Science Advances

Supplementary Materials for

ZFP750 affects the cutaneous barrier through regulating lipid metabolism

Alessio Butera et al.

Corresponding author: Gerry Melino, melino@uniroma2.it

Sci. Adv. **9**, eadg5423 (2023) DOI: 10.1126/sciadv.adg5423

This PDF file includes:

Figs. S1 to S6 Tables S1 to S6 Supplementary Materials (Uncropped Western blot scans) References

D

25

20-15-10-

> 5-0-

Strat basale-granolosum(µm)

P<0.0001

mice; P=0.055). (C) ZFP750 expression in the epidermis of the indicated mice during development (Bar: 50 μ m). (D) Epidermal thickness

Science Advances

Fig S2: Genetic deletion of ZFP750 alters embryonic epidermal differentiation. (A and B) Both dorsal and ventral skin was isolated from E17.5 WT and ZFP750^{-/-} mice and stained with the indicated differentiation markers. Asterisks indicate keratinocytes expressing both Krt10 and Krt14 markers. (Bar: 50μ m).

Fig S3: The p63/ZNF750/KLF4 axis is partially conserved in mouse. (A) Co-expression analysis of p63 and ZFP750 (β -Gal) during epidermal development. A representative micrograph is shown (n=3), (Bar: 50µm). (B) ChIP assay showing that endogenous murine p63 binds the promoter of ZFP750. The *Gapdh* promoter is used a negative control region. A representative experiment is shown. Bars represent the mean of three technical replicates (n=3, PCR runs) ± SD. (C and D) mRNA levels of *Trp63* and *Klf4* in the epidermis isolated from WT and ZFP750^{-/-} mice evaluated by qPCR. Data are normalized to β -Actin and relative to WT. Bars represent the mean \pm SD (n=6 mice/genotype). A representative micrograph is shown (n=4), (Bar: 50µm)

Fig S4: *Zfp750* deletion alters the epidermal differentiation program and lipid composition. Immunoblot analysis of Filaggrin (FLG) (**A**), Loricrin (**B**). Epidermis from *Zfp750^{-/-}* mice shows low levels of FLG monomer when compared to WT C) mRNA levels of Transglutaminase (*Tgm*) 1 and 3 in the epidermis isolated from WT and ZFP750^{-/-} mice evaluated by qPCR. Data are normalized to β-Actin and relative to WT. Bars represent the mean \pm SD (n=5 mice/genotype). ns, not significant. (**D**) Immunoblot analysis of Involucrin (IVL). β-Actin is used as loading control. A representative immunoblot is shown (n=2). (**E**)Representative transmission electron micrograph of WT and *Zfp750^{-/-}* skin (**F**) Immunofluorescence analysis of Cathepsin D (CTSD), a marker of lamellar bodies, reveals the presence of spots highly positive for CTSD in WT mice when compared to ZFP750^{-/-} mice. Nuclei stained with DAPI.

Fig S5: Transcriptional deregulation after Zfp750 deletion. (A) Volcano plot of the RNA sequencing analysis. Significant, P < 0.05. not significant, P > 0.05. FC, Fold change.

Fig S6: *Zfp750* genetic deletion results in the impairment of epidermal phospholipids composition. Mass spectrometry analysis of the indicated phospholipid species extracted from the epidermis isolated from newborn WT and ZFP750^{-/-} mice. Bars represent the mean ± SE (n=13 mice/genotype). GP3 Glyceraldehyde 3-phosphate; LPA Lysophosphatidic acid; PA Phosphatidic acid; CDP, Cytidine diphosphate; CTP Cytidine triphosphate; Cho Choline; P-Cho Phosphocholine PI Phosphatidylinositol; PE, Phosphatidylethanolamines; PS, Phosphatidylserines; PC Phosphatidylcholine; PPi, pyrophosphate; CEPT1/EPT1, choline/ ethanolaminephosphotransferase 1; PEMT, Phosphatidylethanolamine N-methyltransferase; PTDSS, Phosphatidylserine Synthase 1; CDIPT, CDP-diacylglycerol-inositol 3-phosphatidyltransferase; CDS CDP-Diacylglycerol Synthases; AGPAT, 1-acylglycerol-3-phosphate-O-acyltransferase; PCYT1A choline-phosphate cytidylyltransferase.

Table S1. Primers for genotyping

Gene	Forward Primer	Reverse Primer
WT allele	GGAAGGGAAGGGCAAATCTA	TGTTTGGGGCTTCTGATAGG
Targeted allele	GGCGACTTCCAGTTCAACAT	AAGTTTAACGCCAGCCTGAG

Table S2. Primers for Real-Time PCR (mouse)

Gene	Forward Primer	Reverse Primer
Zfp750	GCAAAGGAGGATGCCAAAGAGAAC	GCTGAATGTCTAACCCCACTGTCG
Trp 63 (DN isoform)	CCTGGAAGCAGAAAAGAGGAGAGC	TGTGCGTGGTCTGTGTTGTAGG
Krt14	AGCGGCAAGAGTGAGATTTCT	CCTCCAGGTTATTCTCCAGGG
Involucrin (Ivl)	TCTCCCTCCTGTGAGTTTGTTTGG	CAGTGAAGACCTGGCATTGTGTAGG
Filaggrin (Flg)	GCAAGTGGTCAGGGAGGATAT	GGAACGATATACCTGGAGATGC
Loricrin (Lor)	GGTTGCAACGGAGACAACA	CATGAGAAAGTTAAGCCCATCG
Kif4	GTGCCCCGACTAACCGTT	GTGGTTGAACTCCTCGGTCT
Actb	CCTTGTCCCTGTATGCCTCTGGTC	GAACCGCTCGTTGCCAATAGT
Smpd1	CAAATTCAGTGCCATAGCGCC	TGACTGGCACACATCTAGTGG
Smpd3	TCTACCTCCTCGACCAGCAC	TGCTGCTCCAGTTTGTCATC
Degs1	ATGGGCCTCTGAACTTGCTC	TGCGGGAGGTCATGCTAGTA
Degs2	CACCACGACTTCCCCAGTATC	ACACTTGCGCTTAACCCTGG
Sptlc1	CTCAGGCACGGTACTTGGAC	CAGTGACCACAACCCTGATG
Elovl6	CAGCAAAGCACCCGAACTA	AGGAGCACAGTGATGTGGTG
Elovl7	CTATTCTCAGTCGCCAAGAGC	CAGCTCGATGAATTTGGAGAA
Dgat2	GCTGGTGCCCTACTCCAAG	CCAGCTTGGGGACAGTGA
Sgpl1	GGATGACTTGTTCCCTCTTCA	TTTCCGTTCCCCCAGAAG
Kdsr	GGTGCATGTGATCTCCCAGTA	CAATAGCAATGCACTTCCCAA
Krt2	GGAAATCAGCGAGTTGAACC	ATCTCCACATCCAGGGACAG
Krt6a	GAGCAGATCAAGACCCTCAACA	CAATGATGCTGTCCAGCTGTCTG
Krt6b	GATCAAGACCCTCAACAACAAGT	GCTGATGTACTGCTCAAACATAGG
Sprr1b	CCACACTACCTGTCCTCCATA	TGTCACAGGGTGTCTTGACT
Sprr2b	ACCAGCCCATTACAGGGAGA	CTGCTGCTGGTGGTAAGACAT
Sprr2d	CTGGTACTCAAGGCCGAGAC	CAGGGCACTTTGGTGGAG
Tgm1	ACCACCACAGTGCTCCGATG	CCACACGTGGAAGTTCCAAAC
Tgm3	GCCATTGCTATTGCCAGTCCTG	CTCATAAAGACATCCGCTTGC
Tgm5	CAGCCCAGGAGCCAGAAG	GGCCTCGGCGGACAAC
ТЬр	CACGCACAACTGCGTTGATT	GGAACGATATACCTGGAGATGC

Gene	Forward Primer	Reverse Primer
ZNF750	AGCTCGCCTGAGTGTGAC	TGCAGACTCTGGCCTGTA
DEGS1	GGGAAGACTTCGAGTGGGTC	CCAACTGGGTGAGAACCATCA
SPTLC1	GGAAGGGATTCTGATCCTCTGG	GAGGTTCTGGTTGCCACTCT
KDSR	TGCTGTACATGGTGTCTCCG	CGATAGCAATGCACTTCCCG
DEGS2	AGCGACTTCGAGTGGGTCTA	GCCTTGATGGCCGGGTACTT
SMPD1	TGCCCAATCTGCAAAGGTCT	GGACCATGGATTGGCACACG
SMPD3	TCATGGACGTGGCCTATCAC	CCCGACGATTCTTTGGTCCT
DGAT2	TCCAGTCAAACACCAGCCAA	AGTGGGTCCTGTCCTTCCTT
ELOVL6	AAACGTGCGGGCACTAAGA	TCATTGGGGCTGATCTTCGG
ELOVL7	TTTGTGATGTCTGGCTGGGG	AGTAATAAAGCCAGCAGGTACG
ТВР	TCAAACCCAGAATTGTTCTCCTTAT	CCTGAATCCCTTTAGAATAGGGTAG

Table S3. Primers for Real-Time PCR (human)

Table S4. Primers for ChIP qPCR

Gene (Human)	Forward Primer	Reverse Primer
SMPD3	GTTGGAAAAGTGGATCAGGG	GATGGTGGTACACTACTTCT
DGAT2	CCTTGGAAGCAGGGCTCAG	ACTTGCTTGTGGGGGAACC
DEGS1	GGGCGGCAGGTTTATCTCA	GTTCTGAGCTTCGGTGACTC
DEGS2	CGAAGGCTCTGATTTTGGAAGCT	ACCAGCCATCACTTTACAGATCAG
ELOVL6	CACCCGGTCTCTCTATGAAAC	ATCCCTCGTGTCCTTCCTTTC
ELOVL7	AGTCCCGAGAGTCAGGG	CAGGTGCCCGCCGAG
Gene desert	AAGAGGCCCTTCCTCTATGC	TGTGATTAATCTCGACTCCAAGA
Gene (Mouse)	Forward Primer	Reverse Primer
Zfp750 promoter	AAGGTGAACACACTGCCGA	GGAGTTTTGTTGAGGTCACCG

Table S5. siRNA

Target transcript	Company	Cat. No.
ON-TARGETplus Non-targeting Pool	Dharmacon	D-001810-10
ZNF750	Qiagen	SI04370485

Table S6. Antibodies

Antibody	Source	Cat. No.
beta-Galactosidase	Abcam	ab9361
Cathepsin D (CTSD)	Abcam	ab75852
Filaggrin	Biolegend	905801
GlucosylCeramide/Ceramide	GlycoBiotech	RAS0011
Involucrin	Biolegend	924401
Keratin 10	Covance	PRB-159P
Keratin 14	Biolegend	905301
Keratin 14-LL02	Abcam	ab7800
Ki-67	Cell Signaling Technology	12202
Loricrin	Biolegend	905101
P63	Cell signalling technology	13109
ZNF750	Sigma	HPA023012
Z01	Invitrogen	402200
β-Actin	Sigma	A-5441

Supplementary Materials (Uncropped Western Blot scans)

REFERENCES

- E. Candi, R. Schmidt, G. Melino, The cornified envelope: A model of cell death in the skin. *Nat. Rev. Mol. Cell Biol.* 6, 328–340 (2005).
- 2. Y.-C. Hsu, E. Fuchs, Building and maintaining the skin. *Cold Spring Harb. Perspect. Biol.* 14, a040840 (2022).
- C. Blanpain, E. Fuchs, Epidermal homeostasis: A balancing act of stem cells in the skin. *Nat. Rev. Mol. Cell Biol.* 10, 207–217 (2009).
- V. Frezza, A. Terrinoni, C. Pitolli, A. Mauriello, G. Melino, E. Candi, Transglutaminase 3 protects against photodamage. *J. Invest. Dermatol.* 137, 1590–1594 (2017).
- 5. K. R. Feingold, P. M. Elias, Role of lipids in the formation and maintenance of the cutaneous permeability barrier. *Biochim. Biophys. Acta Mol. Cell Biol. Lipids* **1841**, 280–294 (2014).
- P. Shamaprasad, C. O. Frame, T. C. Moore, A. Yang, C. R. Iacovella, J. A. Bouwstra, A. L. Bunge, C. McCabe, Using molecular simulation to understand the skin barrier. *Prog. Lipid Res.* 88, 101184 (2022).
- M. Blaess, L. Kaiser, O. Sommerfeld, R. Csuk, H.-P. Deigner, Drug triggered pruritus, rash, papules, and blisters - is AGEP a clash of an altered sphingolipid-metabolism and lysosomotropism of drugs accumulating in the skin? *Lipids Health Dis.* 20, 156 (2021).
- T. Kono, Y. Miyachi, M. Kawashima, Clinical significance of the water retention and barrier function-improving capabilities of ceramide-containing formulations: A qualitative review. *J. Dermatol.* 48, 1807–1816 (2021).
- M. Szántó, R. Gupte, W. L. Kraus, P. Pacher, P. Bai, PARPs in lipid metabolism and related diseases. *Prog. Lipid Res.* 84, 101117 (2021).
- H. Takahashi, H. Tsuji, M. Minami-Hori, Y. Miyauchi, H. Iizuka, Defective barrier function accompanied by structural changes of psoriatic stratum corneum. *J. Dermatol.* 41, 144–148 (2014).

- 11. H.-J. Lee, S.-H. Lee, Epidermal permeability barrier defects and barrier repair therapy in atopic dermatitis. *Allergy Asthma Immunol. Res.* **6**, 276–287 (2014).
- 12. P. W. Wertz, Lipids and the permeability and antimicrobial barriers of the skin. *J Lipids*.
 2018, 1–7 (2018).
- G. L. Sen, L. D. Boxer, D. E. Webster, R. T. Bussat, K. Qu, B. J. Zarnegar, D. Johnston, Z. Siprashvili, P. A. Khavari, ZNF750 is a p63 target gene that induces KLF4 to drive terminal epidermal differentiation. *Dev. Cell* 22, 669–677 (2012).
- M. Hazawa, D.-C. Lin, H. Handral, L. Xu, Y. Chen, Y.-Y. Jiang, A. Mayakonda, L.-W. Ding, X. Meng, A. Sharma, S. Samuel, M. M. Movahednia, R. W. Wong, H. Yang, C. Tong, H. P. Koeffler, ZNF750 is a lineage-specific tumour suppressor in squamous cell carcinoma. *Oncogene* 36, 2243–2254 (2017).
- M. Cassandri, A. Butera, I. Amelio, A. M. Lena, M. Montanaro, A. Mauriello, L. Anemona, E. Candi, R. A. Knight, M. Agostini, G. Melino, ZNF750 represses breast cancer invasion via epigenetic control of prometastatic genes. *Oncogene* **39**, 4331–4343 (2020).
- 16. A. Butera, M. Cassandri, F. Rugolo, M. Agostini, G. Melino, The ZNF750–RAC1 axis as potential prognostic factor for breast cancer. *Cell Death Discov.* **6**, 135 (2020).
- D.-C. Lin, J.-J. Hao, Y. Nagata, L. Xu, L. Shang, X. Meng, Y. Sato, Y. Okuno, A. M. Varela, L.-W. Ding, M. Garg, L.-Z. Liu, H. Yang, D. Yin, Z.-Z. Shi, Y.-Y. Jiang, W.-Y. Gu, T. Gong, Y. Zhang, X. Xu, O. Kalid, S. Shacham, S. Ogawa, M.-R. Wang, H. P. Koeffler, Genomic and molecular characterization of esophageal squamous cell carcinoma. *Nat. Genet.* 46, 467–473 (2014).
- A. Yang, R. Schweitzer, D. Sun, M. Kaghad, N. Walker, R. T. Bronson, C. Tabin, A. Sharpe, D. Caput, C. Crum, F. McKeon, p63 is essential for regenerative proliferation in limb, craniofacial and epithelial development. *Nature* **398**, 714–718 (1999).

- L. D. Boxer, B. Barajas, S. Tao, J. Zhang, P. A. Khavari, ZNF750 interacts with KLF4 and RCOR1, KDM1A, and CTBP1/2 chromatin regulators to repress epidermal progenitor genes and induce differentiation genes. *Genes Dev.* 28, 2013–2026 (2014).
- 20. R. Y. Birnbaum, A. Zvulunov, D. Hallel-Halevy, E. Cagnano, G. Finer, R. Ofir, D. Geiger, E. Silberstein, Y. Feferman, O. S. Birk, Seborrhea-like dermatitis with psoriasiform elements caused by a mutation in ZNF750, encoding a putative C2H2 zinc finger protein. *Nat. Genet.* 38, 749–751 (2006).
- 21. C.-F. Yang, W.-L. Hwu, L.-C. Yang, W.-H. Chung, Y.-H. Chien, C.-F. Hung, H.-C. Chen, P.-J. Tsai, C. S. J. Fann, F. Liao, Y.-T. Chen, A promoter sequence variant of ZNF750 is linked with familial psoriasis. *J. Invest. Dermatol.* **128**, 1662–1668 (2008).
- 22. I. Cohen, R. Y. Birnbaum, K. Leibson, R. Taube, S. Sivan, O. S. Birk, ZNF750 is expressed in differentiated keratinocytes and regulates epidermal late differentiation genes. *PLOS ONE* 7, e42628 (2012).
- W. C. Skarnes, B. Rosen, A. P. West, M. Koutsourakis, W. Bushell, V. Iyer, A. O. Mujica, M. Thomas, J. Harrow, T. Cox, D. Jackson, J. Severin, P. Biggs, J. Fu, M. Nefedov, P. J. de Jong, A. F. Stewart, A. Bradley, A conditional knockout resource for the genome-wide study of mouse gene function. *Nature* 474, 337–342 (2011).
- 24. R. L. Eckert, M. T. Sturniolo, A.-M. Broome, M. Ruse, E. A. Rorke, Transglutaminase function in epidermis. *J. Invest. Dermatol.* **124**, 481–492 (2005).
- 25. P. J. Koch, P. A. de Viragh, E. Scharer, D. Bundman, M. A. Longley, J. Bickenbach, Y. Kawachi, Y. Suga, Z. Zhou, M. Huber, D. Hohl, T. Kartasova, M. Jarnik, A. C. Steven, D. R. Roop, Lessons from loricrin-deficient mice. *J. Cell Biol.* **151**, 389–400 (2000).
- M. Rabionet, K. Gorgas, R. Sandhoff, Ceramide synthesis in the *epidermis*. *Biochim. Biophys. Acta* 1841, 422–434 (2014).
- T. Yanagi, M. Akiyama, H. Nishihara, J. Ishikawa, K. Sakai, Y. Miyamura, A. Naoe, T. Kitahara, S. Tanaka, H. Shimizu, Self-improvement of keratinocyte differentiation defects

during skin maturation in ABCA12-deficient harlequin ichthyosis model mice. *Am. J. Pathol.* **177**, 106–118 (2010).

- 28. F. Egberts, M. Heinrich, J.-M. Jensen, S. Winoto-Morbach, S. Pfeiffer, M. Wickel, M. Schunck, J. Steude, P. Saftig, E. Proksch, S. Schütze, Cathepsin D is involved in the regulation of transglutaminase 1 and epidermal differentiation. *J. Cell Sci.* **117**, 2295–2307 (2004).
- P. Djian, K. Easley, H. Green, Targeted ablation of the murine involucrin gene. *J. Cell Biol.* 151, 381–388 (2000).
- A. Sandilands, C. Sutherland, A. D. Irvine, W. H. I. McLean, Filaggrin in the frontline: Role in skin barrier function and disease. *J. Cell Sci.* 122, 1285–1294 (2009).
- K.-K. Hong, H.-R. Cho, W.-C. Ju, Y. Cho, N.-I. Kim, A study on altered expression of serine palmitoyltransferase and ceramidase in psoriatic skin lesion. *J. Korean Med. Sci.* 22, 862– 867 (2007).
- 32. T. Hornemann, Y. Wei, A. von Eckardstein, Is the mammalian serine palmitoyltransferase a high-molecular-mass complex? *Biochem. J.* **405**, 157–164 (2007).
- S. J. Stone, H. M. Myers, S. M. Watkins, B. E. Brown, K. R. Feingold, P. M. Elias, R. v. Farese, Lipopenia and skin barrier abnormalities in DGAT2-deficient mice. *J. Biol. Chem.* 279, 11767–11776 (2004).
- 34. H. Gallala, O. Macheleidt, T. Doering, V. Schreiner, K. Sandhoff, Nitric oxide regulates synthesis of gene products involved in keratinocyte differentiation and ceramide metabolism. *Eur. J. Cell Biol.* 83, 667–679 (2004).
- 35. L. Bin, L. Deng, H. Yang, L. Zhu, X. Wang, M. G. Edwards, B. Richers, D. Y. M. Leung, Forkhead box C1 regulates human primary keratinocyte terminal differentiation. *PLOS ONE* 11, e0167392 (2016).

- 36. F. P. W. Radner, J. Fischer, The important role of epidermal triacylglycerol metabolism for maintenance of the skin permeability barrier function. *Biochim. Biophys. Acta* 1841, 409–415 (2014).
- M. Tachi, M. Iwamori, Mass spectrometric characterization of cholesterol esters and wax esters in epidermis of fetal, adult and keloidal human skin. *Exp. Dermatol.* 17, 318–323 (2008).
- 38. J. W. Fluhr, J. Kao, S. K. Ahn, K. R. Feingold, P. M. Elias, M. Jain, Generation of free fatty acids from phospholipids regulates stratum corneum acidification and integrity. *J. Invest. Dermatol.* **117**, 44–51 (2001).
- 39. M. Schmuth, V. Moosbrugger-Martinz, S. Blunder, S. Dubrac, Role of PPAR, LXR, and PXR in epidermal homeostasis and inflammation. *Lipids* **1841**, 463–473 (2014).
- 40. L. G. Kömüves, K. Hanley, A.-M. Lefebvre, M.-Q. Man, D. C. Ng, D. D. Bikle, M. L. Williams, P. M. Elias, J. Auwerx, K. R. Feingold, Stimulation of PPARα promotes epidermal keratinocyte differentiation in vivo. *J. Invest. Dermatol.* **115**, 353–360 (2000).
- 41. D. Cipolletta, M. Feuerer, A. Li, N. Kamei, J. Lee, S. E. Shoelson, C. Benoist, D. Mathis, PPAR-γ is a major driver of the accumulation and phenotype of adipose tissue Treg cells. *Nature* 486, 549–553 (2012).
- 42. M.-Q. Man, G. D. Barish, M. Schmuth, D. Crumrine, Y. Barak, S. Chang, Y. Jiang, R. M. Evans, P. M. Elias, K. R. Feingold, Deficiency of PPARβ/δ in the epidermis results in defective cutaneous permeability barrier homeostasis and increased inflammation. *J. Invest. Dermatol.* **128**, 370–377 (2008).
- 43. Y. Oda, Y. Uchida, S. Moradian, D. Crumrine, P. M. Elias, D. D. Bikle, Vitamin D receptor and coactivators SRC2 and 3 regulate epidermis-specific sphingolipid production and permeability barrier formation. *J. Invest. Dermatol.* **129**, 1367–1378 (2009).

- 44. D. Fehrenschild, U. Galli, B. Breiden, W. Bloch, P. Schettina, S. Brodesser, C. Michels, C. Günschmann, K. Sandhoff, C. M. Niessen, C. Niemann, TCF/lef1-mediated control of lipid metabolism regulates skin barrier function. *J. Invest. Dermatol.* **132**, 337–345 (2012).
- A. Kihara, Very long-chain fatty acids: Elongation, physiology and related disorders. J. Biochem. 152, 387–395 (2012).
- J. A. Olzmann, P. Carvalho, Dynamics and functions of lipid droplets. *Nat. Rev. Mol. Cell Biol.* 20, 137–155 (2019).
- 47. K. Nakajima, M. Terao, M. Takaishi, S. Kataoka, N. Goto-Inoue, M. Setou, K. Horie, F. Sakamoto, M. Ito, H. Azukizawa, S. Kitaba, H. Murota, S. Itami, I. Katayama, J. Takeda, S. Sano, Barrier abnormality due to ceramide deficiency leads to psoriasiform inflammation in a mouse model. *J. Invest. Dermatol.* **133**, 2555–2565 (2013).
- 48. W. M. Holleran, Y. Takagi, Y. Uchida, Epidermal sphingolipids: Metabolism, function, and roles in skin disorders. *FEBS Lett.* **580**, 5456–5466 (2006).
- 49. S. Kim, I. Hong, J. S. Hwang, J. K. Choi, H. S. Rho, D. H. Kim, I. Chang, S. H. Lee, M.-O. Lee, J. S. Hwang, Phytosphingosine stimulates the differentiation of human keratinocytes and inhibits TPA-induced inflammatory epidermal hyperplasia in hairless mouse skin. *Mol. Med.* **12**, 17–24 (2006).
- 50. J. A. Segre, Epidermal barrier formation and recovery in skin disorders. *J. Clin. Investig.* **116**, 1150–1158 (2006).
- 51. E. Proksch, W. M. Holleran, G. K. Menon, P. M. Elias, K. R. Feingold, Barrier function regulates epidermal lipid and DNA synthesis. *Br. J. Dermatol.* **128**, 473–482 (1993).
- 52. C. Blanpain, W. E. Lowry, H. A. Pasolli, E. Fuchs, Canonical notch signaling functions as a commitment switch in the epidermal lineage. *Genes Dev.* **20**, 3022–3035 (2006).
- 53. W. Ning, A. Muroyama, H. Li, T. Lechler, Differentiated daughter cells regulate stem cell proliferation and fate through intra-tissue tension. *Cell Stem Cell* **28**, 436–452.e5 (2021).

- 54. Y. A. Miroshnikova, H. Q. Le, D. Schneider, T. Thalheim, M. Rübsam, N. Bremicker, J. Polleux, N. Kamprad, M. Tarantola, I. Wang, M. Balland, C. M. Niessen, J. Galle, S. A. Wickström, Adhesion forces and cortical tension couple cell proliferation and differentiation to drive epidermal stratification. *Nat. Cell Biol.* 20, 69–80 (2018).
- 55. K. R. Mesa, K. Kawaguchi, K. Cockburn, D. Gonzalez, J. Boucher, T. Xin, A. M. Klein, V. Greco, Homeostatic epidermal stem cell self-renewal is driven by local differentiation. *Cell Stem Cell* 23, 677–686.e4 (2018).
- 56. J. Tomfohrde, A. Silverman, R. Barnes, M. A. Fernandez-Vina, M. Young, D. Lory, L. Morris, K. D. Wuepper, P. Stastny, A. Menter, A. Bowcock, Gene for familial psoriasis susceptibility mapped to the distal end of human chromosome 17q. *Science* 264, 1141–1145 (1994).
- 57. R. Shalom-Feuerstein, L. Serror, E. Aberdam, F.-J. Müller, H. van Bokhoven, K. G. Wiman, H. Zhou, D. Aberdam, I. Petit, Impaired epithelial differentiation of induced pluripotent stem cells from ectodermal dysplasia-related patients is rescued by the small compound APR-246/PRIMA-1MET. *Proc. Natl. Acad. Sci. U.S.A.* **110**, 2152–2156 (2013).
- 58. E. Aberdam, L. N. Roux, P.-H. Secrétan, F. Boralevi, J. Schlatter, F. Morice-Picard, S. Sol, C. Bodemer, C. Missero, S. Cisternino, D. Aberdam, S. Hadj-Rabia, Improvement of epidermal covering on AEC patients with severe skin erosions by PRIMA-1MET/APR-246. *Cell Death Dis.* **11**, 30 (2020).
- 59. U. Lichti, J. Anders, S. H. Yuspa, Isolation and short-term culture of primary keratinocytes, hair follicle populations and dermal cells from newborn mice and keratinocytes from adult mice for in vitro analysis and for grafting to immunodeficient mice. *Nat. Protoc.* **3**, 799–810 (2008).
- 60. C. Contadini, A. Ferri, M. Di Martile, C. Cirotti, D. Del Bufalo, F. De Nicola, M. Pallocca, M. Fanciulli, F. Sacco, G. Donninelli, A. Capone, E. Volpe, N. Keller, S. Miki, D. Kawauchi, D. Stupack, F. Furnari, D. Barilà, Caspase-8 as a novel mediator linking Src kinase signaling to enhanced glioblastoma malignancy. *Cell Death Differ.* **30**, 417–428 (2023).

- 61. M. D'Antonio, P. D'Onorio De Meo, M. Pallocca, E. Picardi, A. M. D'Erchia, R. A. Calogero, T. Castrignanò, G. Pesole, RAP: RNA-Seq analysis pipeline, a new cloud-based NGS web application. *BMC Genomics* 16, S3 (2015).
- 62. C. Trapnell, A. Roberts, L. Goff, G. Pertea, D. Kim, D. R. Kelley, H. Pimentel, S. L. Salzberg, J. L. Rinn, L. Pachter, Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. *Nat. Protoc.* 7, 562–578 (2012).
- 63. E. Y. Chen, C. M. Tan, Y. Kou, Q. Duan, Z. Wang, G. V. Meirelles, N. R. Clark, A. Ma'ayan, Enrichr: Interactive and collaborative HTML5 gene list enrichment analysis tool. *BMC Bioinformatics* 14, 128 (2013).
- 64. J. Folch, M. Lees, G. H. S. Stanley, A simple method for the isolation and purification of total lipides from animal tissues. *J. Biol. Chem.* **226**, 497–509 (1957).
- 65. J. Franco, B. Rajwa, C. R. Ferreira, J. P. Sundberg, H. HogenEsch, Lipidomic profiling of the epidermis in a mouse model of dermatitis reveals sexual dimorphism and changes in lipid composition before the onset of clinical disease. *Metabolites* **10**, 299 (2020).
- 66. A. K. Nilsson, U. Sjöbom, K. Christenson, A. Hellström, Lipid profiling of suction blister fluid: Comparison of lipids in interstitial fluid and plasma. *Lipids Health Dis.* **18**, 164 (2019).
- 67. T. Zhang, S. Chen, X. Liang, H. Zhang, Development of a mass-spectrometry-based lipidomics platform for the profiling of phospholipids and sphingolipids in brain tissues. *Anal. Bioanal. Chem.* **407**, 6543–6555 (2015).
- C. E. Grant, T. L. Bailey, W. S. Noble, FIMO: Scanning for occurrences of a given motif. *Bioinformatics* 27, 1017–1018 (2011).
- 69. A. Sandelin, JASPAR: An open-access database for eukaryotic transcription factor binding profiles. *Nucleic Acids Res.* **32**, D91–D94 (2004).