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5 Supplementary Methods

5.1 Internal-external cross-validation

Training and testing data were separated at the level of hospitals/institutions

(Fig S1). To balance the size of various folds, we made sure each fold

contained at least one "large" institution. Large institutions were defined

as those having a minimum of 9 unique patients.

5.2 NuCLS model

Our NuCLS model modifies the Pytorch implementation of the Mask R-

CNN architecture (He et al., 2017).

5.2.1 Hyperparameters

We used a ResNet18 backbone that was pretrained on ImageNet. Single-

GPU training was done using a batch size of 4, using a stochastic gradient

descent optimiser with a learning rate of 2e-3 and a momentum of 9e-1.

The learning rate and momentum were identified using grid search on the

validation dataset during prototyping. All ground truth nuclei were kept

per image at training, while detections were limited to a maximum of

300 nuclei at inference. 3,000 anchors were kept from the region proposal

network after non-maximum suppression (NMS), using an NMS threshold

of 0.7. The length of anchor sides used in pixels (relative to upsampled

images, see below) is 12, 24 and 48.

5.2.2 Resize using scale factor

Mask R-CNN resizes input images to have a constant short side. While

this may work for datasets where the variability in image size is modest,

or where the camera distance is variable, it is not suitable in computational

pathology applications where large tile sizes are favorable for efficient

and scalable inference. Resizing to a constant short side would shrink

nuclei during inference. To remedy this NuCLS resizes using a scale factor,

instead, thus preserving the nuclear size and aspect ratio at inference for any

tile size. We used a scale factor of 4.0, meaning that images were digitally

zoomed to a 0.05 micron-per-pixel resolution before being analyzed. This

corresponded to a sTILs diameter of 4.4 “pixels” in the feature map

generated by the ResNet18 backbone. As a form of scale augmentation,

we jittered this scale factor by up to 10% during training.

5.2.3 Training with hybrid datasets

Our annotation protocol generates a mixture of manually placed bounding

boxes and approved suggestions of segmented nuclei. We train from this

data by ignoring bounding boxes when calculating the mask loss.

5.2.4 Specialized classification convolutions

Four extra convolutional filters were applied to the feature map output from

the ResNet18 backbone (He et al., 2016). The filters had a kernel size of 3,

a stride of 1, and a dilation and padding of 1 to preserve feature map size

(Fig 4a). The resultant feature map was only used for classification and

only contributed to the classification loss. The same procedure used for

box regression was used for classification: 1. ROIAlign to obtain per-object

convolutional feature maps; 2. flattening of the feature map; 3. passage

through a single fully-connected layer.

5.2.5 Class-agnostic detection & segmentation

Both the box regression output and nucleus masks were simplified and

made classification-agnostic. We relied on the fact that nucleus shapes and

sizes are fairly homogeneous to simplify the learning problem and preserve

classification probability vectors at inference. Specifically, we relied on a

global NMS process (Fig 4b). We summed the classification probabilities

for all classes (i.e. everything except background), and concatenated all

these “objectness” scores for each FOV. An NMS process was then carried

out as usual. That is, boxes were sorted by objectness score, and if a

box overlapped with a higher-scoring box by more than a particular IOU

threshold (0.2 in our case), it was removed.

5.2.6 Data augmentation

Previous research has shown that the combined use of color normalization

and augmentation improves performance of deep learning models

in histopathology applications (Tellez et al., 2019). All FOVs were

color normalized using the Macenko method before training began

(Macenko et al., 2009). During training, FOVs also underwent a stain

augmentation routine (Tellez et al., 2018). This augmentation routine

randomly perturbed the hematoxylin and eosin channels each time the

image was loaded, using a sigma of 0.5 for the random uniform distribution.

The HistomicsTK package was used for both the color normalization

and augmentation operations (digitalslidearchive.github.io). Additionally,

each training image was cropped at a random location after loading to

memory (300×300 pixel region) to increase robustness.

5.2.7 Handling class imbalance

Nucleus class imbalance was mitigated by weighted random sampling

with replacement. With the exception of ambiguous nuclei, which received

zero weight, class weights were inversely proportional to the frequency of

occurrence in the training set. Since we load data on a per-FOV basis, each

FOV f was assigned a sampling weight Wf that favors FOVs with a high

density of uncommon nuclear classes, as follows:

Wf = Uf ÷

F
�

i=1

Ui (1)

Uf =

C
�

c=1

�

WcNcf

�

÷Af (2)

Where, C is the number of classes, F is the number of FOVs in the

training set, Ncf is the number of nuclei of class c in FOV f , and Af is

the area of FOV f . Wc is the weight assigned to class c and is determined

as follows:

Wc = Vc ÷

C
�

i=1

Vi (3)

Vc = 1÷

F
�

f=1

Ncf (4)

5.2.8 Matching detections

Algorithmic detections were matched to ground truth using linear sum

assignment from the Scipy library (Kuhn, 1955).
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Supplementary Tables

Table S1. NuCLS model tuning for the nucleus detection task on the validation set (fold 1). All accuracy values are percentages. After passage through the model

backbone, the feature map is markedly smaller than original images due to the max pooling operations. This means that without digital zooming, the diameter of a

‘typical’ small nucleus, say TILs, is very small in the feature map. As a consequence, when the object-specific part of the feature map is pooled using ROIAlign,

there is very little information to use for box regression or classification. Abbreviations: MPP, microns-per-pixel; AP@0.5, average precision when a threshold of

0.5 is used for validating a detection.

Scale factor Equivalent MPP Backbone
TILs diameter

(image, pixels)

TILs diameter

(featmap, ‘pixels’)
AP @ 0.5

1 0.2 Resnet18 30 1.1 61.7

1 0.2 Resnet34 30 1.1 63

1 0.2 Resnet50 30 1.1 62

2.67 0.075 Resnet18 80 3 76.4

2.67 0.075 Resnet34 80 3 74.3

2.67 0.075 Resnet50 80 3 Mem.Err.

4 0.05 Resnet18 120 4.4 75

4 0.05 Resnet34 120 4.4 72.9

4 0.05 Resnet50 120 4.4 Mem.Err.

Table S2. NuCLS model tuning for the nucleus classification task on the validation set (fold 1). All accuracy values are percentages. Empty entries correspond to

metrics which were not applicable for the configuration (config) being studied. Classification AUROC statistics were not possible for configs where each nucleus

had a single classification as opposed to a classification probability vector, as in the baseline Mask R-CNN model. The baseline model achieves a lower performance.

We show that this is due in large part to the coupling of detection and classification, which may not be ideal for datasets with many small and clustered objects. After

decoupling, the performance dramatically improves. Configs where the model was trained on super-classes do not have accuracy statistics for the main classes. On

the other hand, when models were trained on the main classes, super-class predictions were easily obtained by aggregating the predicted class probabilities.

Overall classification accuracy Classification accuracy breakdown (AUROC)
Detection

MCC Micro Macro Tumor Stromal sTILs

Supercl.? Supercl.? Supercl.? Subclasses Subclasses Subclasses
Config

AP @.5
No Yes No Yes No Yes Non-mitotic Mitotic

Superclass
Stromal Macrophage

Superclass
Lymphocyte Plasma cell

Superclass

1 70 1.8 -3 - - - - - - - - - - - - -

2 74.5 57 65 93.4 94.3 85.2 88.2 93.1 91.5 93.2 88.8 71 83.6 95 78.6 95

3 75.4 59.6 66 93.5 93.7 84.7 85.2 94.2 90.6 94.5 89.1 73.5 82 95.2 84.2 95.7

4 72.2 52.6 60.9 91 92.3 82.4 83.6 92.5 90.8 92.1 86.7 61.7 78.9 94.7 82.9 93.4

4+ 72.2 54.5 62.5 90.3 91.9 84.1 85.8 92.2 88.5 92 88.1 68.4 81.5 93.7 84.4 93.4

5 72.6 - -5 - - - - - - - - - - - - -

6 74.8 - 63.6 - 93.5 - 85.9 - - 92.8 - - 81.3 - - 95

7 72.2 - 63.1 - 93.1 - 82.8 - - 91.9 - - 81 - - 94.9

7+ 72.2 - 64.8 - 92.7 - 83.7 - - 93.1 - - 83.1 - - 94.8

Config 1: Baseline Mask R-CNN implementation. We discounted bounding boxes from the mask loss to enable training on our hybrid data.

Config 2: Config 1, but with class-agnostic detection and non-maximum suppression.

Config 3: Config 2, but with 4 extra convolutions that specialize in classification.

Config 4: Config 1 for nucleus detection, then an independent nucleus classification model using thumbnails of detected nuclei.

Config 4+: Same model from config 4, but with test-time augmentation (random shift) at the classification stage.

Config 5: Config 1 but trained using supercategories.

Config 6: Config 2 but trained using supercategories.

Config 7: Config 4 but trained using supercategories.

Config 7+: Same model from config 7, but with test-time augmentation (random shift) at the classification stage.
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Table S3. Generalization accuracy of the NuCLS models trained on the corrected single-rater dataset, and evaluated on the multi-rater dataset using internal-external

cross-validation. All accuracy values are percentages. Fold 1 acted as the validation set for hyperparameter tuning, so the bottom row shows mean and standard

deviation of three values (folds 3-5). Note that the number of testing set nuclei varied by fold because the split happens at the level of hospitals and not nuclei. There

were no testing set slides with available multi-rater truth to assess the performance on fold 2. Notice that the classification accuracy is consistently higher when the

assessment was done at the level of super-classes. Abbreviations: AP@.5, average precision when a threshold of 0.5 is used for considering a detection to be true;

mAP@.5:.95, mean average precision at detection thresholds between 0.5 and 0.95.

Detection Segmentation Classification

Fold
N AP @.5 mAP @.5:.95 N Median IOU Median DICE N

Super-

classes?
Accuracy MCC AUROC (micro) AUROC (macro)

No 70.5 63.6 94.2 85.61

(Val.)
209 62.9 21.0 42 67.6 80.7 173

Yes 86.1 79.0 95.7 95.6

No 63.5 42.4 80.7 85.5
3 66 65.2 29.0 7 76.9 86.9 52

Yes 61.5 42.5 75.1 84.7

No 68.0 54.3 94.3 89.3
4 317 71.5 32.6 82 76.2 86.5 278

Yes 84.9 75.5 96.9 92.0

No 67.8 55.8 92.2 90.4
5 213 58.3 22.9 49 71.8 83.6 174

Yes 75.3 65.6 91.4 95.2

No 66.4 (2.1) 50.8 (6.0) 89.1 (6.0) 88.4 (2.1)Mean

(Std)
- 65.0 (5.4) 28.2 (4.0) -

74.9

(2.3)

85.7

(1.5)
-

Yes 73.9 (9.6) 61.2 (13.8) 87.8 (9.2) 90.6 (4.4)

Table S4. Generalization accuracy of the trained NuCLS models - broken down by superclass. All accuracy values are percentages. Note that the corrected

single-rater dataset is likely more reflective of the generalization accuracy, since it contains 1,744 unique FOVs. The multi-rater dataset only has 52 unique FOVs,

hence the large variation in performance.

MCC AUROC
Fold N

Overall Tumor Stromal sTILs Micro-avg. Macro-avg. Tumor Stromal sTILs

Training: Single-rater dataset; Testing: Single-rater dataset

1 (Val.) 5351 65.2 72.9 47.1 73.7 93.7 89.0 94.2 83.2 95.3

2 13597 68.2 73.7 53.0 76.6 94.6 86.5 94.5 87.4 96.2

3 11176 68.1 74.9 46.9 77.9 94.4 89.4 96.1 84.3 95.7

4 7288 73.5 80.6 56.9 79.6 96.1 87.4 97.2 89.1 95.9

5 6294 52.4 57.4 40.7 60.1 89.0 80.8 88.8 80.7 91.0

Mean

(Std)
-

65.6

(7.9)

71.7

(8.6)

49.4

(6.1)

73.5

(7.8)

93.5

(2.7)

86.0

(3.2)

94.2

(3.2)

85.4

(3.2)

94.7

(2.1)

Training: Single-rater dataset; Testing: Multi-rater dataset

1 (Val.) 173 79.0 88.0 73.0 78.6 95.7 95.6 97.7 94.4 95.5

3 52 42.5 38.5 26.3 73.9 75.1 84.7 87.1 83.0 90.9

4 278 75.5 77.8 53.1 90.2 96.9 92.0 96.4 91.9 99.2

5 174 65.6 60.0 67.1 72.1 91.4 95.2 96.6 92.2 97.9

Mean

(Std)
- 61.2 (13.8) 58.8 (16.1) 48.8 (16.9)

78.8

(8.2)

87.8

(9.2)

90.6

(4.4)

93.4

(4.4)

89.0

(4.3)

96.0

(3.6)
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Table S5. List of interpretable features used as input for DTALE, which were extracted using the HistomicsTK package.

Category N Description Feature Category N Description Feature

Pixels occupied by the nucleus Area Mag.Mean

MajorAxis Mag.StdLength of major/minor axes of the ellipse

with the same 2nd central moments MinorAxis Mag.Skew
Size 4

Pixelated perimeter using 4-connectivity Perimeter Mag.Kurt.

Similarity to the shape of a circle Circularity His.Entropy

Eccentricity of fitted ellipse

(a measure of aspect ratio)
Eccentricity His.Energy

Diameter of a circle with the same area Equiv.Diam. Canny.Sum

Ratio of nucleus area to its bounding box Extent

Edges 8
Gradients and canny edge filters

(hematoxylin channel)

Canny.Mean

Aspect ratio of a fitted ellipse Min.Maj.Axis Mean

6

A measure of convexity Solidity
2

Angular 2nd moment (ASM):

A measure of homogeneity Range

FSD1 Mean

FSD2
2

Contrast: Intensity variation for

neighbouring pixels Range

FSD3 Mean

FSD4
2

Correlation: Intensity

correlation for neighboring pixels Range

FSD5 Mean

Shape

6 Fourier simplifications of object shape.

FSD6
2

Sum of squares:

A measure of variance Range

Min Mean

Max
2

Inverse difference moment:

A measure of homogeneity Range

Mean Mean

Median
4

Sum average &

Sum variance for all features Range

MeanMed.Diff Mean

Std
2 Sum entropy features

Range

IQR Mean

MAD
2 Entropy

Range

Skewness Mean

Kurtosis
4

Difference variance &

Difference entropy Range

HistEnergy Mean

Intensity 12 Nucleus hematoxylin intensity features.

HistEntropy

Haralick

texture

features

4
Information Measure of

Correlation (IMC) (2 types) Range
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Supplementary Figures

Fig. S1. Internal-external cross-validation procedure. The TCGA dataset originates from multiple institutions, and we used this fact to obtain an estimate of the external analytic validity

of our models. Fold 1 was used for tuning hyper parameters, while folds 4-5 were used as external testing sets.

Fig. S2. Progression of NuCLS model training and convergence on fold 1. Our prototyping experiments on fold 1 (not shown) showed that the detection model started overfitting after 15k

detection updates, so we froze detection weights after 15k iterations and allowed 1k extra iterations for fine-tuning of the classification layers. Abbreviations: RPN, region proposal network;

AP@.5, average precision when a threshold of 0.5 is used for considering a detection to be true, mAP@.5:.95, mean average precision at a range of detection thresholds between 0.5 and

0.95; AUROC, area under receiver-operator characteristics curve.
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Fig. S3. Additional examples showing qualitative performance of NuCLS model on testing sets. The displayed ground truth comes from the pathologist-corrected single-rater dataset. The

images are representative of a number of different hospitals in each of the testing sets from the cross-validation scheme. Detection and classification performance closely matches the ground

truth, and discrepancies are marked by arrows. Not all discrepancies are algorithmic errors, including: i. adjacent nuclei that could conceivably be viewed as a single nucleus; ii. missing

annotations; iii. morphologically ambiguous nuclei. Some errors arise from the lack of incorporation of contextual information in our models. Without low power context, macrophages

and normal ductal/acinar cells may look morphologically similar to tumor cells.

Fig. S4. Confusion matrix of NuCLS model predictions on the testing sets. For each of folds 2-5, the NuCLS model trained on the single-rater dataset training slides was used to predict

FOVs from the corresponding testing set slides. The counts shown are aggregated over all testing sets. a. The single-rater dataset is considered to be the truth. b. Inferred truth from

pathologists (inferred P-truth) on the multi-rater Evaluation dataset is considered to be the truth.

Fig. S5. Representative vs discriminative approximation of NuCLS model decisions using DTALE. a. Overlay of the full DTALE tree (light gray) on top of the embedding to which it was

fitted. In black, we show paths to the nodes that allow representative approximation of NuCLS decisions, i.e. highest F-1 score. b. Nuclei that correspond to representative DTALE nodes. c.

DTALE nodes that correspond to the most discriminative approximation of the NuCLS decisions, i.e. highest precision. d. Nuclei that correspond to discriminative DTALE nodes.


