Supplemental Table 1. Phenotypic characteristics of wildtype and *Ccr2^{-/-}* mice 8 weeks after sham

	Wildtype sham	Wildtype TAC	Ccr2 ^{-/-} sham	Ccr2 TAC
n	16	17	14	17
Body weight (g)	28±3	27±3	25±1ª	27±2
			(not recorded in 1 mouse)	
Heart weight (mg)	132±20	220±55 ^b	120±19 ^c	185±48 ^{de}
Heart weight:tibial	6.4±0.8	10.8±3.0 ^b	5.9±0.9 ^c	9.2±2.6 ^{de}
length (mg/mm)				
Lung weight (mg)	167±26	216±82	164±35	200±76
Systolic blood	102±15	120±39	110±11	114±17
pressure (mmHg)		(not measured in		
		4 mice)		

or transverse aortic constriction (TAC) surgery.

Values are mean \pm S.D.. ^a*P* < 0.01 vs. wildtype sham, ^b*P* < 0.0001 vs. wildtype sham, ^c*P* < 0.0001 vs. wildtype TAC, ^d*P* < 0.01 vs. wildtype sham, ^e*P* < 0.001 vs. *Ccr2*^{-/-} sham by one-way ANOVA followed by Tukey's post hoc test.

Supplemental Table 2. Heart rate and chamber dimensions determined by M-mode echocardiography in wildtype and *Ccr2^{-/-}* mice 8 weeks after sham or transverse aortic constriction (TAC) surgery.

	Wildtype sham	Wildtype TAC	Ccr2 ^{-/-} sham	Ccr2 ^{-/-} TAC
n	16	17	14	17
Heart rate (bpm)	385±54	443±55	415±78	459±87 ^a
LVDs (mm)	3.2±0.3	3.8±0.7ª	2.8 ± 0.5^{b}	3.1±0.7°
LVDd (mm)	4.2±0.2	4.4±0.6	3.9±0.3°	4.0 ± 0.5^{d}
LVESV (µI)	41±8	65±31 ^e	30±11 ^b	40±22 ^c
LVEDV (µI)	80±10	91±29	65±13 ^c	72±25
LVAWT (mm)	0.85±0.12	1.09±0.22 ^e	0.88 ± 0.16^{d}	1.14±0.22 ^{fg}
LVPWT (mm)	0.76±0.14	1.03±0.25 ^e	0.75±0.09°	1.12±0.27 ^{hi}

bpm = beats per minute, LVDs = left ventricular internal diameter at systole, LVDd = left ventricular internal diameter at diastole, LVESV = left ventricular end systolic volume, LVEDV = left ventricular end diastolic volume, LVAWT = left ventricular anterior wall thickness, LVPWT = left ventricular posterior wall thickness. Values are mean \pm S.D.. ^a*P* < 0.05 vs. wildtype sham, ^b*P* < 0.0001 vs. wildtype TAC, ^c*P* < 0.01 vs. wildtype TAC, ^d*P* < 0.05 vs. wildtype TAC, ^e*P* < 0.01 vs. wildtype sham, ^f*P* < 0.001 vs. wildtype sham, ^h*P* < 0.0001 vs. Ccr2^h sham by one-way ANOVA followed by Tukey's post hoc test.

	Wildtype sham	Wildtype TAC	<i>Ccr2^{-/-}</i> sham	Ccr2 ^{-/-} TAC
n	10	13	13	16
Ejection fraction (%)	52±7	37±10 ^a	56±12 ^b	45±10°
P _{max} (mmHg)	104±13	154±26 ^d	101±9 ^b	141±22 ^{ef}
ESP (mmHg)	102±14	148±25 ^d	97±9 ^b	134±22 ^{ef}
EDP (mmHg)	16±9	27±10 ^g	16±5 ^h	18±8
dP/dt max	5810±1345	5989±1219	6247±1110	6295±1466
(mmHg/sec)				
dP/dt min	-5284±1463	-6038±1069	-5810±1182	-6172±1706
(mmHg/sec)				
Tau (ms)	13±4	13±3	11±3	12±3

Supplemental Table 3. Invasive hemodynamic parameters in wildtype and *Ccr2^{-/-}* mice 8 weeks after sham or transverse aortic constriction (TAC) surgery.

 P_{max} = maximum pressure (peak systolic pressure), ESP = end systolic pressure, EDP = end diastolic pressure. Values are mean ± S.D.. ^a*P* < 0.01 vs. wildtype sham, ^b*P* < 0.0001 vs. wildtype TAC, ^c*P* < 0.05 vs. *Ccr2*^{-/-} sham, ^d*P* < 0.0001 vs. wildtype sham, ^e*P* < 0.001 vs. wildtype sham, ^f*P* < 0.0001 vs. *Ccr2*^{-/-} sham, ^g*P* < 0.05 vs. wildtype sham, ^h*P* < 0.05 vs. wildtype TAC by one-way ANOVA followed by Tukey's post hoc test.

Supplemental Table 4. Top 3 significantly enriched Gene Ontology (GO) results for cardiomyocytes incubated for 24 hours in media conditioned by CCR2+ macrophages isolated from mouse hearts 4 weeks after transverse aortic constriction (TAC).

ID	Term	Count	p_value	FDR
Up differentially expr	essed genes Biological Process			
GO:0006952	defense_response	99	1.24e-53	4.55e-50
GO:0002376	immune_system_process	121	1.77e-51	3.25e-48
GO:0006955	immune_response	92	6.94e-47	8.48e-44
Up differentially expr	essed genes Cellular Component			
GO:0005615	extracellular_space	64	8.50e-17	3.27e-14
GO:0005576	extracellular_region	78	9.14e-16	1.76e-13
GO:0005737	cytoplasm	195	5.29e-14	6.79e-12
Up differentially expr	essed genes Molecular Function		1	1
GO:0042277	peptide_binding	184	3.79e-19	2.22e-16
GO:0033218	amide_binding	184	6.48e-19	2.22e-16
GO:0005515	protein_binding	182	9.54e-19	2.22e-16
Down differentially ex	xpressed genes Biological Process		1	1
GO:0030308	negative_regulation_of_cell_growth	3	5.47e-05	2.08e-02
GO:0045926	negative_regulation_of_growth	3	1.61e-04	3.05e-02
GO:0001558	regulation_of_cell_growth	3	5.89e-04	5.60e-02
Down differentially ex	xpressed genes Cellular Component		1	1
GO:0005741	mitochondrial_outer_membrane	2	1.85e-03	3.33e-02
GO:0019867	outer_membrane	2	2.25e-03	3.33e-02
GO:0031968	organelle_outer_membrane	2	2.25e-03	3.33e-02
Down differentially e	xpressed genes Molecular Function		1	1
GO:0004842	ubiquitin-protein_transferase_activity	2	1.17e-02	1.13e-01
GO:0019787	ubiquitin-like_protein_transferase_activity	2	1.27e-02	1.13e-01
GO:0016491	oxidoreductase_activity	2	4.60e-02	1.94e-01

Supplemental Table 5. Top 5 significantly enriched KEGG pathways for cardiomyocytes incubated for 24 hours in media conditioned by CCR2+ macrophages isolated from mouse hearts 4 weeks after transverse aortic constriction (TAC).

ID	Term	Count	p_value	FDR
Up differentially expr	essed genes KEGG pathway			
mmu05168	Herpes_simplex_infection	30	5.09e-17	1.09e-14
mmu04621	NOD-like_receptor_signaling_pathway	25	6.38e-15	6.86e-13
mmu05164	Influenza_A	20	2.56e-10	1.83e-08
mmu05416	Viral_myocarditis	13	2.61e-08	1.40e-06
mmu04612	Antigen_processing_and_presentation	13	3.96e-08	1.49e-06
Down differentially expressed genes KEGG pathway				
None				

Supplemental Table 6. Mouse cytokines and chemokines determined by multiplex assay in media conditioned by CCR2+ macrophages (CD45⁺Ly6c^{hi}CD11b⁺CD64⁺MHC-II^{hi}GFP⁺ cells) isolated from mouse hearts 4 weeks after transverse aortic constriction (TAC).

	Median (range)		Median (range)
No. of cells	2944 (1195-3343)	LIF	Undetectable
Fotaxin	Lindetectable		1 07 (0-4 9)
G-CSF	Undetectable	M-CSF	Undetectable
GM-CSF	Undetectable	CXCL9	Undetectable
IFN-y	Undetectable	CCL3	Undetectable
IL-1α	Undetectable	CCL4	Undetectable
IL-1 β	0.75 (0-2.79)	CCL5	Undetectable
IL-2 [′]	Undetectable	TNFα	Undetectable
IL-3	Undetectable	VEGF	Undetectable
IL-4	Undetectable	Erythropoietin	Undetectable
IL-5	Undetectable	CCL21	Undetectable
IL-6	Undetectable	CX3CL1	Undetectable
IL-7	1.35 (0.92-2.34)	IFN-β	<u>7.82</u> (0-12.98)
IL-9	1.57 (0.56-4.13)	IL-11	Undetectable
IL-10	Undetectable	IL-16	1.98 (0.8-2.52)
IL-12 (p40)	Undetectable	IL-20	Undetectable
IL-12 (p70)	Undetectable	CCL22	Undetectable
IL-13	Undetectable	CCL12	0.57 (0.30-1.07)
IL-15	5.61 (5.12-9.00)	CCL20	Undetectable
IL-17	Undetectable	CCL19	Undetectable
IP-10	0.68 (0.42-0.78)	CCL17	Undetectable
CXCL1	Undetectable	TIMP-1	Undetectable

Values are in pg/mL. Analytes were measured using the Eve Technologies Mouse Cytokine 44-Plex Discovery Assay. Values for LIX (CXCL5) are not presented because the assay reports that LIX results are not validated. Values are reported as undetectable if the median concentration fell below the 4 or 5 parameter logistic standard curve.

	Upregulated	Downregulated
	(fold change >1.5)	(fold change <1/1.5)
Wildtype TAC vs. wildtype control	10	48
<i>lsg15^{-/-}</i> TAC vs. <i>lsg15^{-/-}</i> control	74	18
<i>lsg15^{-/-}</i> TAC vs. wildtype TAC	31	5

Supplemental Table 7. Summary of the number of differentially regulated diGLY sites in left ventricles of wildtype and *lsg15^{-/-}* mice 4 weeks after transverse aortic constriction (TAC).

Supplemental Table 8. Significantly upregulated diGLY sites in left ventricles of wildtype mice 4 weeks after transverse aortic constriction compared to control wildtype mice.

Protein name	Position	GlyGly (K) probabilities	p_value	Difference
[Protein ADP-	335	GLYQELEHK(1)GR	0.038957	1.319833
ribosylarginine]				
hydrolase-like protein 1				
Xin actin-binding	1054	GISAQEIQAGNVK(1)SAR	0.028129	1.823933
repeat-containing				
protein 2				
Titin	12993	TSTAK(1)LIVEELPVR	0.007273	5.088633
Synaptopodin 2-like	433	NSPNPELLSLVQNLDEK(1)PR	0.003149	1.3043
protein				
Histone-lysine N-	102	VQLFK(0.994)IDQQQQQK(0.006)	0.020353	2.701133
methyltransferase 2B				
Atypical chemokine	362	VSETEYSALEQNTK(1)	0.049858	0.850433
receptor 3				
Filamin-C	2590	YGGPQHIVGSPFK(0.997)AK(0.003)	0.002609	2.131467
Myosin-7	1279	AK(1)LQTENGELSR	0.025301	3.147833
Myosin-7	1305	GK(1)LTYTQQLEDLKR	0.017522	3.780733
Myosin-7	34	LEAQTRPFDLK(1)K	0.009401	3.913867

	Wildtype sham	Wildtype TAC	<i>lsg15^{-/-}</i> sham	lsg15 ^{-/-} TAC
n	15	13	13	14
Body weight (g)	29±4	28±2	28±2	28±1
Heart weight (mg)	114±13	190±40 ^a	122±16 ^b	171±38 ^{ac}
Heart weight:tibial	5.9±0.6	10.1±2.2 ^a	6.2±0.7 ^b	8.8±19 ^{ac}
length (mg/mm)				
Lung weight (mg)	180±20	227±114	169±20	217±101
Systolic blood	100±11	103±17	110±8	113±10 ^d
pressure (mmHg)		(not measured in 2		
		mice)		

Supplemental Table 9. Phenotypic characteristics of wildtype and *Isg15^{-/-}* mice 8 weeks after sham or transverse aortic constriction (TAC).

Values are mean \pm S.D.. ^a*P* < 0.0001 vs. wildtype sham, ^b*P* < 0.0001 vs. wildtype TAC, ^c*P* < 0.001 vs. *Isg15^{-/-}* sham, ^d*P* < 0.05 vs. wildtype sham by one-way ANOVA followed by Tukey's post hoc test. Supplemental Table 10. Heart rate and chamber dimensions determined by M-mode echocardiography in wildtype and *lsg15^{-/-}* mice 8 weeks after sham or transverse aortic constriction (TAC).

	Wildtype sham	Wildtype TAC	<i>lsg15</i> sham	<i>lsg15</i> ^{-/-} TAC
n	15	12	13	14
Heart rate (bpm)	363±56	384±66	399±38	384±76
LVDs (mm)	3.1±0.6	3.6±0.7	3.2±0.6	2.9±0.9ª
LVDd (mm)	4.1±0.3	4.2±0.6	4.1±0.4	4.1±0.6
LVESV (µI)	40±15	58±22	43±5	43±24
LVEDV (µI)	76±13	81±23	75±19	76±24
LVAWT (mm)	0.84±0.11	1.09±0.23 ^b	0.87±0.13 ^a	1.12±0.18 ^{cd}
LVPWT (mm)	0.76±0.11	1.00±0.05°	0.65±0.07 ^e	0.92±0.17 ^{fg}

bpm = beats per minute, LVDs = left ventricular internal diameter at systole, LVDd = left ventricular internal diameter at diastole, LVESV = left ventricular end systolic volume, LVEDV = left ventricular end diastolic volume, LVAWT = left ventricular anterior wall thickness, LVPWT = left ventricular posterior wall thickness. Values are mean \pm S.D.. ^a*P* < 0.05 vs. wildtype TAC, ^b*P* < 0.01 vs. wildtype sham, ^c*P* < 0.001 vs. wildtype sham, ^d*P* < 0.01 vs. *Isg15*^{-/-} sham, ^e*P* < 0.0001 vs. wildtype TAC, ^f*P* < 0.05 vs. wildtype sham, ^g*P* < 0.0001 vs. *Isg15*^{-/-} sham by one-way ANOVA followed by Tukey's post hoc test.

Supplemental Table 11. Invasive hemodynamic parameters in wildtype and *Isg15^{-/-}* mice 8 weeks after sham or transverse aortic constriction (TAC).

	Wildtype sham	Wildtype TAC	<i>lsg15⁻</i> ⁻ sham	lsg15 ^{-/-} TAC
n	15	10	13	13
Ejection fraction (%)	59±19	39±23	57±17	53±23
P _{max} (mmHg)	100±17	143±30 ^a	101±12 ^b	162±18 ^{ac}
ESP (mmHg)	96±17	136±25 ^a	95±13 ^b	147±17 ^{ac}
EDP (mmHg)	14±5	15±6	14±5	18±7
dP/dt max	6085±1751	6935±3363	6269±2206	8063±1884
(mmHg/sec)				
dP/dt min	-5205±1606	-6624±2760	-5963±2048	-7406±2120
(mmHg/sec)				
Tau (ms)	13±4	13±8	11±2	10±3

 P_{max} = maximum pressure (peak systolic pressure), ESP = end systolic pressure, EDP = end diastolic pressure. Values are mean ± S.D.. ^a*P* < 0.0001 vs. wildtype sham, ^b*P* < 0.0001 vs. wildtype TAC, ^c*P* < 0.0001 vs. *Isg15*^{-/-} sham by one-way ANOVA followed by Tukey's post hoc test.

Supplemental Table 12. Significantly enriched KEGG pathways in the untargeted metabolomic comparison of *Isg15^{-/-}* and wildtype mouse hearts 8 weeks after transverse aortic constriction (TAC).

Pathway	Pathway total	Hits.total	Hits.significant	Expected	p_value
D-Glutamine and D-	6	6	6	0.5343	0.000275
glutamate metabolism					
β-Alanine	21	8	5	1.0686	0.001367
Glutathione metabolism	19	6	4	0.8014	0.003368
Porphyrin and chlorophyll	27	5	4	0.5343	0.008044
metabolism					
Arginine and proline	37	23	12	2.6715	0.009076
metabolism					
Alanine, apartate and	28	12	6	1.6029	0.012798
glutamate metabolism					
Arginine biosynthesis	14	8	4	1.0686	0.012836
Histidine metabolism	16	7	4	1.0686	0.012836
Aminoacyl-tRNA	22	18	7	2.9386	0.016215
biosynthesis					
Nitrogen metabolism	6	2	2	0.26715	0.017423
Lysine degradation	19	8	4	1.2022	0.020886
Pantothenate and CoA	17	8	4	1.4693	0.044731
biosynthesis					

Supplemental Table 13. Antibodies used for flow cytometric identification of CCR2+ cardiac macrophages.

Surface	Fluorescence	Clone	Catalogue No.	Source
Marker	Тад			
Ly6c	BV 605	HK 1.4	128035	Biolegend
CD45	PE/Cy7	30-F11	103114	Biolegend
CD11b	PE	M1/70	101207	Biolegend
CD64	PE/Dazzle 594	X54-5/7.1	139319	Biolegend
MHC-II	Alexa Fluor 700	M5/114.15.2	56-5321-80	eBioscience

Supplemental Table 14. Primer sequences used in quantitative reverse transcription polymerase chain reaction (qRT-PCR) experiments.

Species	Gene	Forward primer sequence (5'->3')	Reverse primer sequence (5'->3')
	name		
Mus	Rpl13a	GCTCTCAAGGTTGTTCGGCTGA	AGATCTGCTTCTTCTTCCGATA
musculus			
Mus	Irf7	CAGCGAGTGCTGTTTGGAGA	AAGTTCGTACACCTTATGCGG
musculus			
Mus	lsg15	TGGTACAGAACTGCAGCGAG	AGCCAGAACTGGTCTTCGTG
musculus			
Mus	Bst2	ACATGGCGCCCTCTTTCTATCACT	TGACGGCGAAGTAGATTGTCAGGA
musculus			
Mus	lfit1	CTGAGATGTCACTTCACATGGAA	GTGCATCCCCAATGGGTTCT
musculus			
Mus	lfit3	CCTACATAAAGCACCTAGATGGC	ATGTGATAGTAGATCCAGGCGT
musculus			
Mus	Gvin1	GAGAGACTGCAAGGAAGCCAAAG	GGTGCCAAAGTTGTCCTTGAAGG
musculus	_		
Mus	Oasl2	GATGGATATCCTCCCAGCTTACG	TTGGTGAGAAGTCACCAGGGTAG
musculus			
Mus	Lgals3bp	TGGAACCTTTTGGATGCCCA	GAAGCCCCGTGGTATCGTT
musculus			
Mus	lfitm3	CCCCCAAACTACGAAAGAATCA	ACCATCTTCCGATCCCTAGAC
musculus			
Mus	lfi2712a	CIGIIIGGCICIGCCAIAGGAG	CCIAGGAIGGCAIIIGIIGAIGIGG
musculus	10015	000000000000000000000000000000000000000	07700700007770700000
Homo	ISG15	GCGCAGATCACCCAGAAGAT	GITCGTCGCATTIGTCCACC
sapiens	04744		
Homo	GATA4	ACCCCAATCTCGTAGATATGTTT	AGGCGTTGCACAGATAGTGA
sapiens	10701		1000T01001T000T0T0TT
Homo	ACICI	IGIGUCAAGAIGIGIGAUGA	AGGGICAGGAIGCCICICII
sapiens		TOOTACOOTOTOAACOOATO	TTTTCTCCCCCCCCCTCCCT
Homo	RPL13A	TUGTAUGUTGTGAAGGUATU	TITIGIGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG
sapiens			
HOMO	RP318	IGATUUUIGAAAAGTIUUAGUA	CITCGGUUCAUAUUUTTAAT
sapiens			

SUPPLEMENTAL FIGURE LEGENDS

Supplemental Figure 1. Multi-color flow cytometry gating strategy and enumeration of CCR2+ cardiac monocyte-derived macrophages (CD45⁺Ly6c^{hi}CD11b⁺CD64⁺MHC-II^{hi}GFP⁺ cells).

Supplemental Figure 2. Flow diagram showing outcomes for wildtype and *Ccr2^{-/-}* mice subjected to sham or transverse aortic constriction (TAC).

Supplemental Figure 3. Representative M-mode echocardiographs (A) and (B) fractional shortening, (C) cardiac output and (D) stroke volume in wildtype and $Ccr2^{-/-}$ mice 8 weeks after sham or TAC surgery. Wildtype sham (n=16), wildtype TAC (n=17), $Ccr2^{-/-}$ sham (n=14), $Ccr2^{-/-}$ TAC (n=17). Values are mean \pm S.D.. **P* < 0.05, ***P* < 0.01, ****P* < 0.001, *****P* < 0.0001 by one-way ANOVA followed by Tukey's post hoc test.

Supplemental Figure 4. (A) Heat map showing genes differentially expressed in adult mouse cardiomyocytes incubated in control media or media conditioned by CCR2+ cardiac macrophages for 24 hours, fold change \geq 2.5 fold, *P* < 0.05. (B) Venn diagram of genes differentially regulated in adult mouse cardiomyocytes incubated for 24 hours in media conditioned by CCR2+ macrophages (CD45⁺Ly6c^{hi}CD11b⁺CD64⁺MHC-II^{hi}GFP⁺ cells) isolated from mouse hearts 4 weeks after transverse aortic constriction (TAC). The gene symbols for the 42 genes observed to be (\geq 2.5 fold) differentially expressed by RNA sequencing (A) were entered into Interferome v.2.01 and the database was searched for previous entries where genes have been up- or down-regulated \geq 2 fold (default settings). Note, 39/42 of the differentially expressed genes have previously been observed to be regulated by either type I or type II interferons. Because there are more datasets available for genes regulated by type I interferons.

Supplemental Figure 5. Quantitative reverse transcription polymerase chain reaction (qRT-PCR) for interferon response genes (*Isg15*, *Irf7*, *Ifit1*, *Ifit3*, *Ifi2712a*, *Ifitm3*, *Oasl2*, *Lgals3bp*, *Bst2*, *Gvin1*) in mouse hearts 1, 4 or 8 weeks after TAC in comparison to control hearts 8 weeks after sham surgery (n=5/group). Values are mean \pm S.D.. **P* < 0.05, ***P* < 0.01 by one-way ANOVA followed by Dunnett's post hoc test.

Supplemental Figure 6. Flow cytometry determination of CCR2 expression in CD45+CD64+CD11b+ bone marrow-derived macrophages (BMDMs) from wildtype and *Ccr2^{gfp/+}* mice, demonstrating that BMDMs are CCR2 positive.

Supplemental Figure 7. Flow cytometry histograms of CD4+ T cells isolated from mouse spleens (left unstained; right anti-CD4 stained), confirming >97% purity of the cell population for CD4+ cells.

Supplemental Figure 8. Immunoblotting mouse hearts 1, 4 or 8 weeks after TAC, in comparison to control hearts 8 weeks after sham surgery for (A) cGAS, (B) STING, (C) RIG-I and (D) MAVS (n=5/group). Values are mean \pm S.D.. **P* < 0.05, ***P* < 0.01 by one-way ANOVA followed by Dunnett's post hoc test.

Supplemental Figure 9. (D) Immunoblotting for ISG15 in mouse cardiomyocytes following stimulation with 500IU/mL IFN- α or 500ng/mL poly(I:C) LMW/LyoVec for 48 hours (n=5/condition). Values are mean \pm S.D.. *****P* < 0.0001 by one-way ANOVA followed by Dunnett's post hoc test.

Supplemental Figure 10. Phase contrast image showing human cardiac myocytes after culture for 21 days, with their elongated appearance, beginning to form myotube-like structures. Scale bar = 200µm.

Supplemental Figure 11. Echocardiographic parameters of wildtype mice 4 weeks after sham (n=16) or transverse aortic constriction (TAC; n=17). (A) Left ventricular mass. (B) Ejection fraction. (C) Fractional shortening. (D) Cardiac output. (E) Stroke volume. **P < 0.01, ****P < 0.0001 by unpaired two-tailed Student *t* test.

Supplemental Figure 12. Dual immunofluorescence staining for ISG15 and filamin-C in the hearts of sham-operated *Isg15^{-/-}* mice and *Isg15^{-/-}* mice 1 week after TAC. Scale bar = 10μ m.

Supplemental Figure 13. Flow diagram showing outcomes for wildtype and *Isg15^{-/-}* mice subjected to sham or transverse aortic constriction (TAC).

Supplemental Figure 14. Cardiomyocyte size, interstitial fibrosis and mitochondrial density in wildtype and *Isg15^{-/-}* mice 8 weeks after sham or transverse aortic constriction (TAC). (A) H&E stained cardiac cross sections and myocyte cross sectional area. Scale bar = 50µm. (B) Picrosirius red staining and quantitation of cardiac picrosirius red positive area. Scale bar = 100µm. Wildtype sham (n=15), wildtype TAC (n=12), *Isg15^{-/-}* sham (n=13), *Isg15^{-/-}* TAC (n=14) for each, except (B) wildtype sham (n=14). (C) Representative transmission electron micrographs of cardiomyocytes from wildtype and *Isg15^{-/-}* mice 8 weeks after sham or TAC surgery and quantitation of mitochondria number per x8000 field in approximately 15 fields per mouse. Scale bar = 1µm. Wildtype sham (n=4), wildtype TAC (n=5), *Isg15^{-/-}* sham (n=6), *Isg15^{-/-}* TAC (n=7). Values are mean \pm S.D. **P* < 0.05, ***P* < 0.01, ****P* < 0.001, *****P* < 0.001 by one-way ANOVA followed by Tukey's post hoc test (skew distributed data in B were log-transformed prior to statistical comparison).

Supplemental Figure 15. RNAscope in situ hybridization for *Ccr2* and immunofluorescence staining for Troponin I in heart sections of $Isg15^{-/-}$ mice 8 weeks after sham surgery and $Isg15^{-/-}$ mice 1, 4 and 8 weeks after transverse aortic constriction (TAC). Scale bar = 10µm. Quantitation of *Ccr2* expressing cells per cardiac section. $Isg15^{-/-}$ sham (n=6), $Isg15^{-/-}$ 1 week TAC (n=5), $Isg15^{-/-}$ 4 weeks TAC (n=4),

Isg15^{-/-} 8 weeks TAC (n=5)). Values are mean \pm S.D.. *****P* < 0.0001 by one-way ANOVA followed by Dunnett's post hoc test.

Supplemental Figure 16. Principal component analysis (PCA) plots following untargeted metabolomics in hearts of wildtype (WT) and *Isg15^{-/-}* (KO) mice 8 weeks after sham or TAC surgery. Wildtype sham (n=3), wildtype TAC (n=4), *Isg15^{-/-}* sham (n=4), *Isg15^{-/-}* TAC (n=4).

Supplemental Figure 1.

Supplemental Figure 2.

Supplemental Figure 3.

Supplemental Figure 4.

Supplemental Figure 5.

Supplemental Figure 6.

Supplemental Figure 7.

Supplemental Figure 8.

Supplemental Figure 9.

Supplemental Figure 10.

Supplemental Figure 11.

Supplemental Figure 12.

Supplemental Figure 13.

Supplemental Figure 14.

Supplemental Figure 15.

Supplemental Figure 16.