Stem Cell Reports, Volume 18

Supplemental Information

Generation of functional thymic organoids from human pluripotent

stem cells

Stephan A. Ramos, Lucas H. Armitage, John J. Morton, Nathaniel Alzofon, Diana Handler, Geoffrey Kelly, Dirk Homann, Antonio Jimeno, and Holger A. Russ

Supplementary Information: Supplementary Figures

Supplementary Figure Legends

Fig. S1. Modulation of culture conditions for TEP and sTO differentiation; related to figure 1 and 2. (A) Table of TEP differentiation conditions tested. (B-C) Representative FC plots of EPCAM/CD205 (B) and EPCAM (C) expression and quantification on ~day 20 TEPs (n=7-10, 4 hPSC lines). (D-E) Quantification of EPCAM/CD205 DP (D) and EPCAM (E) expression corresponding to (B) and (C), respectively. P-values determined by t-test comparing previously published condition (1) to optimized condition (2). FC plots (F) and quantification (G) of EPCAM, HLA-DR, CD205, and GFP expression in TEPs cultured in final stage TEP media or sTO media for 2 weeks past ~d20 (n=3) without air liquid interface culture. This analysis shows no significant effect on TEC marker expression by different medias. Plots depict percent mean; data shown as mean±SEM.

Fig. S2. Directed differentiation of hPSCs to multiple cellular lineages, related to figure 3. (A) FC analysis of CD34/CD45 expression on hPSC-derived HPCs (n=3, 3 hPSC lines). (B) FC analysis of PDGFR α on hPSC-derived splanchnic mesenchyme (n=3, 3 hPSC lines). Light grey histogram represents unstained control. (C) qPCR analysis of splanchnic mesoderm (SM) markers in primary whole thymus and expanded mesenchyme and day 4 SM (n=3; 3 hPSC lines) (D) qPCR analysis of TEC markers in day 3 and 7 TEP-only sTOs with either no mesenchyme, 1° mesenchyme, or hPSC-derived mesenchyme. Plots depict percent mean; bar graphs show mean±SEM.

Fig. S3. sTOs support development of multiple immune cell types, related to figure 4. (A-B) CyTOF plots (A) and quantification (B) of CD3/TCR $\gamma\delta$ expressing $\gamma\delta$ T cells in primary thymi and sTOs (n=2 thymi, 3 sTOs). (C, D) CyTOF plots (C) and quantification (D) of CD3^{+/-} cells and corresponding CD3/CD56 DP iNKT and CD3^{-/}CD56⁺ NK cells in primary thymi and sTOs (n=2

thymi, 3 sTOs). Plots depict percent mean; data shown as mean \pm SEM. (E) FC plots and quantification of CD4 and CD25 expression of PBMCs activated with anti-CD3/CD28 Dynabeads (n=2).

Supplementary Tables:

Factor	Concentration	Day	Supplier
A=ActA	100ng/ml	0-4	R&D Systems
Wnt3a	50 ng/ml	0	R&D Systems and Bio-Techne
ITS	1:5000	0	Thermo Electron
ITS	1:2000	1-4	Thermo Electron
R=TTNPB	6 µM	4	R&D Systems
B=BMP4	20ng/ml	5-8	R&D Systems
LY=LY364947	5 µM	5-8	R&D Systems
SAG	100ng/mL	5-8	R&D Systems
A=ActA	20ng/ml	9+	R&D Systems
F=FGF8b	50ng/ml	9+	PeproTech
LDN=LDN193189	500nM	9+	Stemcell Technologies
R=TTNPB	6 µM	9+	R&D Systems
S1=SANT1	0.25 μM	9+	Tocris
Wnt3a	50 ng/ml	9+	R&D Systems and Bio-Techne
ITS= insulin-transferrin-selenium	1:2000	9+	Thermo Electron
Ascorbic Acid	50 µg/ml	9+	Sigma-Aldrich
EGF	20ng/ml	9+	R&D Systems
Heparin	$10 \mu \text{g/ml}$	9+	Sigma-Aldrich
Hydrocortisone	0.5 µg/ml	9+	Sigma-Aldrich
ITS	1:2000	9+	Thermo Electron
Non-Essential Amino Acids	1:100	9+	Thermo Fisher Scientific
Trolox	0.1mM	9+	Millipore Sigma

Table S1: Factors, concentrations, and days for hPSCs to TEP differentiation.

Factor	Concentration	Day	Supplier
A=ActA	30ng/ml	0	R&D Systems
B=BMP4	40ng/ml	0	R&D Systems
C=Chir	6 µM	0	Bio-Techne
F=FGF2	20ng/ml	0-4	R&D Systems
P=PIK90	100nM	0	Cayman Chemical Company
A83-A8301	$1\mu M$	1-4	MedChem Express
B=BMP4	30ng/ml	1-4	R&D Systems
C59	1 µM	1-4	Cellagen Technologies
R=TTNPB	6 µM	2-4	R&D Systems

Table S2: Factors, concentrations, and days for hPSC to splanchnic mesoderm differentiation.

Factor	Concentration	Stage	Day	Supplier
IMDM/F12				Thermo Fisher Scientific
Hybridoma Mix	4%	Base Media		Thermo Fisher Scientific
Human Serum	0.1%	Base Media		Gemini
Polyvinyl alcohol	0.1%	Base Media		Sigma-Aldrich
Methyl cellulose	0.1%	Base Media		Sigma-Aldrich
GlutaMAX	1x	Base Media		Thermo Fisher Scientific
Ascorbic acid-2-	50ug/m1	Base Media		Sigma-Aldrich
phosphate	Joug/III			
ITSE AF	1:1000	Base Media		Invitria
Lipid Mixture 1	1x	Base Media		Sigma-Aldrich
P/S	1x	Base Media		Thermo Fisher Scientific
BME	22uM	Base Media		Thermo Fisher Scientific
Rock Inhibitor	10uM	Ι	0	R&D Systems
CHIR	0.5uM	Ι	0	Bio-Techne
Activin A	10ng/ml	Ι	0	R&D Systems
BMP4	20ng/ml	Ι	0	R&D Systems
SCF	20ng/ml	Ι	0	PeproTech
VEGF	20ng/ml	Ι	0	PeproTech
FGF2	10ng/ml	Ι	0	R&D Systems
CHIR	0.5uM	II	1	Bio-Techne
Activin A	10ng/ml	II	1	R&D Systems
BMP4	20ng/ml	II	1	R&D Systems
SCF	20ng/ml	II	1	PeproTech
VEGF	20ng/ml	II	1	PeproTech
FGF2	10ng/ml	II	1	R&D Systems
CHIR	3uM	III	2-3	Bio-Techne
SB	3uM	III	2-3	STEMCELL Technologies
Activin A	10ng/ml	III	2-3	R&D Systems
BMP4	20ng/ml	III	2-3	R&D Systems
SCF	20ng/ml	III	2-3	PeproTech
VEGF	20ng/ml	III	2-3	PeproTech
FGF2	10ng/ml	III	2-3	R&D Systems
BMP4	20ng/ml	IV	4-7	R&D Systems
SCF	50ng/ml	IV	4-7	PeproTech
VEGF	50ng/ml	IV	4-7	PeproTech
IGF-II	20ng/ml	IV	4-7	PeproTech
FGF2	10ng/ml	IV	4-7	PeproTech
SCF	100ng/ml	V	8+	PeproTech

VEGF	50ng/ml	V	8+	PeproTech
FGF2	10ng/ml	V	8+	PeproTech
IL7	20ng/ml	V	8+	PeproTech
FLT3L	10ng/ml	V	8+	PeproTech

 Table S3: Factors, concentrations, differentiation stages, and days for HPC differentiation.

Antigen	Conjugate	Dilution	Supplier	Cat #
CD3	PE	1:100	Biolegend	317308
CD3	APC-Cy7	1:100	Biolegend	344818
CD4	AF647	1:100	Biolegend	300520
CD5	APC-Cy7	1:180	Biolegend	364010
CD7	FITC	1:60	Biolegend	343104
CD7	PE-Cy7	1:60	Biolegend	343114
CD8	AF488	1:100	Biolegend	300916
CD8	PE-Cy5	1:100	Biolegend	300910
CD25	APC-Cy7	1:20	Biolegend	302614
CD34	BV421	1:40	Biolegend	343610
CD45	BV510	1:180	Biolegend	304036
CD45	PerCP	1:180	Biolegend	304017
CD104	FITC	1:50	Biolegend	327806
CD104	PE	1:50	Biolegend	327808
C127	AF700	1:50	Biolegend	351344
CD205	PerCP-Cy5.5	1:50	Biolegend	342210
EPCAM	AF700	1:50	eBioscience	56-9326-42
PD1	AF405	1:50	R&D Systems	1615114
HLA-DR	BV421	1:50	Biolegend	307636
AIRE		1:100	eBioscience	13-9534-82
CD3		1:100	Abcam	ab5690
CD205		1:100	Thermo Fisher	MA5-34695
EPCAM		1:200	Biolegend	324202
HLA Class II		1:50	Biolegend	361708
KRT5		1:100	Abcam	ab52635
KRT5		1:100	Sigma Aldrich	305R-14
KRT8		1:100	Santa Cruz	300910
		1.50	Biotechnology	1.00.000
PD-1		1:50	Abcam	ab237728
PDGFRα		1:500	Abcam	ab203491
TE-7		1:100	Novus Biologics	NBP2-50082
CD4	166Er		Miltenyi	130-122-283
CD45	89Y		Fluidigm	3089003B

CD56	161Dy	Miltenyi	130-108-016
CD117	175Lu	Biolegend	313202
CD326	141Pr	Fluidigm	3141006B
FOXP3	162Dy	Fluidigm	3162011A
HLA-DR	174Yb	Miltenyi	130-122-299
TCF1	163Dy	Cell Signaling	2203S
$TCR\gamma/\delta$	169Tm	Miltenyi	130-122-291
TdT	164Dy	Fluidigm	3164015B
KRT8	152Sm	R&D systems	MAB3165

Table S4: Antibodies used for flow cytometry, immunofluorescence, and CyTOF analysis.

qPCR Probes/Primers			
Target	Assay ID/Sequence		
AIRE	Bio-Rad: qHsaCIP0029272		
DLL4	Bio-Rad: qHsaCEP0051500		
FOXN1	ThermoFisher: Hs00919266_m1		
HLA-DRA	Bio-Rad: qHsaCEP0040019		
KRT5	Bio-Rad: qHsaCEP0055058		
KRT8	Bio-Rad: qHsaCEP0041467		
OAZ1	ThermoFisher: Hs00427923_m1		
ACTB F	CATGTACGTTGCTATCCAGGC		
ACTB R	CTCCTTAATGTCACGCACGAT		
Pro-Insulin F	GCAGCCTTTGTGAACCAACAC		
Pro-Insulin R	CCCCGCACACTAGGTAGAGA		
Islet Antigen 2 F	CGGGACACATGATTCTGGCAT		
Islet Antigen 2 R	CTGCTTGGTAGGCACAGAGG		
GAD1 F	GCGGACCCCAATACCACTAAC		
GAD1 R	CACAAGGCGACTCTTCTCTTC		
MBP F	GGCCGGACCCAAGATGAAAA		
MBP R	CCCCAGCTAAATCTGCTCAGG		
TG F	AGACACCTCCTACCTCCTCA		
TG R	TCCTTGGACATCGCTTTGGC		

 Table S5: Taqman probes and qPCR primer sequences for qPCR analysis.