
Web Material

Is the product method more efficient than the difference 

method for assessing mediation?

Chao Cheng,∗ Donna Spiegelman, and Fan Li

Contents

Web Appendix 1: Proofs for the efficiency of the product method compared to the

difference method under the four data types 2

Appendix 1.1 Proof of result 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

Appendix 1.2 Proof of result 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

Appendix 1.3 Proof of result 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

Appendix 1.4 Proof of result 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

Web Appendix 2: Numerical studies of the asymptotic relative efficiency (ARE) of

the product method compared to the difference method 12

Appendix 2.1 Procedures for calculating the ARE . . . . . . . . . . . . . . . . . . . . . . 12

Appendix 2.2 Relationships between the intuitive parameters and regression parameters . 13

Appendix 2.3 Asymptotic variance formulas . . . . . . . . . . . . . . . . . . . . . . . . . . 15

Appendix 2.4 Expression of E(εεT |A,M,C) . . . . . . . . . . . . . . . . . . . . . . . . . . 19

Appendix 2.5 In Case YbMc , the ARE does not depend on the expectation or the variance

of the mediator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

Web Appendix 3: Numerical studies of ARE in the presence of confounding 22

Appendix 3.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

∗correspondence to Chao Cheng, MS, Department of Biostatistics, Yale School of Public Health, New Haven, CT,
USA. E-mail: c.cheng@yale.edu.

1



Appendix 3.2 Relationships between the intuitive parameters and regression parameters . 24

Web Appendix 4: An example that the difference method may be more robust than

the product method when the exposure-mediator relationship is misspecified 25

Appendix 4.1 The example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

Appendix 4.2 Several analytic relationships for when ε3 ∼ N(0, η0 + η1A+ ηT2 C) . . . . . 28

Web Table and Figures 30

Tables 1 and 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

Figures 1–8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

Web Appendix 1: Proofs for the efficiency of the product

method compared to the difference method under the four

data types

Throughout, we will use NIEa∗,a|c, NDEa∗,a|c, TEa∗,a|c, and MPa∗,a|c to denote the NIE, NDE,

TE, and MP, respectively, defined for the exposure in change from a∗ to a conditional on C = c.

Meanwhile, we use N̂IE
(p)

a∗,a|c, N̂DE
(p)

a∗,a|c, T̂E
(p)

a∗,a|c, and M̂P
(p)

a∗,a|c, respectively, to denote estimators

of NIEa∗,a|c, NDEa∗,a|c, TEa∗,a|c, and MPa∗,a|c given by the product method, where the superscript

‘(p)’ stands for the first letter of ‘product method’. Similarly, we define N̂IE
(d)

a∗,a|c, N̂DE
(d)

a∗,a|c,

T̂E
(d)

a∗,a|c, and M̂P
(d)

a∗,a|c to be the corresponding estimators given by the difference method, where

the superscript ‘(d)’ stands for the first letter of ‘difference method’.

Appendix 1.1 Proof of result 1

1. The product and difference methods are compatible.

Here and throughout, we say that the product and difference methods are compatible if the

regression models under both methods can hold simultaneously. In Case YcMc, the outcome re-
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gressions and mediator regression are assumed to be

Model I: E[Y |A,C] = β∗0 + β∗1A+ β∗3
TC,

Model II: E[Y |A,M,C] = β0 + β1A+ β2M + βT3 C,

Model III: E[M |A,C] = γ0 + γ1A+ γT2 C,

(s1)

where the difference method involves Models I and II and the product method involves Models II

and III. Given Models II and III, we can show

E[Y |A,C] = E [E[Y |A,M,C]|A,C] ,

= β0 + β1A+ β2E[M |A,C] + βT3 C,

= β0 + β2γ0 + (β1 + β2γ1)A+ (βT3 + β2γ
T
2 )C.

Therefore, Model I holds given Models II and III, and we have parametric relationships, β∗0 =

β0 + β2γ0, β∗1 = β1 + β2γ1, and β∗3 = β3 + β2γ2. It follows that the above three regression models

are compatible and it is easy to verify the product and difference method provide same mediation

measures (e.g., NIE = β2γ1(a− a∗) = (β∗1 − β1)(a− a∗) and MP = β2γ1
β2γ1+β1

= 1− β1

β∗1
).

2. The product method and difference method are algebraically equivalent for esti-

mating mediation measures.

MacKinnon et al. (1995) [4] showed that the product and difference method are algebraically

equivalent for estimating mediation measures when C is null. Now, we show that this result extends

when C exists.

The proof of MacKinnon et al. (1995) [4] can be easily adapted to the scenario where C exists.

In Case YcMc, ordinary least squares (OLS) is used to solve for the unknown regression parameters

in Models I to III, separately. We reorganize the three linear regression models as follows

Model I: E[Y |H] = β∗0 + β̄∗
T

1 H,

Model II: E[Y |H,M ] = β0 + β̄T1H + β2M,

Model III: E[M |H] = γ0 + γ̄T1 H,
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where H = [A,CT ]T , β̄∗1 = [β∗1 ,β
∗T
3 ]T , β̄1 = [β1,β

T
3 ]T , and γ̄1 = [γ1,γ

T
2 ]T . By Model I, we have

β̄∗1 = [Var(H)]−1Cov(H, Y ). (s2)

Taking covariance of H and Y from Model II, we have

Cov(H, Y ) = Cov(H, β0 + β̄T1H + β2M) = Var(H)β̄1 + β2Cov(H,M). (s3)

Substituting (s3) into (s2) leads to

β̄∗1 = [Var(H)]−1Var(H)β̄1 + [Var(H)]−1β2Cov(H,M)

= β̄1 + β2[Var(H)]−1Cov(H,M).

From Model III, we know γ̄1 = [Var(H)]−1Cov(H,M) and then we can show

β̄∗1 = β̄1 + β2γ̄1.

Replacing Cov(H,M) and Var(H) with their empirical versions and replacing the unknown re-

gression parameters with OLS estimators, the above identity still holds, i.e., ̂̄β∗1 = ̂̄β1 + β̂2 ̂̄γ1. This

indicates β̂∗1 − β̂1 = β̂2γ̂1. Therefore, N̂IE
(d)

a∗,a|c = (β̂∗1 − β̂1)(a− a∗) = β̂2γ̂1(a− a∗) = N̂IE
(p)

a∗,a|c and

T̂E
(d)

a∗,a|c = β̂∗1(a− a∗) = (β̂1 + β̂2γ̂1)(a− a∗) = T̂E
(p)

a∗,a|c. Also,

β̂∗1 − β̂1 = β̂2γ̂1 ⇐⇒
β̂∗1 − β̂1
β̂∗1

=
β̂2γ̂1

β̂∗1
⇐⇒ β̂∗1 − β̂1

β̂∗1
=

β̂2γ̂1

β̂1 + β̂2γ̂1
,

which leads to M̂P
(p)

a∗,a|c = M̂P
(d)

a∗,a|c. Finally it is straightforward to show that N̂DE
(p)

a∗,a|c =

N̂DE
(d)

a∗,a|c as both have a same expression, β̂1(a − a∗). Therefore, the difference and product

methods are algebraically equivalent for estimating mediation measures given C.

4



Appendix 1.2 Proof of result 2

1. The product and difference methods are compatible if and only if A is binary and

γ2 = 0.

In Cases YcMb, if A is binary and γ2 = 0, the three models simplify to

Model I: E[Y |A,C] = β∗0 + β∗1A+ β∗3
TC,

Model II: E[Y |A,M,C] = β0 + β1A+ β2M + βT3 C,

Model III: E[M |A,C] =
eγ0+γ1A

1 + eγ0+γ1A
=

eγ0

1 + eγ0
+

(
eγ0+γ1

1 + eγ0+γ1
− eγ0

1 + eγ0

)
A,

(s4)

and, given Models II and III, we have

E[Y |A,C] = E [E[Y |A,M,C]|A,C] = β0 + β1A+ β2E[M |A] + βT3 C

= β0 + β2
eγ0

1 + eγ0
+

[
β1 + β2

(
eγ0+γ1

1 + eγ0+γ1
− eγ0

1 + eγ0

)]
A+ βT3 C.

Therefore, above three models are compatible when A is binary and γ2 = 0, and we have β∗0 =

β0 + β2
eγ0

1+eγ0 , β∗1 = β1 + β2

(
eγ0+γ1

1+eγ0+γ1
− eγ0

1+eγ0

)
, and β∗3 = β3. Again, one can check the product

and difference methods share the same mediation measure estimands by substituting the parametric

relationships into mediation measure expressions given by the difference method or the product

method.

Of note, a binary A and γ2 6= 0 are also necessary conditions to ensure compatibility between

the product and difference method. To show this, assuming A has multiple values, Model III, i.e.,

E[M |A,C] = eγ0+γ1A+γT2 C

1+eγ0+γ1A+γT2 C
, must be a non-linear function with regard to A and then, given Models

II and III, E[Y |A,C] will not have a linear representation with respect to A and C. Therefore, A

should be binary. If A is binary, then we can show that

E[M |A,C] =
eγ0+γ

T
2 C

1 + eγ0+γ
T
2 C

+

(
eγ0+γ1+γ

T
2 C

1 + eγ0+γ1+γ
T
2 C
− eγ0+γ

T
2 C

1 + eγ0+γ
T
2 C

)
A

According to the previous formula, it can be straightforwardly observed that E[M |A,C] will always

have an interaction term between A and C if γ2 6= 0 such that E[M |A,C] (and also E[Y |A,C])

cannot be presented as a linear function of A and C. This concludes that Models I, II, and III are
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not compatible if either A is continuous or γ2 6= 0.

2. When the error term in the conditional outcome model (2) follows a homoscedastic

normal distribution, then the product method yields maximum likelihood estimation

(MLE) and is asymptotically at least as efficient as the difference method.

Let {Yi, Ai,Mi,Ci}ni=1 be n observations of {Y,A,M ,C}. The log-likelihood function for

{Yi, Ai,Mi,Ci}ni=1 is

logL(β,γ;Y,A,M,C) =

n∑
i=1

log {Pβ,γ(Yi, Ai,Mi,Ci)}

=

n∑
i=1

log {Pβ,γ(Yi|Ai,Mi,Ci)Pβ,γ(Mi|Ai,Ci)Pβ,γ(Ai,Ci)}

=

n∑
i=1

logPβ,γ(Yi|Ai,Mi,Ci) +

n∑
i=1

logPβ,γ(Mi|Ai,Ci) +

n∑
i=1

logPβ,γ(Ai,Ci),

(s5)

where Pβ,γ(Yi|Ai,Mi,Ci), Pβ,γ(Mi|Ai,Ci) and Pβ,γ(Ai,Ci) are density functions that may de-

pend on unknown parameter {β,γ}. The joint distribution {Ai,Ci} does not depend on any un-

known parameters, therefore Pβ,γ(Ai,Ci) simplifies to P (Ai,Ci). If we assume ε2, or equivalently

Yi|Ai,Mi,Ci, follows a homoscedastic normal distribution, we have

n∑
i=1

logPβ,γ(Yi|Ai,Mi,Ci) ∝ −
n∑
i=1

(
Yi − (β0 + β1Ai + β2Mi + βT3 Ci)

)2
,

which implies that Pβ,γ(Yi|Ai,Mi,Ci) is only a function of β; i.e.,
∑n
i=1 logPβ,γ(Yi|Ai,Mi,Ci) =∑n

i=1 logPβ(Yi|Ai,Mi,Ci). Furthermore, the OLS algorithm used to estimate the parameter of

Model II are maximizing
∑n
i=1 logPβ(Yi|Ai,Mi,Ci). Similarly, we have

∑n
i=1 logPβ,γ(Mi|Ai,Ci)

only depends on γ and solving the logistic regression model III is equivalent to maximizing the

log-likelihood function
∑n
i=1 logPγ(Mi|Ai,Ci).

Following the above discussion, formula (s5) can be simplified to

logL(β,γ;Y,A,M,C) =

n∑
i=1

logPβ(Yi|Ai,Mi,Ci) +

n∑
i=1

logPγ(Mi|Ai,Ci) +

n∑
i=1

logP (Ai,Ci).

Solving Model II and III, separately, maximizes
∑n
i=1 logPβ(Yi|Ai,Mi,Ci) and

∑n
i=1 logPγ(Mi|Ai,Ci),
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respectively. Because
∑n
i=1 logP (Ai,Ci) is not a function of β or γ, solving Models II and III sepa-

rately maximizes the full likelihood function logL(β,γ;Y,A,M,C). This indicates that the product

method provides the maximum likelihood estimation (MLE) of the regression parameters, β and γ.

Noticing that mediation measures are functions of the above regression parameters, we have that

the product method coincides with the MLE for estimating mediation measures by the invariance

property of MLE and therefore is asymptotically efficient for estimating mediation measures, and

Avar(θ̂(p)) ≤ Avar(θ̂(d)), where θ denotes a mediation measure, e.g., NIE, and θ̂(p) and θ̂(d) are the

point estimators obtained by the product and difference method, respectively.

3. If there are no confounders in the mediation analysis, i.e., C is null, then the product

method and difference method are algebraically equivalent for estimating mediation

measures.

When C is null, β̂∗ = [β̂∗0 , β̂
∗
1 ]T and β̂ = [β̂0, β̂1, β̂2]T are obtained by OLS method and γ̂ =

[γ̂0, γ̂1]T is obtained by solving the logistic regression given by Model III. Since A is binary and C

is null, Model III becomes a saturated model, which indicate that the model-based estimators for

P (M = 1|A) equal to their corresponding nonparametric empirical estimators; that is, eγ̂0+γ̂1

1+eγ̂0+γ̂1
=

P̂ (M = 1|A = 1) and eγ̂0

1+eγ̂0
= P̂ (M = 1|A = 0), where P̂ (M = 1|A = a) denoted the empirical

probabilities of P (M = 1|A = a) for x = 0, 1. Based on discussions in Web Appendix 1.1, we know

the following identity holds if outcome models are based on linear regression,

β̂∗1 = β̂1 + β̂2
Ĉov(A,M)

V̂ar(A)
,
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where Ĉov(A,M) and V̂ar(A) denote the empirical covariance and variance based on the dataset.

Because both A and M are binary, we have

Ĉov(A,M)

V̂ar(A)
=

Ê[AM ]− Ê[A]Ê[M ]

P̂ (A = 1)
{

1− P̂ (A = 1)
} =

P̂ (A = 1,M = 1)− P̂ (A = 1)P̂ (M = 1)

P̂ (A = 1)P̂ (A = 0)

=
P̂ (M = 1|A = 1)P̂ (A = 1)− P̂ (A = 1)P̂ (M = 1)

P̂ (A = 1)P̂ (A = 0)
=
P̂ (M = 1|A = 1)− P̂ (M = 1)

P̂ (A = 0)

=
P̂ (M = 1|A = 1)− P̂ (M = 1|A = 1)P̂ (A = 1)− P̂ (M = 1|A = 0)P̂ (A = 0)

P̂ (A = 0)

= P̂ (M = 1|A = 1)− P̂ (M = 1|A = 0)

=
eγ̂0+γ̂1

1 + eγ̂0+γ̂1
− eγ̂0

1 + eγ̂0
.

Therefore, we have

β̂∗1 = β̂1 + β̂2

(
eγ̂0+γ̂1

1 + eγ̂0+γ̂1
− eγ̂0

1 + eγ̂0

)
,

i.e., T̂E
(p)

a∗,a|c = T̂E
(d)

a∗,a|c. In addition, the previous formula indicates β̂∗1−β̂1 = β̂2

(
eγ̂0+γ̂1

1+eγ̂0+γ̂1
− eγ̂0

1+eγ̂0

)
and

β̂∗1−β̂1

β̂∗1
=

β̂2

(
eγ̂0+γ̂1

1+eγ̂0+γ̂1
− eγ̂0

1+eγ̂0

)
β̂1+β̂2

(
eγ̂0+γ̂1

1+eγ̂0+γ̂1
− eγ̂0

1+eγ̂0

) , i.e., N̂IE
(p)

a∗,a|c = N̂IE
(d)

a∗,a|c and M̂P
(p)

a∗,a|c = M̂P
(d)

a∗,a|c. Fi-

nally it is straightforward to show that N̂DE
(p)

a∗,a|c = N̂DE
(d)

a∗,a|c as both have the same expression,

β̂1(a − a∗). Therefore, the difference method and product method are algebraically equivalent for

estimating mediation measures when there is no confounding.

Appendix 1.3 Proof of result 3

1. The product and difference methods are compatible.

In Case YbMc , the three models become

Model I: E[Y |A,C] = eβ
∗
0+β

∗
1A+β∗3

TC ,

Model II: E[Y |A,M,C] = eβ0+β1A+β2M+βT3 C ,

Model III: M = γ0 + γ1A+ γT2 C + ε3,

(s6)
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where ε3 ∼ N(0, σ2
3). Given Models II and III, we have

E[Y |A,C] = E [E[Y |A,M,C]|A,C] = eβ0+β1A+βT3 CE[eβ2M |A,C]

= eβ0+β1A+βT3 C

∫
eβ2M

1√
2πσ2

3

e
− (M−(γ0+γ1A+γT2 C))

2

2σ23 dM

= eβ0+β2γ0+0.5σ2β2
2+(β1+β2γ1)A+(βT3 +β2γ

T
2 )C ,

It follows that the three models in (s6) are compatible and β∗0 = β0+β2γ0+0.5σ2
3β

2
2 , β∗1 = β1+β2γ1,

and β∗3 = β3 + β2γ2.

2. The product method yields maximum likelihood estimation (MLE) and is asymp-

totically at least as efficient as the difference method.

Similar with Web Appendix 1.2, we can decompose the log-likelihood function for {Yi, Ai,Mi,Ci}ni=1

as

logL(β,γ;Y,A,M,C) =

n∑
i=1

logPβ(Yi|Ai,Mi,Ci) +

n∑
i=1

logPγ(Mi|Ai,Ci) +

n∑
i=1

logP (Ai,Ci),

where Pβ(Yi|Ai,Mi,Ci) and Pγ(Mi|Ai,Ci) are a log-binomial and normal density function that

depends on unknown parameters β and γ, respectively. Solving the log-binomial model II maximizes

the log-likelihood function
∑n
i=1 logPβ(Yi|Ai,Mi,Ci). Also, because ε3 ∼ N(0, σ2

3), we have

n∑
i=1

logPγ(Mi|Ai,Ci) ∝ −
n∑
i=1

(
Mi − (γ0 + γ1Ai + γT2 Ci)

)2
,

and therefore the OLS estimator that solves linear model III maximizes
∑n
i=1 logPγ(Mi|Ai,Ci).

Noting that
∑n
i=1 logP (Ai,Ci) is not a function of β or γ, solving Models II and III maximizes

the full log-likelihood function logL(β,γ;Y,A,M,C). Therefore the product method yields MLE

and therefore is asymptotically efficient for estimating mediation measures, which implies that

Avar(θ̂(p)) ≤ Avar(θ̂(d)), where θ denote the mediation measure. Therefore, the product method is

asymptotically at least as efficient as the difference method. This completes the proof.
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Appendix 1.4 Proof of result 4

1. The difference method and product method are compatible if and only if A is binary

and γ2 = 0.

Similar to Case YcMb, if A is binary and γ2 = 0, the three models are compatible. Specifically,

the three models become

Model I: E[Y |A,C] = eβ
∗
0+β

∗
1A+β∗

T

3 C ,

Model II: E[Y |A,M,C] = eβ0+β1A+β2M+βT3 C ,

Model III: E[M |A,C] = E[M |A] =
eγ0+γ1A

1 + eγ0+γ1A
.

(s7)

Now, given Models II and III, we can show

log {E[Y |A,C]} = log {E [E[Y |A,M,C]|A,C]}

= β0 + β1A+ log
{
E[eβ2M |A,C]

}
+ βT3 C

= β0 + β1A+ log

{
1 + (eβ2 − 1)

eγ0+γ1A

1 + eγ0+γ1A

}
+ βT3 C

= β0 + log

{
1 + (eβ2 − 1)

eγ0

1 + eγ0

}
+

(
β1 + log

{
1 + (eβ2 − 1) eγ0+γ1

1+eγ0+γ1

1 + (eβ2 − 1) eγ0
1+eγ0

})
A+ βT3 C.

Thus the product and difference methods are compatible and we have β∗0 = β0+log
{

1 + (eβ2 − 1) eγ0

1+eγ0

}
,

β∗1 = β1+log

{
1+(eβ2−1) eγ0+γ1

1+eγ0+γ1

1+(eβ2−1) eγ0
1+eγ0

}
, and β∗3 = β3 by comparing the coefficients in the above formula

with those in Model I.

Of note, a binary A and γ2 6= 0 are also necessary conditions to ensure compatibility between

the product and difference method. To show this, assuming A has more than two values, Model III,

i.e., E[M |A,C] = eγ0+γ1A+γT2 C

1+eγ0+γ1A+γT2 C
, must be a non-linear function with regard to A and then, given

Models II and III,

log (E[Y |A,C]) = β0 + β1A+ log

{
1 + (eβ2 − 1)

eγ0+γ1A+γT2 C

1 + eγ0+γ1A+γT2 C

}
+ βT3 C

will not have a linear representation with respect to A and C. Therefore, A should be binary. If
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A is binary, then we can show that E[M |A,C] = eγ0+γT2 C

1+eγ0+γT2 C
+
(

eγ0+γ1+γT2 C

1+eγ0+γ1+γT2 C
− eγ0+γT2 C

1+eγ0+γT2 C

)
A and

then

log (E[Y |A,C]) = β0 + β1A+ log

{
1 + (eβ2 − 1)

eγ0+γ1A+γT2 C

1 + eγ0+γ1A+γT2 C

}
+ βT3 C

= β0 + log

{
1 + (eβ2 − 1)

eγ0+γ
T
2 C

1 + eγ0+γ
T
2 C

}
+

β1 + log


1 + (eβ2 − 1) eγ0+γ1+γT2 C

1+eγ0+γ1+γT2 C

1 + (eβ2 − 1) eγ0+γT2 C

1+eγ0+γT2 C


A+ βT3 C

According to the previous formula, it can be straightforwardly observed that log (E[Y |A,C]) will

always have an interaction term between A and C if γ2 6= 0 and therefore cannot be presented as

a linear function of A and C. This concludes that Models I, II, and III are not compatible if either

A is continuous or γ2 6= 0.

2. The product method yields MLE and is asymptotically at least as efficient as the

difference method.

After noticing that Pγ(Mi|Ai,Ci) = Pγ(Mi|Ai) if γ2 = 0, the full log-likelihood function for

{Yi, Ai,Mi,Ci}ni=1 can be decomposed to

logL(β,γ;Y,A,M,C) =

n∑
i=1

logPβ(Yi|Ai,Mi,Ci) +

n∑
i=1

logPγ(Mi|Ai,Ci) +

n∑
i=1

logP (Ai,Ci),

=

n∑
i=1

logPβ(Yi|Ai,Mi,Ci) +

n∑
i=1

logPγ(Mi|Ai) +

n∑
i=1

logP (Ai,Ci),

where Pβ(Yi|Ai,Mi,Ci) and Pγ(Mi|Ai) are binomial probability mass functions (with log and lo-

gistic links) that depends on unknown parameters β and γ, respectively. Solving the log-binomial

model II and logistic regression model III maximizes the log-likelihood function
∑n
i=1 logPβ(Yi|Ai,Mi,Ci)

and
∑n
i=1 logPγ(Mi|Ai), respectively. Noting that

∑n
i=1 logP (Ai,Ci) is not a function of β or γ,

solving Models II and III maximizes the full log-likelihood function. Therefore the product method

agrees with MLE and therefore is asymptotically efficient for estimating mediation measures, which

implies that Avar(θ̂(p)) ≤ Avar(θ̂(d)), where θ denote the mediation measure.
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Web Appendix 2: Numerical studies of the asymptotic rela-

tive efficiency (ARE) of the product method compared to the

difference method

Appendix 2.1 Procedures for calculating the ARE

In Case YbMc and YbMb, the regression models in (s6) and (s7) were used, respectively. Given

the intuitive parameters in Table 2 in the manuscript, the regression parameters were calculated

based on the procedures shown in Web Appendix 2.2. Next, we calculated the asymptotic variances

of NIE and MP estimators obtained from the product and difference method, i.e., Avar(N̂IE
(p)

0,1)

v.s. Avar(N̂IE
(d)

0,1) and Avar(M̂P
(p)

0,1) v.s. Avar(M̂P
(d)

0,1), through the asymptotic variance formulas

shown in Web Appendix 2.3. Finally, the AREs for the NIE and MP were given by ARE(NIE) =
Avar(N̂IE

(p)

0,1)

Avar(N̂IE
(d)

0,1)
and ARE(MP) =

Avar(M̂P
(p)

0,1)

Avar(M̂P
(d)

0,1)
, respectively.

We calculated the AREs based on a factorial design of all combinations of the intuitive param-

eters shown in Table 2 in the manuscript. In summary, a total of 21,600 and 135,000 scenarios

were considered in Cases YbMc and YbMb, respectively. Because the intuitive parameters were not

always compatible, 2,522 and 73,392 of those scenarios were excluded from analysis. The details

for the reasons why we excluded those scenarios were shown as follows.

In Case YbMc , 2,730 among 21,600 scenarios were removed from analysis because the probabil-

ities P (Y = 1|M,A) are larger than 1. Noticing that P (Y = 1|A,M) = eβ0+β1A+β2M is unbounded

with respect to the regression coefficients, P (Y = 1|A,M) can be greater than 1 if the regression

coefficients are large and the values of A and M are extreme. Therefore, we need exclude scenarios

where P (Y = 1|M,A) may be greater than 1 from our numerical analysis. Ideally, we need to

substitute all possible combinations of A and M into P (Y = 1|A,M) = eβ0+β1A+β2M to check if it

is bigger than 1. If it is true, then we remove its corresponding scenario from analysis. However,

f(M |A = a) follows a normal distribution in Case YbMc, therefore M can be any value between

(−∞,+∞), which can always make P (Y = 1|A,M) greater than 1 if we numerate all possible M .

However, since M near −∞ or +∞ is too rare to happen in practice, we consider all possible M

lying within the 0.001% to 99.999% quantile of M |A = a, which should cover all possible values of

M that could appear in a finite sample data set. Specifically, in the simulation study, we excluded

the scenarios that P (Y = 1|A = 1,M = m) or P (Y = 1|A = 0,M = m) is greater than 1 for
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any possible m in (i) 0.001% to 99.999% quantile of the distribution of M |A = 1 or (ii) 0.001% to

99.999% quantile of the distribution of M |A = 0.

In Case YbMb, 73,392 among 135,000 scenarios were removed from analysis and reasons are

summarized as below:

• 1. In 68,808 scenarios, β2 cannot be specified given the intuitive parameters. Specifically, the

equation exp(MP× TE) = (1+eγ0 )(1+eβ2+γ0+γ1 )
(1+eγ0+γ1 )(1+eβ2+γ0 )

for calculating β2 given the TE, MP, γ0, and

γ1 does not have a real root, when (i) exp(MP × TE) > 1+eγ0

1+eγ0+γ1
, γ0 < 0 and γ1 < 0 and

(ii) exp(MP× TE) < 1+eγ0

1+eγ0+γ1
, γ0 > 0 and γ1 > 0. Under condition (i), it is straightforward

to show that the right hand of the equation (1+eγ0 )(1+eβ2+γ0+γ1 )
(1+eγ0+γ1 )(1+eβ2+γ0 )

∈ (0, 1+eγ0

1+eγ0+γ1
) for all β2 ∈

R when γ0 < 0 and γ1 < 0, which contradicts the left hand of the equation exp(MP ×

TE) > 1+eγ0

1+eγ0+γ1
. Similarly, under condition (ii) we can show that the right hand of the

equation (1+eγ0 )(1+eβ2+γ0+γ1 )
(1+eγ0+γ1 )(1+eβ2+γ0 )

∈ ( 1+eγ0

1+eγ0+γ1
,+∞) for all β2 ∈ R when γ0 > 0 and γ1 > 0, which

contradicts the left hand of the equation exp(MP× TE) < 1+eγ0

1+eγ0+γ1
.

• 2. In 4,584 scenarios, the probabilility P (Y = 1|A = a,M = m) = eβ0+β1a+β2m is greater

than 1, where a ∈ {0, 1} and m ∈ {0, 1}. This may happen when the total effect is large and

the outcome prevalence is common (e.g., TE=log(2) and P (Y = 1) = 32%).

Appendix 2.2 Relationships between the intuitive parameters and regres-

sion parameters

Case YbMc , binary outcome and continuous mediator without consideration of con-

founders

In Case YbMb, the intuitive parameters include TE, MP, P (Y = 1), P (A = 1), Var(M), E[M ],

and Corr(A,M). Here, we show how to calculate the regression parameters based on those intuitive

parameters. First, calculate the γ1, γ0, and σ3 of the mediator model, based on the following

equations,

Corr(A,M) = γ1P (A=1)(1−P (A=1))√
P (A=1)(1−P (A=1))Var(M)

,

E[M ] = γ0 + γ1P (A = 1),

Var(M) = γ21P (A = 1) (1− P (A = 1)) + σ2
3 .
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Then, we calculate β1, β2, and β0, the regression parameters in the conditional outcome model.

Specifically, we calculate β1, β2, and β0, sequentially and separately, based on the following equa-

tions:

(1−MP)× TE = β1,

MP×NIE = β2γ1,

P (Y = 1) = P (A = 1)exp
(
β0 + β1 + β2(γ0 + γ1) +

β2
2σ

2
3

2

)
+ (1− P (A = 1)) exp

(
β0 + β2γ0 +

β2
2σ

2
3

2

)
,

The third equation for solving β0 is non-linear and does not have an explicit root, therefore we use

the nleqslv function in R software to obtain a numerical solution. Finally, β∗0 and β∗1 , the regression

parameters in the marginal outcome model, were obtained by the parametric relationships shown

in Web Appendix 1.3.

Remark: The formula for P (Y = 1) and Corr(A,M) were derived as follows

P (Y = 1) =P(Y = 1|A = 1)P (A = 1) + P(Y = 1|A = 0) (1− P (A = 1))

=P (A = 1)

∫
P(Y = 1|M = m,A = 1)p(M = m|A = 1)dM

+ (1− P (A = 1))

∫
P(Y = 1|M = m,A = 0)p(M = m|A = 0)dM

=P (A = 1)

∫
eβ0+β1+β2m

1√
2πσ3

e
− (m−γ0−γ1)2

2σ23 dm+ (1− P (A = 1))

∫
eβ0+β2m

1√
2πσ3

e
− (m−γ0)2

2σ23 dm

=P (A = 1)exp
(
β0 + β1 + β2(γ0 + γ1) +

β2
2σ

2
3

2

)
+ (1− P (A = 1)) exp

(
β0 + β2γ0 +

β2
2σ

2
3

2

)
.

Corr(A,M) =
Cov(M,A)√

Var(A)Var(M)
=

E(AM)− P (A = 1)EM√
P (A = 1) (1− P (A = 1)) Var(M)

=
E(γ0A+ γ1A

2)− P (A = 1)E(γ0 + γ1A)√
P (A = 1) (1− P (A = 1)) Var(M)

=
γ1P (A = 1) (1− P (A = 1))√

P (A = 1) (1− P (A = 1)) Var(M)
.

Case YbMb, binary outcome and binary mediator without consideration of confounders

In Case YbMb, the intuitive parameters are TE, MP, P (Y = 1), P (A = 1), P (M = 1), and

OR(M |A). Here, we show how to calculate the regression parameters based on those intuitive

parameters. We first calculate γ1 and γ0, the regression parameters in the mediator model, based
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on the following two equations:

OR(M |A) = exp(γ1)

E[M ] = P (A = 1) eγ0+γ1

1+eγ0+γ1
+ (1− P (A = 1)) eγ0

1+eγ0 ,

Then, we calculate β1, β2, and β0, the unknown parameters in the conditional outcome model,

based on the following three equations, separately,

(1−MP)× TE = β1,

MP× TE = log
(

(1+eγ0 )(1+eβ2+γ0+γ1 )
(1+eγ0+γ1 )(1+eβ2+γ0 )

)
,

P (Y = 1) = eβ0p00 + eβ0+β1p01 + eβ0+β2p10 + eβ0+β1+β2p11,

where pam = P (A = a,M = m) = P (M = m|A = a)P (A = a); i.e., p11 = eγ0+γ1

1+eγ0+γ1
pa, p10 =

eγ0

1+eγ0 (1 − pa), p01 = (1 − eγ0+γ1

1+eγ0+γ1
)pa, and p00 = (1 − eγ0

1+eγ0 )(1 − pa). Finally, β∗0 and β∗1 , the

regression parameters in the marginal outcome model, were obtained by the parametric relationships

shown in Web Appendix 1.4.

Appendix 2.3 Asymptotic variance formulas

The estimating equations for the marginal and conditional outcome model can be shown as

U(1)(β∗) =

n∑
i=1

Ui1V
−1
i1

[
Yi − E[Yi|Ai,Ci]

]
= 0 (s8)

U(2)(β) =

n∑
i=1

Ui2V
−1
i2

[
Yi − E[Yi|Ai,Mi,Ci]

]
= 0 (s9)

where Ui1 = ∂E[Yi|Ai,Ci]
∂β∗ , and Ui2 = ∂E[Yi|Ai,Mi,Ci]

∂β . If the outcome is continuous, Vi1 = σ2
1 and

Vi2 = σ2
2 ; if the outcome is binary, we have Vi1 = eβ

∗
0+β

∗
1Ai+β

∗
3
TCi × (1 − eβ∗0+β∗1Ai+β∗3TCi) and

Vi2 = eβ0+β1Ai+β2Mi+β
T
3 Ci × (1− eβ0+β1Ai+β2Mi+β

T
3 Ci). The estimating equation for the mediator

model is

U(3)(γ) =

n∑
i=1

Ui3V
−1
i3

[
Mi − E[Mi|Ai,Ci]

]
= 0, (s10)

where Ui3 = ∂E[Mi|Ai,Ci]
∂γ and Vi3 is σ2

3 and eγ0+γ1Ai+γ
T
2 Ci

(1+eγ0+γ1Ai+γ
T
2 Ci )2

if M is continuous and binary,

respectively. Next we derive the asymptotic variance formulas for the NIE and MP estimators

15



obtained by the product and difference method.

Difference Method

For the difference method, the estimating equation for unknown regression parameters θ =

[β∗
T

,βT ]T is U(θ) =

U(1)(β∗)

U(2)(β)

 = 0. By theory of unbiased estimating equations [3, 6], we know

√
n(θ̂−θ) is asymptotically multivariate normal with zero mean and covariance matrix is given by

Ωθ =
(
E
[
DTV −1D

])−1{
E
[
DTV −1εεTV −1D

]}(
E
[
DTV −1D

])−1
, (s11)

where D =
[
∂E[Y |A,C]

∂θ , ∂E[Y |A,M,C]
∂θ

]
, ε = (Y − E[Y |A,C], Y − E[Y |A,M,C])

T
includes the er-

ror terms in the marginal and conditional outcome models, and the expectations in (s11) are

taken over {Y,A,M,C}. Here, V is a variance-covariance matrix that equals to diag(σ2
1 , σ

2
2) and

diag
(
eβ
∗
0+β

∗
1A+β∗3

TC × (1 − eβ∗0+β∗1A+β∗3
TC), eβ0+β1A+β2M+βT3 C × (1 − eβ0+β1A+β2M+βT3 C)

)
when

the outcome is continuous and binary, respectively. Formula (s11) can be further simplified to

Ωθ =
(
E
[
DTV −1D

])−1{
E
[
DTV −1E[εεT |A,M,C]V −1D

]}(
E
[
DTV −1D

])−1
,

where E[εεT |A,M,C] is a function of {M,A,C} shown in Web Appendix 2.4.

Next we show how to numerically calculate Ωθ. We assume A and C are binary variables. Note

that the formula for calculating Ωθ depends on E
[
DTV −1E[εεT |A,M,C]V −1D

]
and E

[
DTV −1D

]
,

two expectations with respect to variables {A,M,C}. We use the following method to numerically

calculate the expectations with respect to {A,M,C}. When M is also binary (Case YbMb), the

density function of {A,M,C} is discrete and we can obtain the expectation for any function of

{M,A,C}, say f(M,A,C), through the following formula

E[f(M,A,C)] =
∑
m,a,c

f(M = m,A = a,C = c)P (M = m,A = a,C = c),

=
∑
m,a,c

f(M = m,A = a,C = c)P (M = m|A = a,C = c)P (A = a,C = c),

where P (M = m|A = a,C = c) refers to the mediator model and P (A = a,C = c) is an explicit

function describing the A-C relationship. If M is continuous (Case YbMc ), we can calculate
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E[f(M,A,C)] by

E[f(A,M,C)] =
∑
a,c

P (A = a,C = c)×
∫ +∞

−∞
f(M,A = a,C = c)φ(

M − γ0 − γ1a− γT2 c
σ3

)dM,

where φ(.) denotes the density function of standard normal distribution. We use the Gauss-Hermite

Quadrature (GHQ) method to numerically calculate the above integral.

Now, we know how to numerically calculate the asymptotic variance-covariance matrix of θ̂.

Finally, by multivariate delta method, the asymptotic variances of N̂IE
(d)

a∗,a|c and M̂P
(d)

a∗,a|c can be

shown as

Avar(N̂IE
(d)

a∗,a|c) =
1

n

∂NIE(d)
a∗,a|c

∂θ

T Ωθ

∂NIE(d)
a∗,a|c

∂θ

 ,
Avar(M̂P

(d)

a∗,a|c) =
1

n

∂MP
(d)
a∗,a|c

∂θ

T Ωθ

∂MP
(d)
a∗,a|c

∂θ

 ,
where NIE

(d)
a∗,a|c = (β∗1 − β1)(a− a∗) and MP

(d)
a∗,a|c = 1− β1

β∗1
are the NIE and MP expressions given

by the difference method. It is straightforward to show
∂NIE

(d)

a∗,a|c
∂θ = [0, a−a∗,0, 0,−(a−a∗), 0,0]T

and
∂MP

(d)

a∗,a|c
∂θ = [0, β1

β∗1
2 ,0, 0,− 1

β∗1
, 0,0]T .

Product Method

For the product method, the estimating equation for unknown regression parameters θ∗ =

[βT ,γT ]T is U(θ) =

U(2)(β)

U(3)(γ)

 = 0. By the theory of unbiased estimating equation [3, 6], we

know
√
n(θ̂∗ − θ∗) is asymptotically multivariate normal with zero mean and covariance matrix is

given by

Ωθ∗ =
(
E
[
D∗

T

V ∗
−1

D∗
])−1{

E
[
D∗

T

V ∗
−1

ε∗ε∗
T

V ∗−1D∗
]}(

E
[
D∗

T

V ∗
−1

D∗
])−1

, (s12)

where D∗ =
[
∂E[Y |A,M,C]

∂θ∗ , ∂E[M |A,C]
∂θ∗

]
, V ∗ = diag(V2, V3) is the working variance-covariance ma-

trix, ε∗ = [ε2, ε3]T = [Y − E[Y |A,M,C],M − E[M |A,C]]
T

includes the error terms in the condi-

tional outcome model and mediator model, and the expectations in equation (s12) are taken over

{Y,A,M,C}. Here, V3 is σ2
3 and eγ0+γ1A+γT2 C

(1+eγ0+γ1A+γT2 C)2
if M is continuous and binary, respectively. We
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can further simplify formula (s12) after noticing

E [ε2ε3|A,M,C] = E [(Y − E[Y |A,M,C])× (M − E[M |A,C])|A,M,C]

= E [Y − E[Y |A,M,C]|A,M,C]× (M − E[M |A,C])

= 0× (M − E[M |A,C]) = 0.

Therefore,

E
[
D∗

T

V ∗
−1

ε∗ε∗
T

V ∗−1D∗
]

=E
[
D∗

T

V ∗
−1

E[ε∗ε∗
T

|A,M,C]V ∗
−1

D∗
]

=E
[
D∗

T

V ∗
−1

E

 ε22 ε2ε3

ε2ε3 ε23

 |A,M,C

V ∗−1

D∗
]

=E
[∂E[Y |A,M,C]

∂βT
0

0 ∂E[M |A,C]
∂γT

V −12 0

0 V −13

V2 0

0 V3

V −12 0

0 V −13

∂E[Y |A,M,C]
∂β 0

0 ∂E[M |A,C]
∂γ

]

=

E[UT
2 V
−1
2 U2] 0

0 E[UT
3 V
−1
3 U3]

 .

Also, we can show

E
[
D∗

T

V ∗
−1

D∗
]

= E

∂E[Y |A,M,C]
∂βT

0

0 ∂E[M |A,C]
∂γT

V −12 0

0 V −13

∂E[Y |A,M,C]
∂β 0

0 ∂E[M |A,C]
∂γ


=

E[UT
2 V
−1
2 U2] 0

0 E[UT
3 V
−1
3 U3]

 .

It follows that

Ωθ∗ =

E[UT
2 V
−1
2 U2] 0

0 E[UT
3 V
−1
3 U3]

−1E[UT
2 V
−1
2 U2] 0

0 E[UT
3 V
−1
3 U3]

E[UT
2 V
−1
2 U2] 0

0 E[UT
3 V
−1
3 U3]

−1

=

E[UT
2 V
−1
2 U2]−1 0

0 E[UT
3 V
−1
3 U3]−1

 .
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Now, we know the asymptotic variance of
√
n(θ̂∗−θ∗) is Ωθ∗ =

E[UT
2 V
−1
2 U2]−1 0

0 E[UT
3 V
−1
3 U3]−1

.

The formula for Ωθ∗ takes expectations with respect to {A,M,C} and we can again use the nu-

merical method shown in the previous subsection to numerically calculate Ωθ∗ . Finally, using the

multivariate delta method, we have

Avar(N̂IE
(p)

a∗,a|c) =
1

n

∂NIE
(p)
a∗,a|c

∂θ∗

T Ωθ∗

∂NIE
(p)
a∗,a|c

∂θ∗

 ,
Avar(M̂P

(p)

a∗,a|c) =
1

n

∂MP
(p)
a∗,a|c

∂θ∗

T Ωθ∗

∂MP
(p)
a∗,a|c

∂θ∗

 ,
where NIE

(p)
a∗,a|c and MP

(p)
a∗,a|c are given in Table 1 in the manuscript.

Appendix 2.4 Expression of E(εεT |A,M,C)

In the numerical studies in this paper, we only considered a binary outcome (Cases YbMc and

YbMb). Therefore, we further derive more explicit results for those Cases. Specifically, we have

E(εεT |A,M,C) =

a b

b d

, with

d = E
[
(Y − eβ0+β1A+β2M+βT3 C)(Y − eβ0+β1A+β2M+βT3 C)|A,M,C

]
= E[Y |A,M,C]− 2eβ0+β1A+β2M+βT3 CE[Y |A,M,C] + e2β0+2β1A+2β2M+2βT3 C

= eβ0+β1A+β2M+βT3 C − e2β0+2β1A+2β2M+2βT3 C

= eβ0+β1A+β2M+βT3 C(1− eβ0+β1A+β2M+βT3 C),
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b = E
[
(Y − eβ

∗
0+β

∗
1A+β∗3

TC)(Y − eβ0+β1A+β2M+βT3 C)|A,M,C
]

= E[Y |A,M,C]− eβ
∗
0+β

∗
1A+β∗3

TCE[Y |A,M,C]− eβ0+β1A+β2M+βT3 CE[Y |A,M,C]

+ eβ0+β1A+β2M+βT3 C+β∗0+β
∗
1A+β∗3

TC

= eβ0+β1A+β2M+βT3 C − eβ
∗
0+β

∗
1A+β∗3

TCeβ0+β1A+β2M+βT3 C − eβ0+β1A+β2M+βT3 Ceβ0+β1A+β2M+βT3 C

+ eβ0+β1A+β2M+βT3 C+β∗0+β
∗
1A+β∗3

TC

= eβ0+β1A+β2M+βT3 C(1− eβ0+β1A+β2M+βT3 C) = d,

and,

a = E
[
(Y − eβ

∗
0+β

∗
1A+β∗3

TC)(Y − eβ
∗
0+β

∗
1A+β∗3

TC)|A,M,C
]

= E[Y |A,M,C]− 2eβ
∗
0+β

∗
1A+β∗3

TCE[Y |A,M,C] + e2β
∗
0+2β∗1A+2β∗3

TC

= eβ0+β1A+β2M+βT3 C − 2eβ0+β1A+β2M+βT3 C+β∗0+β
∗
1A+β∗3

TC + e2β
∗
0+2β∗1A+2β∗3

TC

= eβ0+β1A+β2M+βT3 C(1− eβ0+β1A+β2M+βT3 C) + (eβ
∗
0+β

∗
1A+β∗3

TC − eβ0+β1A+β2M+βT3 C)2

= d+ (eβ
∗
0+β

∗
1A+β∗3

TC − eβ0+β1A+β2M+βT3 C)2.

Therefore, it is straightforward to observe that E(εεT |A,M,C) is an explicit function of {A,M,C}.

Appendix 2.5 In Case YbMc , the ARE does not depend on the expectation

or the variance of the mediator

We consider two settings: In Setting I, we consider E(M) = 0 and Var(M) = 1; and in Setting

II, we set E(M) = um and Var(M) = vm, but all other intuitive parameters are otherwise the same

as those in Setting I, where um and vm > 0 are any numbers other than 0 and 1. If we can show

the regression models in both settings are algebraically equivalent, then both settings will have the

same AREs and we complete the proof.

Let β∗(1), β(1), γ(1), and σ2(1)

3 be the regression parameters correspond to setting I. And let

β∗(1), β(2), γ(2), and σ2(2)

3 denote the regression parameters correspond to II. According to the

relationships between the parametric relationships between regression and intuitive parameters
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shown in Web Appendix 2.2., we have

γ
(2)
0 = um +

√
vmγ

(1)
0 ; γ

(2)
1 = γ

(1)
1

√
vm;σ2(2)

3 = vmσ
2(1)

3 ;

β
(2)
1 = β

(1)
1 ;β

(2)
2 =

β
(1)
2√
vm

;β
(2)
0 = β

(1)
0 − β

(1)
2 um√
vm

;

β
∗(2)
0 = β

∗(1)
0 ;β

∗(2)
1 = β

∗(2)
1 .

Therefore, the three regression models used in Setting II is

Model I: E[Y |A] = eβ
∗(1)
0 +β

∗(1)
1 A,

Model II: E[Y |A,M ] = e
β
(1)
0 −

β
(1)
2 um√
vm

+β
(1)
1 A+

β
(1)
2√
vm

M
,

Model III: M = um +
√
vmγ

(1)
0 + γ

(1)
1

√
vmA+ ε3, where ε3 ∼ N(0, vmσ

2(1)

3 ).

Next, let M∗ = M−um√
vm

and substitute it into the previous regression models, then we have

Model I: E[Y |A] = eβ
∗(1)
0 +β

∗(1)
1 A,

Model II: E[Y |A,M∗] = eβ
(1)
0 +β

(1)
1 A+β

(1)
2 M∗ ,

Model III: M∗ = γ
(1)
0 + γ

(1)
1 A+ ε∗3, where ε∗3 ∼ N(0, σ2(1)

3 ).

Notice that now M∗ is mean zero and variance 1 and the above three models are actually the

regression models used in Setting I. This indicates the regression models used in Settings I and II

are algebraically equivalent and therefore share same variances for NIE and MP.
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Web Appendix 3: Numerical studies of ARE in the presence

of confounding

Appendix 3.1 Results

Here, we report the results of numerical studies to investigate how AREs change in the presence

of a binary confounder M . We consider the following regression models

E[Y |A,C] = eβ
∗
0+β

∗
1A+β∗3C ,

E[Y |A,M,C] = eβ0+β1A+β2M+β3C ,

M = γ0 + γ1A+ γ2C + ε3,

P (A = 1|C) =
exp(ψ0 + ψ1C)

1 + exp(ψ0 + ψ1C)

(s13)

where C is a binary confounder and ε3 ∼ N(0, σ2
3). The last regression model defines A-C relation-

ship. The intuitive parameters include those used previously (See Table 2 in the manuscript) and

the following four parameters in relation to C: (i) the prevalence of C; (ii) the odds ratio of A for

a change in C from 0 to 1, i.e., OR(A|C) = eφ1 ; (iii) the correlation of M and C, Corr(C,M); and

(iv) the risk ratio of Y for C corresponding to the change from 0 to 1, i.e., RR(Y |C) = eβ3 . The

choices of the intuitive parameters were given in Web Table 1. We conducted a factorial design

of all combinations of the intuitive parameters shown above. For each of combinations, we first

calculated the regression parameters based on the intuitive parameters according to the procedures

shown in Web Appendix 3.2, and then calculated the AREs based on the formulas shown in Web

Appendix 2.3.

A total of 19,200 scenarios were included for comparison, where 5,319 (27.7%) of those scenarios

were excluded from analysis because the intuitive parameters were not compatible. The detailed

reasons were shown below

• 1. In 1,440 scenarios, the specified value of Var(M) was smaller than the specified value of

Var(γ0 + γ1A + γ2C), which indicated that the variance of the error term in the mediator

model, i.e., σ2
3 , was less than 0.

• 2. In 3,879 scenarios, P (Y = 1|A,M,C) may be greater than 1. Noticing that P (Y =

1|A,M,C) = eβ0+β1A+β2M+β3C is unbounded with respect to the regression coefficients,
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P (Y = 1|A,M,C) can be greater than 1 if the regression coefficients are large and the values

of A, M , and C are extreme. Therefore, we need exclude scenarios where P (Y = 1|A,M,C)

may be greater than 1 from our numerical analysis. Ideally, we need to substitute all pos-

sible combinations of A, M , and C into P (Y = 1|A,M,C) = eβ0+β1A+β2M+β3C to check

if it is bigger than 1. If it is true, then we remove its corresponding scenario from anal-

ysis. However, f(M |A = a,C = c) follows a normal distribution in Case YbMc, there-

fore M can be any value between (−∞,+∞), which can always make P (Y = 1|A,M,C)

greater than 1 if we numerate all possible M . However, since M near −∞ or +∞ is too

rare to happen in practice, we consider all possible M lying within the 0.001% to 99.999%

quantile of M |A = a,C = c, which should cover all possible values of M that could ap-

pear in a finite sample data set. Specifically, in the simulation study, we excluded the

scenarios that P (Y = 1|A = 0,M = m,C = 0), P (Y = 1|A = 0,M = m,C = 1),

P (Y = 1|A = 1,M = m,C = 0), or P (Y = 1|A = 1,M = m,C = 1) is greater than 1

for any possible m in (i) 0.001% to 99.999% quantile of the distribution of M |A = 1, C = 1,

or (ii) 0.001% to 99.999% quantile of the distribution of M |A = 1, C = 0, or (iii) 0.001% to

99.999% quantile of the distribution of M |A = 0, C = 1, or (iv) 0.001% to 99.999% quantile

of the distribution of M |A = 0, C = 0.

Thus, we calculated the AREs in the remaining 13,881 scenarios. The distributions of the AREs

under those scenarios are shown in Web Table 2. The distributions of the AREs were slightly more

dispersed compared to those without confounding effects, but most of the AREs were still near 1,

where more than 95% of the ARE(NIE) and ARE(MP) were greater than 0.7 and 0.95, respectively.

Moreover, we observed that increasing the confounder-mediator association decreases the AREs of

the NIE estimator. The relationships between the AREs and the intuitive parameters are visualized

in Web Figures 5 and 6 for aspects of NIE and MP, respectively. It is shown that changing the A-C

and Y -C associations has minimal influence on the AREs, but strengthening the C-M association

lowered the AREs, favoring the product method.
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Appendix 3.2 Relationships between the intuitive parameters and regres-

sion parameters

The relationship between the parameters in regression models (s13) and the intuitive parameters

P (Y = 1), TE, MP, RR(Y |C), E(M), Var(M), Corr(M,A), Corr(M,C), P (A = 1), OR(A|C) are

derived below.

First, we obtain ψ0 and ψ1 by solving

OR(A|C) = exp(ψ1) and

P (A = 1) = exp(ψ0+ψ1)
1+exp(ψ0+ψ1)

P (C = 1) + exp(ψ0)
1+exp(ψ0)

(1− P (C = 1)).

Next, we calculate γ1 and γ2 by solving the following two linear equations simultaneously,

Corr(M,A) =
γ1Var(A)+γ2Corr(C,A)

√
Var(A)Var(C)√

Var(A)Var(M)
,

Corr(M,C) =
γ1Corr(C,A)

√
Var(A)Var(C)+γ2Var(C)√

Var(A)Var(M)
,

where Corr(C,A) = P (A=1,C=1)−P (A=1)P (C=1)√
Var(A)Var(M)

=
eψ0+ψ1

1+eψ0+ψ1
P (C=1)−P (A=1)P (C=1)
√

Var(A)Var(M)
, Var(A) = P (A =

1)(1 − P (A = 1)) and Var(C) = P (C = 1)(1 − P (C = 1)). Then, we obtain γ0 and σ2
3 by solving

the following two equations

E(M) = γ0 + γ1P (A = 1) + γ2P (C = 1),

Var(M) = γ21Var(A) + γ22Var(C) + 2γ1γ2Corr(C,A)×
√

Var(A)Var(M) + σ2
3 .

Next, we obtain β1, β3, β2 by solving

(1−MP)× TE = β1,

MP×NIE = β2γ1,

RR(Y |C) = eβ3 .
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Finally, after noticing

P (Y = 1) =

1∑
a=0

1∑
c=0

P (A = a,C = c)

∫
P (Y = 1|A = a,M = m,C = c)f(M = m|A = a,C = c)dm

=

1∑
a=0

1∑
c=0

P (A = a,C = c)

∫
eβ0+β1a+β2m+β3c

1√
2πσ3

e
− (m−γ0−γ1a−γ2c)

2

2σ23 dm

=

1∑
a=0

1∑
c=0

P (A = a,C = c)eβ0+β1a+β3c+β2(γ0+γ1a+γ2c)+
β22σ

2
3

2 ,

we obtain β0 by solving

P (Y = 1) =

1∑
a=0

1∑
c=0

P (A = a,C = c)exp
(
β0 + β1a+ β3c+ β2(γ0 + γ1a+ γ2c) +

β2
2σ

2
3

2

)
,

where P (A = a,C = c) = P (A = a|C = c)P (C = c) = a exp(ψ0+ψ1c)
1+exp(ψ0+ψ1c)

P (C = c). Finally, β∗0 , β∗1 ,

and β∗3 , the regression parameters in the marginal outcome model, were obtained by the parametric

relationships given in Web Appendix 1.3.

Web Appendix 4: An example that the difference method

may be more robust than the product method when the

exposure-mediator relationship is misspecified

Appendix 4.1 The example

We provide an example under Case YbMc to illustrate that the product method has estimation

bias if the exposure-mediator relationship is misspecified, but the difference method remains unbi-

ased and can be more robust. In Case YbMc, the product method requires the following mediator

model,

M = γ0 + γ1A+ γT2 C + ε3,

where the error term, ε3, follows a homoscedastic normal distribution N(0, σ2
3) such that Var(ε3) =

Var(ε3|A,C) = σ2
3 . In reality, M |A,C may be heteroskedastic such that Var(ε3|A,C) is a function

of A and C. Assume now Var(ε3|A,C) = η0 + η1A + ηT2 C but we misspecify the error term to
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follow a homoscedastic normal distribution. In Web Appendix 4.2, we prove that given the outcome

model adjusted for the mediator (i.e., model (6) in manuscript) and the heteroskedastic mediator

model, the outcome model without adjustment for the mediator (i.e., model (5) in manuscript)

still hold, which indicates that the product and difference methods are compatible even under

heteroskedasticity.

It is well known that heteroskedasticity will not affect the consistency of the ordinary least

squares estimator; i.e., estimator of γ = [γ0, γ1,γ
T
2 ]T is still consistent even under misspecification

of ε3. In addition, regression coefficient estimators for the outcome models (5) and (6) are also

unbiased as those models are correctly specified. However, we claim that N̂IE
(p)

a∗,a|c, T̂E
(p)

a∗,a|c,

and M̂P
(p)

a∗,a|c are biased, though N̂DE
(p)

a∗,a|c is consistent. That is because the expression of the

mediation measures given by the product method changes. Under the counterfactual framework,

Web Appendix 4.2 shows that the correct expressions for the NIE and NDE are

NIEa∗,a|c = (β2γ1 + 0.5β2
2η1)(a− a∗) and NDEa∗,a|c = β1(a− a∗),

where the NDE expression is exactly identical with its shown in Table 1 in manuscript but the

NIE expression is different. Therefore, TEa∗,a|c = (β1 + β2γ1 + 0.5β2
2η1)(a − a∗) and MPa∗,a|c =

β2γ1+0.5β2
2η1

β1+β2γ1+0.5β2
2η1

. It follows that the asymptotic bias1 of the NIE estimator given by the product

method is

ABIAS(N̂IE
(p)

a∗,a|c) = lim
n→∞

N̂IE
(p)

a∗,a|c −NIEa∗,a|c

= lim
n→∞

β̂2γ̂1(a− a∗)− (β2γ1 + 0.5β2
2η1)(a− a∗)

= β2γ1(a− a∗)− (β2γ1 + 0.5β2
2η1)(a− a∗)

= −0.5β2
2η1(a− a∗)

where the second to the third row holds since β̂2 and γ̂1 are consistent estimator of β2 and γ1.

1The asymptotic bias is defined as lim
n→∞

p̂ − p, where p is a mediation measure and lim
n→∞

p̂ is its estimator’s

asymptotic limit when sample size is sufficient large.
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Using the same strategy, we can show the asymptotic biases for the NDE, TE, and MP are

ABIAS(N̂DE
(p)

a∗,a|c) = 0,

ABIAS(T̂E
(p)

a∗,a|c) = −0.5β2
2η1(a− a∗),

ABIAS(M̂P
(p)

a∗,a|c) = − 0.5β1β
2
2η1

(β1 + β2γ1)(β1 + β2γ1 + 0.5β2
2η1)

,

respectively. From the above formula, we observe that the NDE estimator is always unbiased and

biases of NIE and NDE estimators are functions of β2, the mediator effect on the outcome, and

η1, degree of heteroskedasticity. The bias of the MP estimator is also affected by β1 and γ1. In

Web Figure 8, we illustrate the asymptotic biases when varying β2 and η1. The NIE, TE, and MP

present minimal bias when η1 and β2 are small but their biases dramatically increase when η1 or

β2 increases.

On the other hand, the expressions of the mediation measures given by the difference methods

are not affected (see Web Appendix 4.2). Since the two outcome mean models are also correctly

specified under heteroskedasticity, the difference method can still provide consistent estimators for

all mediation measures. That means the asymptotic biases for all the estimators given by the

difference method are 0.

Of note, the bias analysis results shown here differ from the results in Cheng et al. (2021) [1].

In Cheng et al. (2021) [1], they found that the product method exhibited minimal bias even under

heteroskedasticity in Case YbMc. That is because they only evaluated the bias of the respective

regression parameters but did not address the additional complication that the expressions of the

mediation measures (e.g. NIE and MP) will change if the error term in the mediator model is

heteroscedastic. In this study, we clarified that in Case YbMc the expressions for the mediation

measures given by the product method can be different when the error term in the mediator model

is in fact heteroscedastic. Therefore, by analytically deriving the asymptotic relative bias formulas,

we showed that the estimators for mediation measures given by the product method incorrectly

assuming homoscedastic variance can subject to bias.
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Appendix 4.2 Several analytic relationships for when ε3 ∼ N(0, η0 + η1A +

ηT2 C)

i) In Case YbMc, the product and difference methods are compatible when ε3 ∼ N(0, η0+

η1A+ ηT2 C)

.

Given the heteroskedastic mediator model and the conditional outcome model as shown in

equation (6) in manuscript, we have that

E[Y |A,C] = E [E[Y |A,M,C]|A,C] = eβ0+β1A+βT3 CE[eβ2M |A,C]

= eβ0+β1A+βT3 C

∫
eβ2M

1√
2π(η0 + η1A+ ηT2 C)

e
− (M−(γ0+γ1A+γT2 C))

2

2(η0+η1A+ηT2 C) dM

= eβ0+β1A+βT3 C × eβ2(γ0+γ1A+γT2 C)+0.5β2
2(η0+η1A+ηT2 C)

= eβ0+β2γ0+0.5β2
2η0+(β1+β2γ1+0.5β2

2η1)A+(βT3 +β2γ
T
2 +0.5β2

2η
T
2 )C ,

This concludes that the outcome model without adjustment for mediator (as shown in equation

(5) in manuscript) still holds and β∗0 = β0 + β2γ0 + 0.5β2
2η0, β∗1 = β1 + β2γ1 + 0.5β2

2η1, and

β∗2 = β3 + β2γ2 + 0.5β2
2η2. This completes the proof.

ii) Expressions of the mediation measures under the product method when ε3 ∼

N(0, η0 + η1A+ ηT2 C)

.

Under the counterfactual framework, we have that

E[Y (a,M(a))|C = c] =

∫
P (Y = 1|A = a,M = m,C = c)f(M = m|A = a,C = c)dm

=

∫
eβ0+β1a+β2m+βT3 c

1√
2π(η0 + η1a+ ηT2 c)

e
− (M−(γ0+γ1a+γ

T
2 c))

2

2(η0+η1a+η
T
2 c) dm

= eβ0+β2γ0+0.5β2
2η0+(β1+β2γ1+0.5β2

2η1)a+(βT3 +β2γ
T
2 +0.5β2

2η
T
2 )c.
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Similarly, we can show that

E[Y (a,M(a∗))|C = c] =

∫
P (Y = 1|A = a,M = m,C = c)f(M = m|A = a∗,C = c)dm

= eβ0+β2γ0+0.5β2
2η0+β1a+(β2γ1+0.5β2

2η1)a
∗+(βT3 +β2γ

T
2 +0.5β2

2η
T
2 )c,

E[Y (a∗,M(a∗))|C = c] =

∫
P (Y = 1|A = a∗,M = m,C = c)f(M = m|A = a∗,C = c)dm

= eβ0+β2γ0+0.5β2
2η0+(β1+β2γ1+0.5β2

2η1)a
∗+(βT3 +β2γ

T
2 +0.5β2

2η
T
2 )c.

Finally, by definition of NIE, we have that

NIEa∗,a|c = log (E[Y (a,M(a))|C = c])− log (E[Y (a,M(a∗))|C = c])

= (β2γ1 + 0.5β2
2η1)(a− a∗).

Similarly, we have that NDEa∗,a|c = β1(a − a∗), TEa∗,a|c = (β1 + β2γ1 + 0.5β2
2η1)(a − a∗) and

MPa∗,a|c =
β2γ1+0.5β2

2η1
β1+β2γ1+0.5β2

2η1
.

iii) The difference method presents correct mediation measure expressions when ε3 ∼

N(0, η0 + η1A+ ηT2 C)

.

First, because the NDE expression given by the product method is correct and same with the

NDE expression given by difference method, the difference method offers correct NIE expression.

Second, as derived in i), we have the following parametric link β∗1 −β = β2γ1 + 0.5β2
2η1. Therefore,

the NIE expression under the difference method is (β∗1 − β)(a − a∗) = (β2γ1 + 0.5β2
2η1)(a − a∗),

which is exactly the NIEa∗,a|c under heteroskedasticity (see derivations in ii)). It follows that the

difference method provides correct NIE expression. By noticing TE and MP are functions of NIE

and NDE, the difference method also provides correct TE and MP expressions.
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Web Table and Figures

Table 1: Specifications of the intuitive parameters under Case YbMc in the presence of a binary

confounder.

Intuitive Parameters Notation Values

Total effect (log risk ratio scale) TE log(1.2), log(1.6), log(2)

Mediation proportion MP 0.1, 0.3, 0.5, 0.7, 0.9

Prevalence of the outcome P (Y = 1) 1%, 4%, 8%, 32%

Prevalence of the exposure P (A = 1) 50%

Expectation of mediator E(M) 0

Variance of mediator Var(M) 1

Correlation of the mediator and exposure Corr(A,M) 0.2, 0.4, 0.6, 0.8

Prevalence of the confounder P (C = 1) 50%

Odds ratio of the confounder on exposure OR(A|C) 1, 1.2, 1.5, 2

Correlation of the confounder and mediator Corr(C,M) 0, 0.2, 0.4, 0.6, 0.8

Risk ratio of confounder on outcome RR(Y |C) 1, 1.2, 1.5, 2

Table 2: The AREs for NIE and MP under Case YbMc in the presence of a binary confounder.

(n = 13, 881 scenarios)

Index Min Percentiles Max

5% 10% 25% 50% 75% 90% 95%

NIE 0.011 0.734 0.895 0.985 0.999 1.000 1.000 1.000 1.000

MP 0.100 0.967 0.989 0.999 1.000 1.000 1.000 1.000 1.000
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Figure 1: Relative Asymptotic Efficiency of N̂IE (denoted as ARE(NIE)) under Case YbMc (binary

outcome and continuous mediator). The outliers, defined as AREs outside 1.5 times the interquartile

range above the third quartile and below the first quartile, are not shown [5].
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Figure 2: Relative Asymptotic Efficiency of M̂P (denoted as ARE(MP)) under Case YbMc (binary

outcome and continuous mediator). The outliers, defined as AREs outside 1.5 times the interquartile

range above the third quartile and below the first quartile, are not shown in the box plots.
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Figure 3: Relative Asymptotic Efficiency of N̂IE (denoted as ARE(NIE)) under Case YbMb(binary

outcome and binary mediator). The outliers, defined as AREs outside 1.5 times the interquartile

range above the third quartile and below the first quartile, are not shown [5].
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Figure 4: Relative Asymptotic Efficiency of M̂P (denoted as ARE(MP)) under Case YbMb(binary

outcome and binary mediator). The outliers, defined as AREs outside 1.5 times the interquartile

range above the third quartile and below the first quartile, are not shown [5].

34



0.
96

0.
98

1.
00

(a)

TE (Risk Ratio Scale)

A
R

E
(N

IE
)

1.2 1.5 2 0.1 0.3 0.5 0.7 0.9

0.
94

0.
98

(b)

MP

A
R

E
(N

IE
)

0.2 0.4 0.6 0.8

0.
4

0.
6

0.
8

1.
0

(c)

Corr(A,M)

A
R

E
(N

IE
)

0.
95

0.
97

0.
99

(d)

P(Y=1)

A
R

E
(N

IE
)

0.01 0.04 0.08 0.32 1 1.2 1.5 2

0.
96

0.
98

1.
00

(e)

OR(A|C)

A
R

E
(N

IE
)

0 0.2 0.4 0.6 0.8

0.
65

0.
80

0.
95

(f)

Corr(C,M)

A
R

E
(N

IE
)

1 1.2 1.5 2

0.
96

0.
98

1.
00

(g)

RR(Y|C)

A
R

E
(N

IE
)

Figure 5: Relative Asymptotic Efficiency of N̂IE (denoted as ARE(NIE)) under Case YbMc (binary

outcome and continuous mediator) in the presence of a binary confounder. The outliers, defined as

AREs outside 1.5 times the interquartile range above the third quartile and below the first quartile,

are not shown [5].
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Figure 6: Relative Asymptotic Efficiency of M̂P (denoted as ARE(MP)) under Case YbMc (binary

outcome and continuous mediator) in the presence of a binary confounder. The outliers, defined as

AREs outside 1.5 times the interquartile range above the third quartile and below the first quartile,

are not shown [5].
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Figure 7: QQ-plot for the residuals in the linear regression model for the 6-month visit adherence,

MaxART [2]
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Figure 8: Asymptotic biases of the NIE, NDE, TE, and MP estmators given by the product method

when varying η1 and β2 from 0 to 1. The mediation measures were evaluated for one unit increase

of the exposure. Other parameters affecting the asmptotic bias of MP, including β1 and η1, were

fixed to log(1.2).
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