
Supplementary Information for “Privacy-
Aware Estimation of Relatedness in 
Admixed Populations” 
Su Wang1, Miran Kim2, Wentao Li3, Xiaoqian Jiang3, Han Chen1,4, Arif Harmanci1,* 

1 Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science 
Center at Houston, Houston, TX 77030, USA. 
2 Department of Computer Science and Engineering and Graduate School of Artificial Intelligence, Ulsan 

National Institute of Science and Technology, Ulsan, 44919, Republic of Korea. 
3 Center for Secure Artificial intelligence For hEalthcare (SAFE), School of Biomedical Informatics, 

University of Texas Health Science Center, Houston, TX, 77030, USA. 
4 Human Genetics Center, Department of Epidemiology, Human Genetics and Environmental Sciences, 
School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX 77030, 
USA. 
* Corresponding Author 

 

On Distance and Correlation-based Kinship Estimators  
We discuss the motivation behind the formulations of the distance and correlation-based kinship 

estimators. For the sake of simplicity, we first present the formulations using homogeneous ancestry and 

discuss extension to the heterogeneous case. 

Distance-based Kinship Estimator. The distance-based estimator utilizes the expectation of the distance 

between the genotypes of the query subjects 𝑖 and 𝑗 over the variants, i.e., 
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where expectation 𝐸𝑘(⋅) indicates that the expectation is computed over the variants. This expectation 

can be written conditional on the IBD sharing state: 
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An important observation is that the expected genotype distances conditioned on the IBD sharing events 

can be formulated as: 
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Above, 𝜇𝑘 denotes the alternate allele frequency of the 𝑘𝑡ℎ variant and the expectation of the mean allele 

frequencies is computed over the variants. These relationships can be derived using the probabilities 

conditioned on IBD state. For example, given 𝑘𝑡ℎ variant with allele frequency 𝜇𝑘, the expected genotype 

distance can be written as: 
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Replacing the genotype probabilities conditioned on 𝐼𝐵𝐷𝑖,𝑗 = 0, into above, we get: 
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Rearranging terms, we get the final distance estimator: 
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In the final estimator, the expectations are estimated using means over the variants. Equation (13) of main 

text modifies this estimator by integrating individual specific allele frequencies in the distance estimation 

(numerator) and the denominator. 

Correlation-based Kinship Estimator. The correlation-based estimator relies on an expected covariance 

statistic: 
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where the expectation is calculated over the variants. Similar to above case, we formulate the expectation 

conditional on the IBD state at each variant: 
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Thus, the correlation-based kinship estimator can be derived using mean of the covariance statistic over 

all variants: 
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Equation (12) of the main text replaces the allele frequencies with individual-specific allele frequencies. 

Comparison of Distance and Correlation-based Estimators. An important distinction between the above 

derivation is the starting point of the estimators. Distance-based estimator utilizes the convergence of the 

mean squared-distance between the variant genotypes to the expected kinship value and therefore loses 

the covariance information. This information becomes important to estimate the deviations around 

mean. For example, the enrichment of excess homozygous genotypes is indicative of ancestral inbreeding 

events and can be used to estimate the inbreeding coefficient. Correlation-based estimators are useful 

for detecting these because they rely on convergence of the covariance between the genotype signals. 



Both estimators rely on Hardy-Weinberg Equilibrium (HWE) to hold for the analyzed variants and will give 

biased estimates when variants do not satisfy HWE. 

Extended Background on Genomic Privacy and Kinship Estimation 
Decreasing cost of sequencing has contributed to a massive increase in the number of available genetic 

data [1,2]. Coupled with recreational usage of genetic data, genetic data has become increasingly 

prevalent in clinic and daily life [3,4]. There are, however, challenges around the usage of genetic data. 

For example, as the genealogy databases are growing in size, genetic surveillance has also taken off and 

is actively used by law enforcement to solve cold cases [5,6]. This is mainly accomplished by searching for 

genetic data recovered from crime scenes and using publicly available genealogy databases to identify 

relatives. Genetic data is sensitive in nature and can be used to re-identify individuals very easily. Even a 

a handful genetic variants from an individual can be used to reidentify them within a large cohort [7–10]. 

This method is very effective for identifying individuals and can be used to identify a large portion of the 

population [11]. In addition, numerous computational “attacks” that can enable reidentification of 

individuals have been described in previous studies. These include linking attacks [12–14], genotype 

reconstruction attacks [15–17], attacks on genealogy databases [18], membership and phenotype 

inference attacks[19–23], and model inversion attacks [24]. Much of these attacks implicate and create 

discrimination and stigmatization risks to individuals themselves and their families [25–28]. To counter 

these concerns, several laws have been enacted. European Union’s General Data Protection Regulation 

(GDPR) is currently the most extensive regulation on the 3rd parties regarding personal data sharing and 

storage.  

One of the main usages of genetic data is identifying relatedness and relatives.  In principle, parent-child 

and siblings share approximately half of their genetic information. The sharing patterns decrease as the 

relatedness degree decreases, e.g. grandparents, cousins, etc. This sharing stems from inheritance of DNA 

through random assortment and homologous chromosome recombination in meiosis. Based on the 

expected value of the realized kinship value, we can find relatives using marker genotypes [29]. This 

biological phenomenon has far outreaching impact and is used extensively in population genetics [30] and 

forensics [31,32]. Genetic relatedness or kinship [33,34] is an important quantity that is central to many 

fields such as behavioral science [35], human evolution [36], animal and plant breeding [37,38]. Of note, 

kinship estimation is essential in linkage mapping studies [39] and kinship matrices are also used to model 

the polygenic effects in association studies [40–42] for the correction of cryptic relatedness that is known 

to create confounding effects and bias effect sizes [41,43]. While pedigree information provides an exact 

value of expected kinship, systematic estimation and correction of relatedness among samples can be 

more beneficial in large studies [44]. Also, even in pedigrees, genetic kinship estimation can provide more 

exact estimates of variation [45] among individuals and should be more preferred than using reported 

pedigree information that can contain manual curation errors. With the growing awareness to increase 

diversity in the field of population genetics, there is a need to correct for the biases that are caused by 

admixed populations. Moreover, non-random mating, i.e., assortative mating, among similar ancestral 

groups [46,47] may bias estimates of relationship. General methods that assume random mating or simple 

homogeneous populations are not effective in appropriately estimating kinship and may impact 

downstream analysis and interpretations. 

The kinship between two individuals, denoted by 𝜙, is the probability that two alleles at a random position 

in the genomes of the individuals are identical-by-descent (IBD), i.e., they are inherited from the same 



ancestor. Kinship coefficient is closely related to other metrics such as the inbreeding coefficient [48] and 

IBD-sharing probabilities [49], which are essential for estimating population-level genetic information. 

Multiple methods have been proposed for estimating kinship and related statistics using marker 

genotypes. Methods that make use of marker genotypes infer the realized kinship by estimating IBD using 

pairwise comparison of Identical-by-state (IBS) marker genotypes and developing statistics based on the 

expected matches and mismatches [50].  

Allele frequency-based approaches include maximum-likelihood (ML) and method-of-moments (MoM) 

approaches. ML approaches rely on joint probabilistic modeling of observed genotypes and maximizing 

the likelihood (ERSA [51] and RelateAdmix [52]) and have higher computational requirements than MoM 

estimators, which relate IBS frequencies to IBD estimates by matching mean IBS markers under Hardy-

Weinberg equilibrium. Among these, ML methods [53] seem to perform slightly better in comparison to 

MoM estimators for identifying relatives albeit higher computational requirements. Of note, genomic 

relationship matrix (GRM), which is also used in plink [54] package, has been used to quantify relatedness, 

although it may be sensitive to variant selection [55]. Similarly, GRAF utilizes efficient metrics and is used 

to detect close relatives and duplicate individuals in the protected datasets in dbGAP [56]. 

KING [57] utilizes very efficient estimators for kinship and IBD sharing probabilities derived from IBS 

statistics and a novel formulation of genotype distances in terms of kinship estimates. However, KING 

underestimates kinship coefficients when there is population admixture in the compared individuals. 

REAP [58] and PC-Relate [59] make use of estimation of population admixture [60] and individual-specific 

allele frequencies, which are used to correct biases in kinship estimates in admixed populations. In 

general, REAP, PC-Relate, and GCTA’s estimation methods of kinship are inherently very similar based on 

a conditional genotype correlation metric while KING provides a different approach based on a 

formulation of kinship in terms of squared genotype distance. KING’s efficiency derives from the fact that 

genotype distances can be formulated as bitwise operations that can be very efficiently computed. On the 

other hand, KING suffers from underestimation of kinship for distantly related and unrelated individuals, 

as also discussed in Manichaikul et al. [57]. 

New methods are developed for estimating kinship statistics directly from next-generation-sequencing 

datasets such as NGSRemix [61], SEEKIN [62], lcmKin [63,64] , and LASER [65]. These methods make use 

of read level information to extract kinship information by taking the variant accuracy into account, which 

is important when for low-coverage samples. There are also methods that derive kinship and relatedness 

using efficient IBD-segment matching between individuals and quantify kinship directly from match 

genomewide statistics such as FastIBD [66], RAFFI [67], IBDKin [68]. One of the drawbacks of these 

methods is that they require phased genotype data, which may incur high computational costs while 

estimating IBD statistics on large populations. However, most of the large scale genotype data are 

distributed after phasing and can be processed with these tools. 

Numerous methods have been proposed for privacy-aware analysis of ancestry and admixture. Kinship 

statistics are sensitive information as they can be used to detect relatives in 3rd party databases without 

consent of the owners. Similarly, population-level inbreeding estimates can cause marginalization and 

stigmatization risks [69–71]. It is therefore important to consider privacy risks while estimating and 

reporting kinship for underrepresented and historically isolated populations. PREMIX [72] computes 

admixture rates in a privacy-preserving manner using now deprecated SGX-based extensions, using an EM 

step to optimize admixture rates. He et al. proposed using an efficient genome sketching technique and 



combined it with cryptographic evaluation to search for relatives using marker genotype datasets [73]. 

Similar sketching techniques have been proposed for finger print and relative search analysis [74]. Dervishi 

et al. proposed privacy-aware kinship estimation by integrating local differential privacy and genotypic 

data hiding [75], which may hinder the utility of genetic data and may provide ad-hoc privacy guarantees. 

While these methods are promising, the impact of admixture is not generally taken into account, in 

addition, the effectiveness of the methods is tested only for one kinship statistic that provides partial 

information about relatedness.  

Here, we present SIGFRIED, a projection-based approach to utilize existing reference genotype datasets 

for estimating admixture rates for each individual and use these estimates for kinship and related statistics 

[65] in admixed populations. SIGFRIED can also perform secure kinship estimation to provide 

confidentiality to genotype data. Projection-based on Principal Component Analysis (PCA) is used 

extensively to estimate population structure. For example, PC-Relate [59] first performs PCA on the 

genotype matrix of unrelated individuals and estimates individual-specific allele frequencies of variants 

using a base average frequency and a residual estimate of the ancestry-specific allele frequency 

component. REAP [58] depends on estimation of individual-specific allele frequencies using external tools 

such as frappe [76] or ADMIXTURE [77].  

SIGFRIED takes a 2-step approach to decrease computational requirements while making use of publicly 

available reference panels: (1) We estimate admixture rates using a non-linear function of projections on 

the reference panel. Usage of PCA and reference populations with a “distance-based” estimation of 

admixture has shown promise in previous studies [78,79]. We capitalize on these and propose a similar 

approach as input to kinship statistic estimation. (2) The predicted admixture rates are used to estimate 

individual-specific allele frequencies and are integrated into computation of kinship, inbreeding, and IBD 

sharing probabilities. In comparison to previous methods, SIGFRIED imposes less computational burden 

without the requirement of a full PCA or more complex EM-based admixture estimates using the genotype 

matrix for estimation of the kinship and IBD-sharing probabilities, which are prohibitively challenging in 

secure implementations. Rather, we show that when the existing reference panel is concordant with the 

ancestry of individuals, projection-based admixture estimates can be used for accurate kinship estimates. 

Thus, SIGFRIED uses admixture rates only as intermediary information. After establishing the accuracy of 

the projection-based approach, we focus on the privacy-aware implementation. One of the main 

advantages of SIGFRIED’s approach is that it renders itself well for efficient and flexible privacy-aware 

computations because of its modular approach. We formulated and implemented a secure federated 

kinship estimation among 2-sites wherein genetic data is kept confidential while kinship statistics are 

estimated. Our implementation relies on homomorphic encryption [80], which enables processing 

encrypted genotype data directly without ever being decrypted and therefore provides provable security 

guarantees on the genetic data. Overall, these results highlight the utility of existing population panels for 

secure estimation of kinship statistics. From privacy-preserving analysis perspective, this can enable 

circumventing a full PCA computation – which is prohibitively challenging for large genotype datasets – 

and enable secure and accurate analysis of relatedness and population-level inbreeding under different 

scenarios. 

Secure Computation of Zero-IBD-Sharing Probabilities (𝛿𝑖,𝑗
0 ).  We again assume that 2 sites would like to 

compute zero-IBD sharing probabilities without sharing genotype data in plaintext form. We first 

decompose computation of the zero-IBD sharing probabilities into 4 components: 
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In (11), 𝐼𝑖,𝑘
(1,𝐴𝐴)

 denotes an indicator variable that takes on a value of 1 if 𝐺𝑖,𝑘
(1)

= 2 (i.e., AA) and is 0 

otherwise. 𝐼𝑖,𝑘
(1,𝑎𝑎)

, 𝐼𝑖,𝑘
(2,𝑎𝑎)

, and 𝐼𝑖,𝑘
(2,𝐴𝐴)

 are similarly defined. To compute 𝛿𝑖,𝑗
0  from (1), it is necessary to 

share indicator matrices and individual-specific allele frequencies between sites. The indicator variables 

explicitly describe the homozygous genotypes and they must be encrypted. As in estimation of 𝜙𝑖,𝑗, we 

assume Site-2 homomorphically encrypts the indicator variable matrices, 𝐼𝑗,𝑘
(2,𝐴𝐴)

, 𝐼𝑗,𝑘
(2,𝑎𝑎)

  and sends them 

to Site-1. We assume allele frequencies from Site 2 are sent in plaintext format without encryption. Next, 

Site-1 securely computes the numerator in (1): 〈𝐼𝑖,⋅
(1,𝐴𝐴)

, 𝐼𝑗,⋅
(2,𝑎𝑎)

〉  + 〈𝐼𝑖,⋅
(1,𝑎𝑎)

, 𝐼𝑗,⋅
(2,𝐴𝐴)

〉. The denominator is 

computed in plaintext format on Site-1 using the allele frequencies from the two sites. Site 1 sends the 

encrypted zero-IBD probabilities, 𝛿𝑖,𝑗
0 , to Site-2. Site-2 decrypts  𝛿𝑖,𝑗

0  and shares the results with Site-1. As 

with distance-based kinship estimation, the numerator and denominator in (1) can be computed in 

parallel on the two sites to decrease the computational load on one site. 

Discussion on Advantages and Limitations of SIGFRIED 
Kinship and related statistics are essential in many genetic studies and they are sensitive for individual 

and group-level privacy. Here, we presented SIGFRIED, an efficient, accurate, and secure method that 

utilizes projection on existing reference panels. SIGFRIED balances accuracy and efficiency to ensure that 

the final algorithm can be implemented with secure primitives. While projection on existing population 

panels has been utilized previously by other methods, SIGFRIED utilizes projection to circumvent 

computations that are otherwise hard to implement in the secure domain, such as performing full secure 

PCA or computationally intensive expectation-maximization iterations. From this perspective, we view 

SIGFRIED as a private-by-design methodology wherein the privacy considerations are balanced against 

efficiency and accuracy and these are reflected in each step of the method. Projection does not explicitly 

require reference panel genotypes, and only reference population centroid coordinates, allele 

frequencies, and PCs are necessary for the projection. Since the reference genotypes are not explicitly 

shared, we believe the centroids and PCs create minimal risk for reference panels under restricted access 

(i.e. TOPMed [81]). 

While we presented a specific privacy-preserving scenario with a proof-of-concept implementation for a 

2-site federated estimation of kinship, the implementation and the scenarios can be differently setup and 

framed to expand to more than 2 sites and also for utilizing an outsourcing service for kinship estimation. 

The outsourcing can be performed by an untrusted entity because sensitive data is encrypted and cannot 

be used to infer any information by an unauthorized party. When deployed on a highly scalable but 

untrusted environment such as AWS or Google Cloud, the performance can be tuned as desired. Also, 

SIGFRIED implements kinship estimation in a flexible manner using modular steps and decomposable 

functions. This is beneficial for optimizing privacy-vs-performance in different scenarios. The flexibility is 

important because new protocols can choose to encrypt only certain parts of the intermediate statistics 

to ensure that performance is optimized and security requirements are met according to local regulations 

and patient or participant consent. For instance, the individual-specific allele frequencies are averages of 

population-specific allele frequencies weighted by admixture rates. As such, they are highly aggregated 

function of genotypes and can be deemed safe to share in plaintext form.  



SIGFRIED has several limitations that warrant future research. First, we presented two distance-to-

admixture mapping functions that may not be optimal for certain scenarios and may need re-

parametrizations. Also, new functions for mapping distances to admixture rates can provide less biased 

results. For example, it is likely that other functions such as logit can be explored for further optimizations 

in accuracy and secure implementation. Second, SIGRFIED relies on a representative set of reference 

populations and a-priori knowledge of the query dataset, which may be limiting factor in certain cases, 

especially when the query samples are of unknown origin or are members of underrepresented 

populations. We foresee that the increase in the number and diversity of available reference panels (i.e. 

TOPMed Project) will make the reference panels more complete and inclusive. It is, however, still 

necessary to generate the reference panel centroids in the most optimal way, which is a direction that 

should be studied further. One example of this is PCAir[60] method, which estimates the principal 

components by selecting a subset of the query individuals who are most likely unrelated and uses these 

to compute the principal components. Although this approach cannot be efficiently implemented in 

secure primitives as it is, it can be used to build a more accurate centroid estimation method in SIGFRIED. 

However, PCAir requires a metric to define the unrelated that is generated by an external tool [82] (such 

as KING-Robust), which may create a circularity problem as kinship estimation depends on identifying 

unrelated individuals. It is worth noting, however, that identification of unrelated query individuals is 

generally a much easier task than the exact estimation of kinship. Third, the performance of secure 

federated kinship estimation may be prohibitive for very large sample sizes. To get around this limitation, 

the secure computation of kinship and IBD-sharing probabilities can be more efficiently performed with 

the use of simpler encryption techniques, which can provide better performance. The performance can 

further be improved using smaller number of variants depending on kinship distance that is required from 

the estimation – for example, 1st and 2nd degree relatives can be identified with smaller number of 

variants, which can improve the secure estimation performance.  

SIGFRIED has several advantages over other approaches. For example, numerous other methods rely on 

large sample sizes that are representative of the underlying populations (e.g., PC-Air or ADMIXTURE) or 

existence of phased genotype data (IBDKin and RAFFI). On the other hand, SIGFRIED relies on an existing 

reference population panel and can work effectively even in small sample sizes. Also, the estimates of 

kinship statistics do not rely on the query genotype data because SIGFRIED’s individual-specific allele 

frequencies do not change when query data is subsetted or extended by the addition of new samples. 

This is not necessarily true for other methods that estimate admixture and allele frequency parameters 

from query genotype datasets.  

Supplementary Figures 
 

 

 

 

 

 



 

 

 

 

 

 

Supplementary Figure 1. Projection of the 2,504 individuals in the 1000 Genomes Project on top 2 

components of the genotype matrix. Each dot represents an individual and colors indicate the population 

of each individual. It should be noted 2 components are used for illustration purposes. The number of 

components that SIGFRIED uses for admixture estimation step can be changed by the user. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

      



 

 

 

 

 

 

 

Supplementary Figure 2. The pedigree structure that is used for simulations. Individuals named with P1-

8 are the founders. The 1st, 2nd, and 3rd-degree cousins are indicated by grey arrows. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Supplementary Figure 3a. The average absolute difference between REAP-ADMIXTURE and correlation-

based kinship statistics with changing 𝜅 in inverse-distance to admixture mapping function. Red line shows 

the difference in kinship coefficient (𝜙𝑖𝑗) and cyan line shows the difference in zero-IBD probability, 𝛿𝑖𝑗
0 . 

Each plot shows the difference in statistics for a distinct distance metric that is utilized in admixture 

estimation. The distance metric is indicated at the top of the plot, namely Minkowski, Chebyshev, and 

Mahalanobis distances. For Minkowski distance metric, the power term (L) that is used for the 

corresponding plot is indicated in the parenthesis. 

 

 

 

 

 

 

 

 

 

 

 

 

     

                                                        

                                   



 

Supplementary Figure 3b. The average absolute difference between REAP-ADMIXTURE and correlation-

based kinship statistics with changing 𝜅 in inverse-distance to admixture mapping function for different 

distance metrics. Each barplot corresponds to a distance metric (indicated on the x-axis) and distance 

weight parameter shown in the parenthesis on the x-axis. Left plot shows the difference in IBD0 

probability estimated by REAP-ADMIXTURE and SIGFRIED and right plot shows the kinship difference 

between the methods. 

 

 

 

 

 

 

 

 

 

 

 

     



Supplementary Figure 3c. The average absolute difference REAP-ADMIXTURE and correlation-based 

kinship statistics with changing number of components (𝐾) used in distance estimation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

     



Supplementary Figure 3d. The distribution of Wasserstein distance between ADMIXTURE-predicted 

rates and projection-based rates (marked with “Real”) and distribution of Wasserstein distance between 

ADMIXTURE-predicted rates and uniform assigned rates (marked with “Control”). 

 

 

 

 

 

 

 

 

 

 

 

 

 

                              

     



Supplementary Figure 3e, 3f. (S3e) The distribution of assigned admixture rates to the 4000 non-founder 

individuals in the simulated pedigrees by ADMIXTURE using data in Fig. S3d. Each column corresponds to 

an individual and the length of colored bars indicate y-axis the admixture fractions of each individual in 

the corresponding column. The colors in each column indicate different ancestries: Red is GBR, Green is 

CDX, and Blue is YRI. (S3f) The distribution of assigned admixture rates by projection-based admixture 

estimation. 

 

 

 

          

                              



Supplementary Figure 3g. The kinship coefficient (x-axis) distribution with different number of variants 

that are uniformly subsampled from the 1000 Genomes variants. Each plot shows a kinship distribution 

generated using number of variants indicated at the label.  

 

 

 

 

                
           

     



Supplementary Figure 3h, 3i. Impact of genetic distance and heterozygosity of the selected variants on 

kinship statistic estimations. (3h) The average absolute difference between REAP-ADMIXTURE and 

correlation-based kinship statistics with changing genetic distance between consecutive variants. X-axis 

shows the genetic distance between consecutive variants (in centiMorgans). Cyan curve shows difference 

in probability of IBD0 estimates and red curve shows the difference in kinship estimates. (3i) The kinship 

statistic difference with changing heterozygosity of the variants (x-axis) used in kinship estimation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

          



(Supplementary Figure S3j) The distribution of Pearson correlation between the individual-specific allele 

frequency and genotype for 50 pedigrees using matching (top) and non-matching (bottom) pedigree and 

reference populations. Colors indicate the method used to estimate admixture rates used in estimation 

of individual specific allele frequencies. 

 

 

 

 

 

 

 

 

 

 

 

 

 

                              
            



(Supplementary Figure 4a, 4b). (S4a) Distribution of correlation-based kinship estimates using uniform 

admixture assignments for every sample. (S4b) Distribution of correlation-based kinship estimates using 

all populations in assignment of individual specific allele frequencies. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

          
                                         

                              



(Supplementary Figure 4c, 4d). (S4c) Correlation-based Kinship estimates (Projection) vs Zero-IBD 

probability. (S4d) Correlation-based Kinship estimates (ADMIXTURE) vs Zero-IBD probability.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                   

                                                         



(Supplementary Figure 4e, 4f) (S4e) Distance-based Kinship estimates (Projection) vs Zero-IBD 

probabilities. (S4f) KING-Robust Kinship estimates vs Zero-IBD probabilities. 
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