Western Blot Overview

Enhanced Ca²⁺-dependent SK-channel gating and membrane trafficking in human atrial fibrillation

Jordi Heijman, PhD; Xiaobo Zhou, MD; Stefano Morotti, PhD; Cristina E. Molina, PhD; Issam H. Abu-Taha, PhD; Marcel Tekook, PhD; Thomas Jespersen, PhD; Yiqiao Zhang; Shokoufeh Dobrev, PhD; Hendrik Milting, PhD; Jan Gummert, MD; Matthias Karck, MD; Markus Kamler, MD; Ali El-Armouche, MD, Arnela Saljic, PhD; Eleonora Grandi, PhD; Stanley Nattel, MD; Dobromir Dobrev, MD

Note: Given the limited availability of human atrial tissue samples, most gels were physically cut to enable incubation with different antibodies against proteins with distinct molecular weights. These fragments are shown in the subsequent slides. Unless otherwise indicated, samples are loaded in pairs: two Ctl samples followed by two cAF samples, etc. with molecular weight markers in the first and/or last lanes. Only samples that were used in the representative blots and/or quantitative analysis are marked.

Figure 2 – Protein levels in RA cardiomyocytes

Gel 2 Cti Cti CAF CAF

Ctl Ctl CAF CAF Ctl

Gel 3

Figure 2 – Protein levels in RA cardiomyocytes

Gel 1

Gel 2

Figure 2 – Protein levels in RA cardiomyocytes

PP2Ac

Gel 4

Figure 6 – Protein levels in RA cardiomyocytes

Total-CaM

Cti cAF cAF Cti Cti cAF cAF

Ctl Ctl CAF CAF Ctl

Ctl CAF CAF Ctl Ctl

Figure 6 – Protein levels in RA cardiomyocytes

Thr80-CaM

Cti cAF cAF Cti Cti cAF cAF

Ctl Ctl CAF CAF Ctl

Ctl CAF CAF Ctl Ctl

Figure 6 – Protein levels in RA cardiomyocytes

Gel 4

				Tr	opor	nin C				
Used		CaM PP2Ac		CaM PP2Ac	СаМ	CaM PP2Ac	CaM PP2Ac	CaM PP2Ac	CaM PP2Ac	
101		SK2	SK2	SK2	SK2	SK2	SK2	SK2	SK2	
		Ctl	Ctl	cAF	cAF	Ctl	Ctl	cAF	cAF	
Gel 1	22			•	Figu	ire 6	-	-	14	1
			CaM	CaM	CaM	CaM	CaM	CaM	CaM	
Used for		SK2	PP2Ac	PP2Ac	PP2Ac SK2	PP2Ac SK2	PP2Ac SK2	PP2Ac SK2	PP2Ac SK2	
		Ctl	Ctl	cAF	cAF	Ctl	Ctl	cAF	cAF	
Gel 2		11 1		1		-	- 11		H I	N
Used for		CaM PP2Ac SK2	CaM PP2Ac SK2	CaM PP2Ac SK2	CaM PP2Ac SK2	CaM PP2Ac SK2		PP2Ac	PP2Ac	
		Ctl	Ctl	cAF	cAF	Ctl		cAF	cAF	
Gel 3	1	7	-	11 11	1	II T	1	*	1 1	1 64
Used for		SK2	CaM PP2Ac SK2	CaM PP2Ac SK2	CaM PP2Ac	CaM PP2Ac SK2	CaM PP2Ac	PP2Ac	PP2Ac SK2	
		Ctl	Ctl	cAF	cAF	Ctl	Ctl	cAF	cAF	
Gel 4) 		1	- 44	+	+	T	-	-

Figure 2 + 6 – Protein levels in RA cardiomyocytes

Troponin C

Figure 2 + Online Figure XXIII – Protein levels in RA CMs

α-Act2

PP2Ac

PP2Ac

BKCa

Gel 1

Gel 2

Gel 3

Gel 2

Gel 3

SK2 antibody + blocking peptide

Online Figure XIII – SK2 antibody + blocking peptide

Gel 1

	Ctl	Ctl	cAF	cAF	Ctl	Ctl	cAF	cAF	Ctl	Ctl	cAF	cAF	Ctl	Ctl
						100		-	P .:					P.,
		-	-	1 100	_	17	1	Sec. 1	14	-	13			-
-100	_	-	-	-	-	-	-	200	-	_	_	_	-	_
-75	_		-	=			-	-		-	-	-	-	
	_	-	-	-	_	12	-	-	-		-	-	-	
-50	100	-	-		100	64.5	dana)	-	-	bearing.	400	All of the local division of the local divis	in the	4000

Gel 2

	Ctl	Ctl	cAF	cAF	Ctl	Ctl	cAF	cAF	Ctl	Ctl	cAF	cAF	Ctl	Ctl
		-				-						5.3	-	-
-100		-	=	-		-			11.00	-	-	-		
-75			-	-	-	-		-	_	12				1
-50			-			_				-				
•			-											

Gel 3

	Ctl	Ctl	cAF	cAF	Ctl	Ctl	cAF	cAF	Ctl	Ctl	cAF	cAF	Ctl	Ctl
		1	-			_					-	-	-	
-100	_		_		-	-			-	-	-	-	=	=
100	-	-	-	-		-						-		
-75	-	_	-		-				-	-			100	
-50	1	train .	and a		11.0				Dist	1000	-	1000	-	-

Gel 1

Gel 2

Gel 3

Gel 1

Gel 3

	5 3							
-100	武昌	 -	-	1	-	-		
-75		 	 	-	_	-	-	-
-50		 -	 	-	-	-		-

Gel 1

Gel 2

Cti Cti cAF cAF Cti Cti cAF cAF Cti Cti cAF cAF Cti Cti

Gel 3

Gel 1

Gel 2

Gel 3

Gel 2

Gel 3

SK2

SK3

Total-CaM

Gel 2

Gel 3

Thr80-CaM

Gel 2

Gel 3

Gel 2

Gel 3

CKIIα

Gel 1

	Ctl	Ctl	cAF	cAF	Ctl	Ctl	cAF	cAF	Ctl	Ctl	cAF	cAF	Ctl	Ctl
												1 22		
-37	-		-	-	-	-	-	-	-	-	-	-	-	-
								-						-

Gel 2

	Ctl	Ctl	cAF	cAF	Ctl	Ctl	cAF	cAF	Ctl	Ctl	cAF	cAF	Ctl	Ctl
-37	-	-			-				-	-	-			-

Gel 3

Gel 1

Gel 2

Cti Cti cAF cAF Cti Cti cAF cAF Cti Cti cAF cAF Cti Cti

Gel 3

Total-CaM

Thr80-CaM

GAPDH

CKIIα

PP2Ac

GAPDH

α-Act2 LA whole-tissue homogenates

Cti Cti cAF cAF Cti Cti cAF cAF Cti Cti cAF cAF Cti

α-Act2 RA cardiomyocytes

Cti Cti cAF cAF Cti Cti cAF cAF Cti Cti cAF cAF cAF

TnC RA cardiomyocytes

Cti Cti cAF cAF Cti Cti cAF cAF Cti Cti cAF cAF cAF cAF 20---15---10---

Same gel as shown on Slide 9

Online Figure XXIII

α-Act2

Gel 2

Gel 3

Gel 2

Cti Cti CAF CAF Cti Cti CAF CAF Cti Cti CAF CAF Cti Cti

Gel 3

Gel 2

Gel 3

Gel 1

Gel 2

Gel 3

PP2Ac

Gel 2

Gel 3

Gel 3

Gel 3

Thr80-CaM

Gel 2

Gel 3

Gel 2

Gel 3

