunn’s multiple comparisons was used to compare more than two groups. Tukey’s multiple comparison test
compared row means between more than two groups, while Sidak’s multiple comparison test compared column means between
multiple groups. Correlation matrices were prepared in R using corrplot version 0.92.¢ Volcano plots were generated within healthy
individuals and haematology patients, and in patients with differing B cell ranges by Wilcoxon Rank-Sum test with Benjamini-
Hochberg adjustment for multiple comparisons, using the rstatix version 0.7.0 package™® within R version 4.2.1,*® and plotted using
EnhancedVolcano version 1.14.0.°° Volcano plots display log2(fold change) vs. -log10(unadjusted p value), with horizontal dashed
line representing the adjusted p threshold. Parameters used for the volcano plots included sVNT, AIM, IgG RBD; log MNT (T5 only);
B cell number and B cell probes (all participants and med-high B cell participants only).
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Table S1. Cohort demographics and clinical summary, refer to Figure 1.

Figure S1. Haematology patients grouped by low, normal or high B cell numbers.

Figure S2. FACS gating strategies to measure cellular vaccine responses.

Figure S3. Correlations of whole blood subsets.

Figure S4. Functional spike-specific CD4" and CD8" T cell responses in haematology patients
and healthy individuals.

Figure S5. Spike-specific CD4" and CD8" T cell responses by vaccine type.

Figure S6. Volcano plots comparing healthy individuals and haematology patients.

Figure S7. Ex vivo SARS-CoV-2-specific tetramer” T cell responses following COVID-19
vaccination.

Figure S8. Vaccine responses in donors with breakthrough SARS-CoV-2 infections.

Figure S9. Ex vivo paired spike and non-spike-specific tetramer” CD8" T cell responses
following breakthrough COVID-19.

Figure S10. V and J gene segment usage and covariation in epitope-specific responses.
Figure S11. TCR logo representations of CDR3a and B sequence motifs for DPB4/Sis7,
A2/S269 and A24/S120s.

Figure S12. Individual patient’s immune response following COVID-19 vaccination.



Supplementary Tables

Table S1. Cohort demographics and clinical summary, refer to Figure 1.

Healthy Haematology BNT162b2,
individuals patients mRNA-1273 ChAdOx1
Number of individuals, » 58 95 25 70
Age, mean (range) 44 (20-80) 65 (19-91) 51 (19-80) 70 (51-91)
Female, n (%) 41 (71%) 28 (29%) - -
Vaccine (2 doses), n (%) - -
ChAdOx1 (AstraZeneca) 26 (45%) 70 (74%)
Age, mean (range) 51 (20-80) 70 (51-91) ) )
BNT162b2 Comirnaty (Pfizer) 32 (55%) 24 (25%)
Age, mean (range) 38 (23-60) 50 (19-80) ) )
mRNA-1273 (Moderna) 0 1 (1%) - -
Vaccine (3" dose), n (%) - -
ChAdOx1 (AstraZeneca) 1 (2%) 5 (5%) - -
BNT162b2 Comirnaty (Pfizer) 20 (34%) 63 (66%) - -
mRNA-1273 (Moderna) 1 (2%) 10 (11%) - -
Novavax 1 (2%) 0 (0%) - -
Unknown due to lost follow-up 35 (60%) 17 (18%) - -
Cellular therapy, n (%) 33 (34%) 17 (68%) 16 (23%)
Allogeneic SCT ) 5 (5%) 4 (16%) 1 (1%)
Autograft - 21(22%) 9 (36%) 12 (17%)
CAR T-cell - 7 (7%) 4 (16%) 3 (5%)
Days post-cellular therapy, mean . 177 (45-393)  185(45-393) 167 (73-337)
(range)
Malignancy/treatment, n (%)
CLL/naive - 14 (15%) 2 (8%) 12 (17%)
CLL/venetoclax - 5 (5%) 1 (4%) 4 (6%)
CLL/zanubrutinib - 25 (26%) 1 (4%) 24 (34%)
WM/naive - 1 (1%) 0 1 (1%)
WM/zanubrutinib - 10 (11%) 1 (4%) 9 (13%)
Myeloma - 7 (7%) 3 (12%) 4 (6%)
Previous SARS-CoV-2 infection, n 1 0 0 0
SARS-CoV-2 infection during the 3 12 5 7

study, n

Abbreviations: CAR T-cell, chimeric antigen receptor T-cell; CLL, chronic lymphocytic leukemia; SCT, stem
cell transplantation, WM, Waldenstrom macroglobulinemia. Clinical information and limited immune data have
been described for a subset of CLL patients.*!
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Figure S1. Haematology patients grouped by low, normal or high B cell numbers. End-point IgG titres of ancestral
RBD antibodies (A) across sampling timepoints, (B) at TS, and (C) per malignancy and treatment group. (D)
Spike-specific memory B cells in haematology patients grouped by low, normal or high B cell numbers. (E) AIM
and ICS frequencies and (F) tetramer” spike-specific CD4" and CD8" T cells grouped by low, normal or high B
cell numbers. Due to limited sample availability, experiments were performed once for each sample. Related to

Figure 1, 3, 4.
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Figure S2. FACS gating strategies to measure cellular vaccine responses. Gating strategy for (A) memory spike-
specific B cells, (B) whole blood analysis, (C) AIM and (D) ICS assay, and (E) TAME. Related to Figure 1, 2, 3
and 4.
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Figure S3. Correlations of whole blood subsets. (A) Spearman's correlation (rs) of ASCs and Tfhl, Tfh2 and
Tth17 subsets at T4. (B) Spearman's correlation (rs) of activated CD4" and CD8" T cells at T1-T5. Due to limited
sample availability, experiments were performed once for each sample. Related to Figure 2.
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Figure S4. Functional spike-specific CD4" and CD8" T cell responses in haematology patients and healthy
individuals. (A) Representative AIM and ICS FACS plots including DMSO controls. (B) ICS frequency per
malignancy and treatment group at all timepoints measured and (C) at T5 where median and IQR are shown.
Statistical significance determined by Dunn's multiple comparisons set on healthy versus all other disease groups.
(D) Spearman correlations of CD4" and CD8" T cell responses via AIM and ICS assays. Statistical significance
determined by Wilcoxon test for timepoint comparisons against T1 (floating values). Exact p values 0.0001<0.05
are shown except p<0.0001=****_Due to limited sample availability, experiments were performed once for each
sample. Related to Figure 3.
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Figure S5. Spike-specific CD4" and CD8" T cell responses by vaccine type. (A) Frequency of Tfhl and Tth2/17
AIM" responses of total AIM* CXCR5'CD4" Tth cell response. (B) AIM and (C) ICS frequencies of CD4" and
CDS8' T cells in healthy and haematology per vaccine type. (D, E) Raw percentages of IFNy TNF" in DMSO and
spike ICS cultures. Statistical significance determined by Wilcoxon test for timepoint comparisons against T1
(floating values) or by Mann-Whitney for comparisons between healthy and patient timepoints or between vaccine
type (connecting line). Exact p values 0.0001<0.05 are shown except p<0.0001=****_Due to limited sample
availability, experiments were performed once for each sample. Related to Figure 3.
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Figure S6. Volcano plots comparing healthy individuals and haematology patients. Related to Figure 3.
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Figure S7. Ex vivo SARS-CoV-2-specific tetramer” T cell responses following COVID-19 vaccination. (A)
Spearman's correlation (rs) of tetramer frequencies versus B cell numbers and RBD IgG titres at T1 and T5. (B)
Tetramer CD4" and CD8'T cell frequencies of healthy individuals per SARS-CoV-2 epitope. (C) Tetramer
frequencies at T1, T7 and T8 where median and IQR are shown. (D) Phenotype profiles of pooled tetramer” cells,
(E) total CD4" T cells and CD8" T cells and (F) per SARS-CoV-2 epitope. The frequency of tetramer” cells have
been right-shifted by 10”7 (i.e. no detected tetramer” events displayed as 107) to allow for visibility on the
logarithmic y axis. Only samples with 10 or more tetramer” events are included in the phenotypic analysis (Figure
D, E and F). Statistical significance determined by Wilcoxon test for timepoint comparisons against T1 ((B)
floating values), Dunn's multiple comparisons set on healthy versus all other disease groups (c), Tukey's multiple
comparison test (floating values are timepoint comparisons against T1; connecting line are comparisons between
healthy and patient timepoints) (D,E), and Dunnett's multiple comparison test for timepoint comparisons against
T1 (F). Exact p values 0.0001<0.05 are shown except p<0.0001=****_Due to limited sample availability,

experiments were performed once for each sample. Related to Figure 4.
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Figure S8. Vaccine responses in donors with breakthrough SARS-CoV-2 infections. Representative TAME
enriched FACS plots gated on CD8" (A) and CD4" (B) T cells depicting tetramer, and memory and activation
phenotypes. (C) Memory and activation phenotypes of DPB4/S1s7-specfic CD4" T cells from individuals with
breakthrough COVID-19. Due to limited sample availability, experiments were performed once for each sample.
Related to Figure 5.
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Figure S9. Ex vivo paired spike and non-spike-specific tetramer” CD8" T cell responses following breakthrough
COVID-19. (A) Representative FACS plots of TAME-enriched non-spike-specific CD8" tetramer populations.
(B) Paired tetramer CD8" T cell frequencies of healthy and haematology participants pre- and post-COVID-19
breakthrough. Any samples with <10 tetramer” events are shown as open symbols. (C) Memory and (D) activation
phenotype profiles for spike and non-spike-specific CD8" T cells for individuals with breakthrough COVID-19.
The frequency of tetramer” cells have been right-shifted by 10”7 (i.e. no detected tetramer* events displayed as 10-
7) to allow for visibility on the logarithmic y axis. Only samples with 10 or more tetramer* events are included in
the phenotypic analysis (Figure C and D). Due to limited sample availability, experiments were performed once
for each sample. Related to Figure 5.
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Figure S10. V and J gene segment usage and covariation in epitope-specific responses. Gene-gene pairing
landscapes are depicted by curves between vertical gene segment stacks (thickness proportional to the number of
TCRs with the gene pairing). Vertical arrows indicate the enrichment of gene segments relative to background
frequencies, each arrowhead indicates a 2-fold enrichment. The clonally expanded TCRs were reduced to a single
data point for this analysis. Genes are coloured based on frequency: red (most frequent), green (second most
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Figure S11. TCR logo representations of CDR3a and B sequence motifs for DPB4/S167, A2/S260 and A24/S120s.
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(middle), and the inferred rearrangement structure (bottom bars coloured by source region; V-region, light grey;
insertions, red; diversity (D)-region, black; and J-region dark grey). The motif scores with chi-squared values
greater than 90 were considered highly significant. Related to Figure 6.
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P43
AZ
CLL

RBD
1gG Curve

TP1

— WLSVO20 VI
1340

LW,

ASC

Activated
Tfh1

Activated
CD8 T cells

Activated
CD4 T cells

P44
Pfizer
CLL

RBD
1gG Curve

-

ASC

cDg7—>

cD38

Activated
Tfh1

Activated
CD8T cells

Activated
CD4 T cells

P45
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P46
Pfizer

Allogeneic SCT

RBD
1gG Curve

ASC

Activated
Tfh1

Activated
CD8T cells

Activated
CD4 T cells

RBD
1gG Curve

ASC

Activated
Tfh1

Activated
CD8 T cells

Activated
CD4 T cells

P48
AZ  CLL
Zanubrutinib

RBD
1gG Curve

ASC

Activated
Tfh1

Activated
CD8T cells

Activated
CD4 T cells
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P49
AZ CLL
Zanubrutinib

RBD
IgG Curve

ASC

Activated
Tfh1

Activated
CD8 T cells

Activated
CD4 T cells

P50
AZ WM
Zanubrutinib

RBD
1gG Curve

ASC

Activated
Tfh1

Activated
CD8T cells

Activated
CD4 T cells

P51
AZ
Myeloma
IMID
RBD
IgG Curve

ASC

Activated
Tfh1

Activated
CD8 T cells

Activated
CD4 T cells
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P52
AZ CLL
Venetoclax

RBD
IgG Curve

ASC

Activated
Tfh1

Activated
CD8T cells

Activated
CD4 T cells

P53
AZ WM
Zanubrutinib

RBD
IgG Curve

ASC

Activated
Tfh1

Activated
CD8 T cells

Activated
CD4 T cells

P54
AZ CLL
Zanubrutinib

RBD
1gG Curve

ASC

Activated
Tfh1

Activated
CD8T cells

Activated
CD4 T cells
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P55
AZ CLL
Treatment naive

RBD
1gG Curve

ASC

Activated
Tfh1

Activated
CD8 T cells

Activated
CD4 T cells

P56
AZ
Autograft

RBD
1gG Curve

ASC

Activated
Tfh1

Activated
CD8 T cells

Activated
CD4 T cells
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AZ
Autograft

RBD
19G Curve

ASC

Activated
Tfh1

Activated
CD8 T cells

Activated
CD4 T cells
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P58
AZ
Autograft

RBD
1gG Curve

ASC

Activated
Tfh1

Activated
CD8 T cells

Activated
CD4 T cells

P59
AZ  CLL
Zanubrutinib

RBD
IgG Curve

ASC

Activated
Tfh1

Activated
CD8 T cells

Activated
CD4 T cells
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AZ
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RBD
IgG Curve

ASC
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Activated
CD8 T cells

Activated
CD4 T cells
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P61
Pfizer
Autograft

RBD
1gG Curve

ASC

Activated
Tfh1

Activated
CD8T cells

Activated
CD4 T cells

P62
Pfizer
Myeloma

RBD
1gG Curve

ASC

Activated
Tfh1

Activated
CD8 T cells

Activated
CD4 T cells
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AZ WM
Zanubrutinib
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1gG Curve

ASC

Activated
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Activated
CD8 T cells

Activated
CD4 T cells
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P64
Pfizer
Autograft

RBD
1gG Curve

ASC

Activated
Tfh1

Activated
CD8 T cells

Activated
CD4 T cells

P65
AZ  CLL
Zanubrutinib

RBD
1gG Curve

ASC

Activated
Tfh1

Activated
CD8 T cells

Activated
CD4 T cells

P66
AZ CLL
Zanubrutinib

RBD
IgG Curve

ASC

Activated
Tfh1

Activated
CD8T cells

Activated
CD4 T cells
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P67
AZ  CLL
Zanubrutinib

RBD
1gG Curve

ASC

Activated
Tfh1

Activated
CD8 T cells

Activated
CD4 T cells

P68
AZ

Allogeneic SCT

RBD
1gG Curve

ASC

Activated
Tfh1

Activated
CD8 T cells

Activated
CD4 T cells

P69
AZ CLL
Zanubrutinib

RBD
1gG Curve

ASC

Activated
Tfh1

Activated
CD8 T cells

Activated
CD4 T cells
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P70
AZ

CLL
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Figure S12. Individual patient’s immune response following COVID-19 vaccination. Tl=baseline, T2=acute
response after first dose, T3=1 month post first dose, T4= acute response after second dose and T5=1 month post
second dose. Due to limited sample availability, experiments were performed once for each sample. Related to
Figure 1, 2, 3 and 4.
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