Supplemental Figures

Supplemental Figure 1. FGL1 is acetylated at Lys 98 and acetylation promotes its degradation.
(A) Statistical analysis of immunoblots in Figure 1C determined by Student's t test. ns, no significance, * p < 0.05, ** p < 0.01, *** p < 0.001. (B) IB analysis of FGL1 acetylation level in HEK293T cells stably expressed Flag-FGL1 and treated with increasing concentrations of NAM (0 to 10 mM) for 6h. (C) IB analysis of FGL1 acetylation level in HEK293T cells stably expressed Flag-FGL1 and treated with increasing concentrations of NAM (0 to 10 mM) for 6h. (C) IB analysis of FGL1 acetylation level in HEK293T cells stably expressed Flag-FGL1 and treated with 10 mM NAM for different time as indicated. (D) IB analysis of whole-cell lysates (WCL) and anti-acetylated lysine immunoprecipitates (IPs) derived from HCCLM3 cells. IgG was used as a negative control. (E) IB analysis of whole-cell lysates (WCL) and anti-acetylated lysine immunoprecipitates (IPs) derived from HCCLM3 cells. IgG was used as a negative control. (E) IB analysis of whole-cell lysates (WCL) and anti-acetylated lysine immunoprecipitates (IPs) derived from HCCLM3 cells. IgG was used as a negative control. (E) IB analysis of whole-cell lysates (WCL) and anti-acetylated lysine immunoprecipitates (IPs) derived from HEK293T cells transfected with Flag-FGL1 WT or different mutant forms. (G) IB analysis of FGL1acetylation derived from HEK293T cells transfected with Flag-FGL1 WT or different mutant forms.
(H) A schematic diagram of the FGL1 Lys 98 non-acetylated and acetylated petides used for immunization

to generate the anti-acetyl-K98 FGL1 antibody. (I) K98R and K98Q mutations decrease FGL1 acetylation. (J) Statistical analysis of immunoblots in Figure 1H determined by Student's t test. ns, no significance, * p < 0.05, ** p < 0.01, *** p < 0.001. (K) IB analysis of FGL1 protein level in HEK293T cells stably expressed Flag-FGL1 and treated with increasing concentrations of NAM (0 to 10 mM) for 8h. (L) Statistical analysis of immunoblots in Figure 1K determined by Student's t test. ns, no significance, * p < 0.05, ** p < 0.01, *** p < 0.001.

Supplemental Figure 2. Inhibition of SIRT2 reduces FGL1 protein level. (A) IB analysis of FGL1 level in HEK293T cells stably expressed Flag-FGL1 and transfected with SIRT1 or SIRT2. (B) Statistical analysis of immunoblots in Figure 2I determined by Student's t test. ns, no significance, * p < 0.05, ** p < 0.01, *** p < 0.001. (C) Statistical analysis of immunoblots in Figure 2K determined by Student's t test. ns, no significance, * p < 0.05, ** p < 0.01, *** p < 0.001. (C) Statistical analysis of immunoblots in Figure 2K determined by Student's t test. ns, no significance, * p < 0.05, ** p < 0.01, *** p < 0.001. (D) The amounts of soluble FGL1 from different HCC cell lines treated with or without AGK2 (20 μ M,8h) were assessed by Enzyme-linked immunoassay (ELISA) (n = 3) with Student's t test. ns, no significance, * p < 0.01, *** p < 0.001. (E) IB analysis of endogenous FGL1 level in multiple HCC cell lines treated with AGK2 (20 μ M,8h). (F) IB analysis of endogenous FGL1 level in control and *SIRT2* knockdown HCCM3 cells.

Supplemental Figure 3. The combination of AGK2 and PD-L1 blockade effectively suppresses tumor growth of HCC. (A) Schematic representation of established in vitro co-culture system. (B) Morphology of activated Jurkat T cells. (C) IB analysis of LAG3 level in Jurkat T cells stimulated with or without PHA (500 ng/mL, 48 h). (D) qPCR analysis of *IL-2* mRNA levels in Jurkat T cells co-cultured with or without AGK2 pretreated HCCLM3 or SMMC-7721 cells. Data are mean \pm S.D. of n = 3

independent experiments. Statistical differences were determined by t-test. * p < 0.05, ** p < 0.01, *** p < 0.001. (E) Morphology of activated human T cells. (F) Images of T cell-mediated cancer cell killing assay. HCCLM3 cells pretreated with AGK2 were co-cultured with activated T cell for 48 h. Crystal violet staining was used for quantification. Data are mean \pm S.D. of n = 3 independent experiments. (G) Schematic representation of the experimental procedure. (H) Tumor growth of H22 murine hepatocarcinoma tumor cells in BALB/c mice treated with control (black lines; n=8), AGK2 (red lines; n=9), anti-PD-L1 mAb (blue lines; n=8) or the combined therapy (green lines; n=8). Tumor growth is shown as mean tumor diameter \pm S.D. (I) Kaplan–Meier survival curves for each treatment group (control, n=8; PD-L1 mAb, n=8; AGK2, n=9; combined, n=8). The p value was calculated using a two-sided Gehan–Breslow–Wilcoxon test. (J) Immunohistochemistry of CD8⁺ T cell infiltration and granzyme B in the H22 tumor mass as indicated. Scale bars, 100 μ m. Data represent mean \pm S.D. from 5 independent samples of each group. (K) IHC results of (J) were quantified and the statistical differences were determined by Student's t test. ns, no significance, * p < 0.05, ** p < 0.01, *** p < 0.001. (L) Schematic diagram showing how AGK2 enhances the immunotherapy response through decreasing FGL1 protein levels in HCC cell lines and blocking LAG-3/FGL1 pathway.

Supplemental Figure 4. Aspirin acetylates FGL1 and promotes its degradation. (A) Statistical analysis of immunoblots in Figure 4A determined by Student's t test. ns, no significance, * p < 0.05, ** p < 0.01, *** p < 0.001. (B) Statistical analysis of immunoblots in Figure 4B determined by Student's t test. ns, no significance, * p < 0.05, ** p < 0.01, *** p < 0.001. (C) Statistical analysis of immunoblots in Figure 4G determined by Student's t test. ns, no significance, * p < 0.05, ** p < 0.01, *** p < 0.001. (C) Statistical analysis of immunoblots in Figure 4G determined by Student's t test. ns, no significance, * p < 0.05, ** p < 0.001. (D) Enzyme-linked immunoassay (ELISA) quantification of soluble FGL1 from HCCLM3 when treated with or without aspirin (+, 0.125mM; +++, 0.25mM; +++, 0.5mM) for 24h. Statistical differences were determined by t-test. * p < 0.05, *** p < 0.001. 3 biological replicates were analyzed. (E) IB analysis of FGL1 protein level in HEK293T cells transfected with FGL1 WT or 98R mutant under treatment of aspirin (0.5mM, 24h). (F) Schematic representation of established in vitro co-culture system. (G) qPCR analysis

of *IL-2* mRNA level in stimulated Jurkat T cells co-cultured with control or aspirin pretreated HCCLM3 or SMMC-7721 cells. Data are mean \pm S.D. of n = 3 independent experiments. Statistical differences were determined by t-test. * p < 0.05, *** p < 0.001. (**H**) Images of T cell-mediated cancer cell killing assay. HCCLM3 cells pretreated with aspirin were then co-cultured with activated T cell for 48 h. Crystal violet staining was used for quantification. Data are mean \pm S.D. of n = 3 independent experiments.

Supplemental Figure 5. Aspirin downregulates FGL1 and enhances the efficacy of anti-PD-L1 immunotherapy. (A) Schematic representation of the experimental procedure. (B) Tumor growth of H22 murine hepatocarcinoma tumor cells in BALB/c mice treated with control (black lines; n=8), aspirin (red lines; n=9), anti-PD-L1 mAb (blue lines; n=8) or the combined therapy (green lines; n=8). Tumor growth is shown as mean tumor diameter \pm S.D. (C) Kaplan–Meier survival curves for each treatment group (control, n= 8; PD-L1 mAb, n= 8; aspirin, n=9; combined therapy, n=8). The *p* value was calculated using a two-sided Gehan–Breslow–Wilcoxon test. (D) Immunohistochemistry of CD8⁺ T cell infiltration and granzyme B in the H22 tumor mass as indicated. Scale bars, 100 µm. Data represent mean \pm S.D. from 5 independent samples of each group. (E) IHC results of (E) were quantified and the statistical

differences were determined by Student's t test. ns, no significance, * p < 0.05, ** p < 0.01, *** p < 0.001. (**F**) Schematic representation of established in vitro co-culture system. (**G**) Images of T cellmediated cancer cell killing assay. HCCLM3 and SMMC-7721 cell lines pretreated with AGK2 or aspirin were co-cultured with activated T cell for 48 h. Activated T cell pretreated with Relatlimab were co-cultured with HCCLM3 and SMMC-7721 cell lines for 48 h. Crystal violet staining was used for quantification. Data are mean \pm S.D. of n = 3 independent experiments. Statistical differences were determined by Student's t test. ns, no significance, * p < 0.05, ** p < 0.01, *** p < 0.001. (**H**) Tumor growth of Hepa 1-6 cells in C57BL/6 mice treated with control (black lines), aspirin (red lines), AGK2 (blue lines) or the anti-LAG-3 mAb (green lines). n = 6 biologically independent animals per group. Tumor growth is shown as mean tumor diameter \pm S.D. (**I**) Kaplan–Meier survival curves for each treatment group. n = 6 biologically independent animals per group. The *p* value was calculated using a two-sided Gehan–Breslow–Wilcoxon test.

Supplemental Figure 6. SIRT2 is upregulated while K98-Acetylation of FGL1 is downregulated in hepatocellular carcinoma. (A) The mRNA levels of SIRT2 derived from normal or tumor specimen in various cancer types from TCGA database. Statistical differences were determined by Student's t test. CHOL: Cholangiocarcinoma; ESCA: Esophageal carcinoma; KICH: Kidney Chromophobe; KIRC: Kidney renal clear cell carcinoma; LIHC: Liver hepatocellular carcinoma. (B-D) SIRT2 expression analysis in HCC based on tumor stages, grades and nodal metastasis status by UALCAN.

Supplementary Tables

Supplemental Table 1.						
qPCR primers						
	Forward 5'-3'	Reverse 5'-3'				
hACTIN	TATTGGCAACGAGCGGTTCC	GGCATAGAGGTCTTTACGGATGTC				
hGAPDH	GTCTCCTCTGACTTCAACAGCG	ACCACCCTGTTGCTGTAGCCAA				
hIL-2	GAATGGAATTAATAATTACAAGAATCCC	TGTTTCAGATCCCTTTAGTTCCAG				
hFGL1 1-1	ATGGCAAAGGTGTTCAGTTTCA	ACAATCTGCATACTGCCTCTTG				
hFGL1 1-2	TATTGTGACATGTCCGATGGAGG	TTCAGAGAATACCACCACCATG				
hFGL1 1-3	CATTGATCTTGGAAGCAAGAGGC	AGTTGTCATGATCTCTGTCCCAC				

Supplemental Table 2.

Antibodies used for immunoblot					
Antibody	Source	Cat Number			
FGL1	Proteintech	16000-1-AP			
FGL1	Abcam	ab170922			
FGL2	Proteintech	67152-1-Ig			
GAPDH	Proteintech	60004-1-Ig			
Acetylated-lysine antibody	Cell Signaling Technology	#9441			
LAG3	Proteintech	16616-1-AP			
His-tag	HUABIO	R1207-2			
HA-tag	АbНО	HOA012HA01			
Flag-tag	АbНО	HOA012FL01			
Secondary anti-mouse	SAB	L3032			
Secondary anti-rabbit	SAB	L3012			
InVivoMAb rat IgG2a	BioXcell	BE0089			
isotype control					
InVivoMab anti-mouse PD-	BioXcell	BE0101			
L1 (B7-H1)					
InVivoMAb rat IgG1 isotype	BioXcell	BE0088			
control					
InVivoMAb anti-mouse	BioXcell	BE0174			
LAG-3					

Supplemental Table 3.

Antibodies used for IHC staining					
Antibody	Source	Cat Number			
CD8a	Cell Signaling Technology	98941			
Granzyme B	Abcam	ab255598			
FGL1	Abcam	ab275091			
SIRT2	Abcam	ab211033			
Acetyl-K98-FGL1	ABclonal Technology Biotech	N/A			

The correlation of clin	nicopathologi	ical variables	s of the HCC	patients and S	SIRT2
expression levels					
Clinicopathological	n	SIRT2 expression		χ^2	P value
parameters					
		Low	High		
all	84	47	37		
Age(year)				1.097	0.295
<55	44	27	17		
≥55	40	20	20		
Gender				1.948	0.163
Male	75	40	35		
Female	9	7	2		
Liver cirrhosis				0.398	0.528
No	49	26	23		
Yes	35	21	14		
Tumor size(cm)				12.755	0.000^*
≤5	34	27	7		
>5	50	20	30		
TNM stage				15.452	0.000^{*}
I/II	43	33	10		
III/IV	41	14	27		
Pathological grade				3.657	0.454
I/I-II	10	8	2		
II/II-III	68	37	31		
III/III-IV	6	2	4		

Supplemental Table 4.

^a A chi-square test was used for comparing groups between low and high SIRT2 expression. *, p<0.05 was considered significant.

The correlation of clinicopathological variables of the HCC patients and FGL1 expression levels						
Clinicopathological parameters	n	FGL1 expression		χ ²	P value	
		Low	High			
all	84	35	49			
Age(year)				1.859	0.173	
<55	44	19	25			
≥55	40	16	24			
Gender				2.592	0.107	
Male	75	29	46			
Female	9	6	3			
Liver cirrhosis				3.931	0.047*	
No	49	16	33			
Yes	35	19	16			
Tumor size(cm)				9.492	0.002^{*}	
≤5	34	21	13			
>5	50	14	36			
TNM stage				7.254	0.007^{*}	
I/II	43	24	19			
III/IV	41	11	30			
Pathological grade				4.727	0.316	
I/I-II	10	4	6			
II/II-III	68	31	37			
III/III-IV	6	0	6			

Supplemental Table 5.

^a A chi-square test was used for comparing groups between low and high SIRT2 expression. *, p<0.05 was considered significant.

Supplemental Table 6.

The correlation of clinicopathological variables of the HCC patients and Ac-K98 / total FGL1 expression levels						
Clinicopathological parameters	n	Ac-K98 / total FGL1		χ^2	P value	
		Low	High			
all	84	37	47			
Age(year)				0.028	0.867	
<55	44	19	25			
≥55	40	18	22			
Gender				1.948	0.163	
Male	75	35	40			
Female	9	2	7			
Liver cirrhosis				1.160	0.281	
No	49	24	25			
Yes	35	13	22			
Tumor size(cm)				9.757	0.002^{*}	
≤5	34	8	26			
>5	50	29	21			
TNM stage				12.189	0.000^{*}	
I/II	43	11	32			
III/IV	41	26	15			
Pathological grade				6.103	0.047*	
I/I-II	10	2	8			
II/II-III	68	30	38			
III/III-IV	6	5	1			

^a A chi-square test was used for comparing groups between low and high SIRT2 expression. *, p<0.05 was considered significant.

Supplemental Table 7.

The analysis of prognosis makers of HCC							
Variables	n	Univariate analyses			Multivariate analyses		
		HR	(95% CI)	P value	HR	(95% CI)	P value
Age(year)				0.627			0.329
<55	44						
≥55	40	0.873	0.505-1.508		0.739	0.403-1.355	
Gender				0.360			0.779
Male	75						
Female	9	1.611	0.579-4.476		1.176	0.377-3.661	
Liver							0.046*
cirrhosis							0.040
No	49			0.613			
Yes	35	1.152	0.665-1.993		1.802	1.011-3.211	
Tumor				0.015*			0.226
size(cm)				0.015			0.230
≤5	34						
>5	50	2.088	1.151-3.786		0.499	0.158-1.573	
TNM stage				0.000^{*}			0.060
I/II	43						
III/IV	41	3.068	1.706-5.517		2.755	0.957-7.930	
Pathological				0.051			0 333
grade				0.051			0.555
I/I-II	10						
II/II-III	68						
III/III-IV	6	1.933	0.997-3.746		1.422	0.696-2.904	
SIRT2				0.000^{*}			0.014^{*}
Low	47						
High	37	5.194	2.824-9.550		2.642	1.215-5.742	
FGL1				0.000^{*}			0.045^{*}
Low	35						
High	49	3.688	1.935-7.026		2.187	1.018-4.699	
Ac-K98 /				0.000*			0.004*
total FGL1				0.000			0.000
Low	37						
High	47	0.182	0.099-0.333		0.366	0.179-0.750	

Abbreviations: 95% CI, 95% confidence interval; HR, hazard ratio. *, p<0.05 was regarded as statistically significant, p value was calculated using Cox's proportional hazards regression.