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Supplementary Note 1: Heat Load on the Sample
We underline the severity of the heat load deposited in the sample at MHz repetition rate XFEL facilities with a finite element
simulation. For the finite element simulation of the heat transfer in materials, the two-dimensional diffusion equation is solved
by using the Forward Euler Method1, 2. The two-dimensional diffusion equation is
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where D is the thermal diffusivity D = λ

ρcp
with the temperature dependent material constants thermal conductivity λ , density

ρ and specific heat capacity cp. By using the finite difference approximation the state of the system at time step n+1 may be
calculated as2
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The temperature dependant specific heat capacities are assumed to follow the Debye model and the following Debye temperatures
where used for the materials: ΘDdiamond=1860 K3, ΘDSi=640 K4, ΘDSi3N4=1145 K5. The temperature dependent thermal
conductivity can be found in literature for CVD diamond3, silicon6 and Si3N4

7. From these references the thermal conductivity
was digitised to be implemented in our simulation.
The heat diffusion in silicon (Si), silicon nitride (Si3N4), yttrium aluminium garnet (YAG) and Diamond (C) is calculated after
a 4.5 MHz X-ray pulse train with up to 2700 pulses hitting the sample. The simulation considers the temperature dependence of
the specific heat capacity cp and temperature dependant thermal conductivity λ of the materials. The usual X-ray pulse duration
of well below 100 femtoseconds is short compared to phonon life times, such that in a first approximation no thermal conduction
will take place during the pulse duration8. Photoelectrons generated by the X-ray photons will carry their energy only over
distances of less than a micrometer which is short compared to the attenuation lengths of X-ray photons in materials9 and mostly
smaller compared to the FWHM diameter of mostly used X-ray focal sizes. Under the assumption that the X-ray pulse energy
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along the X-ray beam axis through the sample is equally absorbed, the initial heat delivered by an X-ray pulse in the sample
along the X-ray axis is uniform. In this case, the heat diffusion can be reduced to a two-dimensional problem, where only
heat diffusion perpendicular to the X-ray beam axis occurs in the material. The finite element simulation is based on thermal
diffusion in a 2d-model1 and solves the heat diffusion equation for these materials with a finite difference approximation2,
described in the Methods section of the main text.
The results of the simulation clearly indicate why diamond is a superior candidate for MHz repetition rate beam diagnostics
compared to silicon and silicon nitride. In Fig. S1 a) the temperature evolution of the hottest volume fraction (center of a
Gaussian beam profile) in the four different materials is simulated after the absorption of one 10 keV X-ray pulse with a FWHM
beam diameter of 100 µm and a pulse energy of 20 µJ in the respective sample with a thickness of 50 µm. Due to the rather
high X-ray photon absorption cross-section, YAG absorbs with 51% the highest fraction of the pulse energy, followed by silicon
and silicon nitride with 31% and 30% respectively. Because of the X-ray absorption cross-section and the lowest heat capacity,
YAG is heated up the most by a single X-ray pulse and increases its temperature by ∆T=7.3 K. Despite almost identical X-ray
absorption cross-sections and heat capacities at room temperature, the X-ray-induced temperature in silicon and silicon nitride
is different due to different densities of the materials. The increase in temperature after the partial absorption of an X-ray pulse,
with the aforementioned properties, is ∆T=6.6 K for silicon and ∆T=4.7 K for silicon nitride. The temperature increase in
diamond is, according to this simulation, only ∆T=0.6 K. The very small temperature increase in diamond is due to the much
smaller X-ray absorption cross-section, absorbing only 2% of the X-ray pulse energy. After the initial temperature increase,
the heat diffusion and subsequent cooling process in the materials is simulated with the finite difference method over a time
span of 100µs.
When heated up, the heat transport and therefore the heat dissipation in diamond is tremendously faster than in other materials
and the cooling process is therefore faster. For a realistic simulation, we assumed that the sample is placed behind a diamond
grating in the first diffraction order where roughly 1 percent of the original pulse energy is delivered to the sample, which is
approximately 20 µJ. For the simulation, the spacing between the single X-ray pulses is 222 ns, equaling the full EuXFEL
4.5 MHz repetition rate. The temporal evolution of the sample volume in the center of a Gaussian shaped X-ray beam over
the time span of 200 µs (900 pulses) is simulated in Fig S1 b). The combination of lower specific heat capacities and shorter
attenuation lengths of YAG, Si and Si3N4, yields a multiple times higher temperature increase with each single X-ray pulse
than in diamond. Together with the worse thermal conductivity of these materials, this leads to a drastic increase of the overall
temperature in these materials, which ultimately leads to the reaching of their individual melting point already. When reaching
their individual melting point, the simulations were stopped. Under these conditions, silicon reaches its melting point of 1687 K
after 464 X-ray pulses. Silicon nitride reaches its melting point of 2173 K after 985 X-ray pulses and YAG already reaches its
melting point of 2213 K already after 372 pulses. Despite the superior combination of longer X-ray attenuation length and
higher thermal conductivity, the temperature of diamond increases only slowly, reaching an equilibrium at around 305 K for
these X-ray pulse conditions. The inset of Fig S1 c) shows the temperature increase in the materials for the first 10 pulses.
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Figure S1. Simulated heat propagation in Diamond, Si and Si3N4. The heat dissipation from 600 K to room temperature is
simulated in a). In b) the simulation shows the simulated heat evolution in the different samples for the X-ray beam properties
used in the experiment, for a full 2700 pulses EuXFEL pulse train.

Supplementary Note 2: Self-Referenced Signal Simulation
The starting point of the simulation is a bandwidth-limited Gaussian laser pulse with a central frequency of 749 THz (400 nm)
and a FWHM bandwidth of 45 THz (25 nm). The pulse in the spectral domain is fully described via

E(ω) = A e−
(ω−ω0)

2

4σ
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2 ln 2 , (S3)

with the amplitude A, angular frequency ω = 2πf, the central angular frequency of the laser pulse ω0 and the FWHM bandwidth
σ . The spectrum of the pulse is defined as |E(ω)|2. The spectral domain and the electric field in the time domain are related by
the Fourier inverse theorem F−1(E(ω)) = E(t) and F (E(t)) = E(ω). The bandwidth-limited pulse is shown in Fig. S2 a) in
the time domain and a’) in the spectral domain. This pulse is linearly propagated through a 100 mm thick block of SF11 glass
to chirp the pulse. The linear propagation of a laser pulse influences the spectral phase φ(ω) of the pulse and may be expressed
as10

E(ω,z) = E(ω,z = 0)e−ik(ω)z , (S4)

where E(ω,z = 0) describes the original pulse entering the dispersive media at position z=0 and k(ω) = ±ω n(ω)/c0 the
dispersion relation. To account for dispersive effects of the optical media, the dispersion relation is usually expressed as a
Taylor expansion
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In the simulation, effects up to the third order are taken into account. These three terms are adding additional phase to the
original pulse. The first term, linear in frequency, adds a constant time delay (GV), the second term symmetrically broadens
the pulse in time (GVD) and the third term asymmetrically broadens the pulse in time (TOD). The full simulation with the
propagation of the initial laser pulse through the birefringent crystals (BC) creating the time-sheared polarisation components
(PC), through the diamond sample applying the X-ray-induced refractive index change and through the second polariser is
shown in Fig. S2. The application of the X-ray-induced refractive index change and the correlating phase shift and amplitude
change of the two transmitted PCs in the interaction sample are exemplarily illustrated in Fig. S3. The change of the complex
refractive index is applied by transforming the optical pulse from the spectral E(ω) into the temporal domain E(t) using the
Fourier Transformation. The real part of the X-ray induced refractive index change induces a time dependant phase shift φ(t) in
the transmitted chirped optical pulse, while the imaginary part alternates the amplitude of the transmitted optical pulse. (Note:
The X-ray induced change of the imaginary part is negligible in diamond, hence no X-ray induced absorption can be observed)
The resulting X-ray arrival-time spectrum is heavily influenced by the amount of the X-ray-induced phase shift. The steepness
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Figure S2. Self-referenced timing-tool simulation: Electric field (a) and power spectrum (a’) of the initial laser pulse. This
laser pulse propagates through the additional glass block to stretch it in time, accumulating chirp (b) with an unchanged power
spectrum (b’). The first BC creates two time-sheared PCs (c) with identical spectra (c’). The X-ray-induced refractive index
change adds a phase shift to both PC (d) and is applied as a Gaussian error-function (purple). For small phase shifts both PC
spectra are nearly unchanged, but with higher phase shifts self-phase modulation effects can occur (d’). The second BC
combines both PCs temporally (e) without changing their spectra (e’). Due to the X-ray-induced phase shift parts of the laser
pulse can be transmitted through the second polariser (f), delivering the self-referenced arrival-time spectrum (f’) with a cut-off
edge indicating the X-ray arrival-time.

of the cut-off edge is of course influenced by the time duration over which the phase-shift occurs. The main influence of the
phase shift is on the amplitude of the resulting arrival-time spectrum. The amplitude correlates with the phase-shift value (Fig.
S4). Small X-ray-induced phase shifts (between 0◦ and roughly 20◦) only affect the amplitude of the arrival-time spectra (Fig.
S4 b). At larger phase shift angles, up to 360◦, additional effects are changing the shape of the arrival-time spectra (Fig. S4 c).
Cross-phase modulation11 (CPM)-like effects start to show their effect in this phase shift range and cause different spectral
changes to the two time-sheared PCs. Therefore, the resulting arrival-time spectra shapes change with increasing phase shifts
(c) and the arrival-time edge position changes its spectral position. For phase shifts larger than 360◦, the spectra become very
complex. For each further full cycle shifted (n × 360◦), a minimum in the arrival-time spectrum appears (d). This is caused by
the fact that the refractive index is not changed instantly but over a time span of up to hundreds of fs, depending on the X-ray
photon energy. In this process, each time when the X-ray-induced phase shift is exactly 360◦, the involved spectral regions of
both PCs are perfectly synchronized behind the second BC and will recreate the original 45◦ polarization, and thus will not be
transmitted through the second polariser. If the refractive index change is large enough to shift the phase by n cycles, an equal
amount of minima will be observed in the spectrum.
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Figure S3. Application of the X-ray-induced refractive index change to the two PCs. The grey vertical line indicates the X-ray
arrival-time where the phase shift and amplitude change is applied to the trailing (top) and leading (middle) PC. These changes
are included by a Gaussian-like error-function shown on the bottom. In this case the phase shift is set to 180◦ and the amplitude
change to 20% over a time of roughly 10 fs.
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Figure S4. Dependence of resulting X-ray arrival-time spectra on the X-ray-induced phase shift. A 2d-intensity image is
illustrated in a), showing arrival-time spectra for identical X-ray arrival-times, but different X-ray-induced phase shifts from 0◦

to 1280◦. The amplitudes of the spectra are color-coded using a logarithmic color map. Individual spectra for specific phase
shift values are shown in b), c) and d). The gray vertical line indicates the cut-off edge position for arrival-time spectra with
small X-ray-induced phase shifts. For large X-ray-induced phase shifts, the cut-off edge is slowly shifting (c) and the overall
spectrum becomes quite complex (d).

Supplementary Note 3: Time Axis Calibration
Fig. S5 displays two exemplary arrival time spectra, which were fitted by a broadened step function from the zero line to the
left and up to the maximum of the spectral signals. The fit function used to determine the edge position of the self-referenced
signal is a Gaussian error function as a function of detector pixel x:

f (x) = F
(

1+ erf
(

x−µ

σ

))
. (S6)

The fitting parameters for the Gaussian error function are its centre of the step µ and width of the step σ . The amplitude F of the
fitting function is fixed to the maximum of the self-referenced arrival-time spectrum. It thus describes the self-referenced signal
from its onset to its cut-off. The position µ of the half-rise value of the error function fit serves to define the precise arrival
time of the X-ray pulse. The conversion of pixel position (or wavelength) to arrival time is then achieved with a pixel-to-time
calibration: With a motorized optical delay stage, we changed the relative time delay between optical and X-ray pulses in steps
of 200 fs and measured hundreds arrival-time spectra for each time delay (Fig. S6 a). The pixel position of each arrival-time
spectrum was analysed for all optical delay stage positions and their central time delay position extracted (via their mean
average value) for each set time delay. A linear fit function (y = mx+b) is then used to determine the pixel-to-time calibration
for this measurement (Fig. S6 b), where the parameters m and b describe the slope and offset of the linear term. The very
narrow bandwidth of only 20 nm FWHM for the optical pulse indeed justifies the linear approximation of the chirp, while for
broader bandwidth optical pulses, a quadratic approximation would be applied. For this calibration procedure we used the
more accurate optical synchronisation scheme of EuXFEL to retrieve the pixel-to-time calibration relationship, yielding the
(28±5) fs/pixel.
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Figure S5. Two arrival-spectra at different temporal delays. The step-like error-functions are fitted to the raw data (solid
points) and are shown as solid lines. The determined edge positions are indicated by the vertical dashed lines. The center of the
time axis on top was arbitrary set to 0 fs.
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Figure S6. Calibration of the time axis. Individual arrival time spectra for different delay stage settings (a). Each color shows
thousands of individual arrival-time spectra at a fixed delay between the optical and X-ray pulses. Pixel-to-time calibration with
a linear function (b). Each point is the average pixel position of all arrival-time spectra at each delay stage position. The
standard deviation for each point is between 0.5 and 1.3 pixel yielding an overall timing accuracy of 19 fs.
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Supplementary Note 4: Spectral Encoding Results
During the measurement campaign we have also included the spectral encoding scheme, which is the accepted method at hard
X-ray FELs to determine relative arrival times between laser and XFEL pulses. The spectral encoding data are shown in the
figures below (Fig. S7 spectral encoding scheme with an invasive YAG crystal, Fig. S8 spectral encoding scheme with diamond.
The horizontal axis in pixels corresponds to wavelength of the chirped laser pulse). While we observed a timing tool signal
with the YAG material we could not detect any absorption signal with the spectral encoding scheme in diamond, and can only
conclude that its phase sensitivity is not measurable in diamond samples. The physical reason for this behavior is that x-rays
produce orders of magnitude less conduction band electrons in diamond than in e.g. YAG. This also illustrates the superiority
of our phase-sensitive timing tool.
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Figure S7. Spectral encoding in YAG. The difference signals of a spectral encoding test measurement are shown in the
2-dimensional plot. The relative X-ray arrival time is systematically scanned from early (top) to later (bottom) arrival-times.
Four example measurements are extracted on the right-hand side. The actual spectral encoding spectrum is shown in blue, the
reference spectrum shown in light blue, and the difference signal with the imprinted X-ray arrival-time is shown in orange.
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Figure S8. Difference spectra of a spectral encoding time-delay scan in diamond. Difference signals of the entire
measurements are shown in the left 2-dimensional image. On the four sub-panels on the right, four exemplary measurements
are shown with the spectral encoding spectrum (blue), reference spectrum (light blue) and difference signal in orange. No
X-ray-induced spectral encoding signal can be observed.

Supplementary Note 5: Physicals Values used in our Simulations
Here we provide the physical values which we used in our Simulations. The diamond properties used for the Drude model are:

Diamond properties used for Drude model
n0,400nm 2.4612

m∗
el 1.5613

m∗
et 0.2813

m∗
e (m2

etmel)
1/314

ω400nm 4.709e15 rad/s [calculated]
µe 4500 cm2/Vs14

τe 1.27 ps [calculated via µem∗
e/e]

Table S1. Diamond properties used to calculate the refractive index change with the Drude model.

The diamond properties used for the Maxwell-Garnett model are:
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Diamond properties used for Maxwell-Garnett model
µ9200eV 1600 µm9

Ee-h 12.2 eV15

εS,d 7.8516

εS,p 0.99ε∗S,d
ε∞,d 5.5616

ε∞,p 0.99ε∗
∞,d

τD,d 2.48 µs16

τD,p 1.5τ∗∗D,d
a 3.567x10−10 m17

rp 0.80a∗∗∗

Table S2. Properties used in the simulation
* We assume a small reduction of the overall dielectric constant of 1% within the electronic polaron since only the fast

electrons within the dielectric background will respond on the sub-picosecond time-regime. ** Due to the slightly reduced
polarisation of the distorted charge clouds within the electronic polaron we estimate an enhanced Debye relaxation time about
1.5 in comparison to the bulk diamond. *** An electronic polaron has an extension around or smaller than the lattice constant,

such that we choose its radius about 80% of the lattice constant of diamond.

Simulation Properties
Constants Diamond BBO o BBO e
n400nm 2.46 1.69 1.57
GVD400nm (fs2/mm) 7 209.44 150.50
TOD400nm (fs3/mm) 7 778 7507
Diameter (mm) 0.05 5 5

Table S3. Properties used in the simulation
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