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1 DISTANCE TO NEAREST DISTRIBUTION FOR EACH DATASET
The distance to nearest distribution is a key component in the identification of clones, as it is required to
define the right threshold for the clustering. Unsurprisingly, the shape of the distribution, as well as the
bi-modality of singletons and non-singletons looks different depending on the metric used (Figure S1).

Figure S1: Distance to nearest distribution for each dataset in the context of both the alignment-
based (Levenshtein distance) and alignment-free (Cosine distance) clonal identification method.
In order to visualize the agreement between the two method (percentage of equal prediction),
the singletons predicted by the first methods are used to label the distributions on the second
method. The distance to nearest sequence in the negation dataset is also shown as a reference
point. It was set with a tolerance of 1% for the alignment-free method

Interestingly, a subset of predicted singletons with a low Levenshtein distance in the alignment-based
method have a high distance in the context of the alignment-free method. As a result, the singletons
identified by both methods do not match exactly (percentage of equal prediction of 92%, 87% and 83%
respectively across each dataset).

2 ROBUSTNESS ANALYSIS OF CLONAL IDENTIFICATION METHODS
One question of interest is how uncertain the clone assignment of a BCR sequence is in terms of the
randomness in biological sampling. Since the comparison across different cell populations is non-trivial,
we investigated the consistency of the clone identifier by comparing the clustering of the same subset of
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sequences, but with/without the accompanying of the rest sequences as input. To do so, we sub-sampled
each sample by randomly selecting half of its sequence, and then performed the clustering again with the
subsampled sequences only (Figure S2A). After that, we compared the obtained clustering results to the
original one (with the full sample) with the adjusted mutual information (AMI). In this case, the computed
AMI represents the robustness of the clonal identification methods to biological sampling.

We performed this analysis for each sample and depicts the results Figure S2B. On average, the AMI of
the junction-only, alignment-based and alignment-free method were 1, 0.92, and 0.88 respectively. While
our analysis indicates that all three methods have highly consistent clonal identification results, there is
still significant differences between the three methods. As expected, the junction-only method always
yields exactly the same results, since it do not rely on any clustering techniques. On the other hand, the
alignment-free method is the least robust, as the BCR vectorized representation of sequences themselves
changes with the subsampling (due to the learned idf reweighting).

Figure S2: Robustness analysis of clonal identification methods. (A) A subsample S′ is generated
from sample S, and the obtained clonal families are compared across the two clustering. (B)
Adjusted mutual information (AMI) between the original and subsampled clustering across each
sample in the GC dataset, for the three clonal identification methods.
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3 FALSE NEGATIVE SINGLETONS WITH THE ALIGNMENT-FREE METHOD

Figure S3: Distance to nearest distribution for B-cell sequences in the alignment free clonal
identification method in the GC data. The sequences (singletons and non-singletons) are labeled
with the alignment-based (VJ & Junction) method, where the false negative singletons were
found from the ambiguous V or J gene misalignments (depicted in purple).

4 SPEARMAN CORRELATION OF DIVERSITY INDICES ACROSS METHODS
In Table S1, we provide the Spearman rank correlation for diversity indices in different biological context.
First, we compare the diversity indices across the different clonal identification methods, which can be
performed on the three datasets and that we extensively discuss in the main text. In the specific case
of the simulated data, we can also test for the correlation between the diversity indices from different
clonal identification methods and to ground truth diversity. Here we see that Shannon Entropy seems to
perform the best in the context of different clocal identification. Finally, in the specific case of the germinal
center dataset, we can test for the consistency of the diversity indices across replicates for each clonal
identification method (we have two replicates per GC). The results Table S1 suggest that the Simpson index
seems to be optimal in the context for the GC replicates (maximizing correlation averaged over the three
replicates).
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Diversity index JO vs VJJ JO vs AF VJJ vs AF JO vs G0 VJJ vs G0 AF vs G0 Mean
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Richness 0.89 0.82 0.84 0.79 0.82 0.84 0.83
Chao Richness 0.69 0.64 0.56 0.63 0.89 0.72 0.69

Shannon Entropy 0.92 0.88 0.70 0.69 0.88 0.84 0.82
Chao Shannon Entropy 0.96 0.80 0.83 0.84 0.91 0.89 0.87

Simpson index 0.94 0.70 0.69 0.65 0.75 0.64 0.73
Dominance 0.82 0.87 0.70 0.72 0.79 0.80 0.78
Evenness 0.96 0.88 0.84 0.85 0.91 0.87 0.89

Mean 0.88 0.80 0.74 0.74 0.85 0.80

Diversity index JO vs VJJ JO vs AF VJJ vs AF repl. JO repl. VJJ repl. AF Mean
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Richness 0.79 0.97 0.76 0.47 0.94 0.90 0.81
Chao Richness 0.82 0.96 0.77 0.56 0.64 0.81 0.76

Shannon Entropy 0.99 0.91 0.89 0.85 0.96 0.82 0.90
Chao Shannon Entropy 0.99 0.90 0.89 0.85 0.96 0.84 0.91

Simpson index 0.97 0.90 0.88 0.95 0.92 0.96 0.93
Dominance 0.91 0.92 0.86 0.88 0.93 0.95 0.91
Evenness 0.63 0.71 0.52 0.66 0.75 0.61 0.65

Mean 0.87 0.90 0.80 0.75 0.87 0.84

Diversity index JO vs VJJ JO vs AF VJJ vs AF Mean
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Richness 0.98 0.98 0.94 0.97
Chao Richness 0.87 0.96 0.80 0.88

Shannon Entropy 1.00 0.99 0.99 0.99
Chao Shannon Entropy 1.00 0.99 0.99 0.99

Simpson index 1.00 0.99 0.99 0.99
Dominance 1.00 0.98 0.97 0.98
Evenness 0.99 0.99 0.96 0.98

Mean 0.98 0.98 0.95

Table S1. Spearman correlation of the diversity indices values across samples for each dataset. The correlation is
computed between each pair of clonal identification method. Junction-only (JO), VJ & Junction (VJJ) and Alignment-
free (AF). For the simulated dataset, comparisons are also performed on ground truth (G0) clonal groups. For the
GC dataset, we also compute the correlation between the GC replicates (designated as repl). Max values for each
columns are highlighted in bold

5 VARIATION IN DIVERSITY ACROSS CLONAL IDENTIFICATION METHODS AND
DATASET

We computed the diversity indices of each sample in each dataset and we show the results for Shannon
entropy Figure S4A. Clearly, the variability of the Shannon diversity relative to the average value is not the
same across sample. The simulated dataset show small variability in the Shannon entropy (mean/std ∼ 80)
while the Hepatitis B and GC dataset show higher variability (mean/std ∼ 3 and ∼ 1.5, respectively). This
is reflected on Figure S4B, where the Hill’s diversity profiles becomes near superposed for α < 1. Thus, in
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cases of low sample variability like these, ranking the samples Hill’s diversities for these values of α might
not be consistent.

Figure S4: B-cell repertoire clonal diversity analysis. (A) Shannon entropy of each sample
in each dataset for the three clonal identification methods. (B) Hill’s diversity profile of each
sample in each dataset, with clones inferred from the alignment-free method. Note that the x
axis was transformed by a exponential tangent function for visual clarity.

On Figure S4A, we see that, not only different clonal identification method may yield to different values of
diversity indices, the magnitude of the difference relatively to the variability in the index varies considerably
across sample. To quantify the systematic inconsistencies in different diversity metrics between the JO,
VJJ and AF clonal identification method, we computed the mean absolute difference of the metric between
the two methods and normalized by the standard deviation of that metric on that dataset. A score below 0.1
indicate that the metric is overall consistent across clonal identification methods as the variation across
method is much lower than the variation of the score itself. On the other hand, a score of the order of one
or greater means that the effect of the clonal identification method on the diversity characterization cannot
be neglected.
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We computed this score for each method pairs for each metric in each dataset (Figure S5). Interestingly,
metrics less sensitive to singletons such as dominance or Simpson index were less affected by the clonal
identification method than those sensitive to rare clones (richness). Because the Hepatitis B dataset
showcase huge variability in its clonal composition, it is less affected by changes in the clonal identification
method (inconsistency < 1.1). Still, it is challenging to know a-priori which dataset will be more or less
sensitive to clonal identifications, therefore we caution against comparing diversity indices across B cell
clone repertoires in which different diversity indices were used.

Figure S5: Pairwise matrix of the inconsistency scores between the JO, VJJ and AF clonal
identification methods for each metric in each dataset. The score is computed as the mean
absolute difference of the metric between the two methods and normalized by the standard
deviation of that metric on that dataset. The numbers in white are the average of the score
over non-diagonal elements.

6 CLONAL IDENTIFICATION PERFORMANCE WITH SUBSAMPLING
In section 1.2 of the main text, we quantified the accuracy of clonal identification methods on the simulated
dataset with the AMI between the inferred clones and the ground truth labels. As the clusters of VJJ and
AF methods rely on hierarchical clustering, the obtained clusters depend on the sequences present in the
repertoire. Thus, the sequencing depth may affect the clustering performance. On Figure S6A, we show
how the clustering accuracy varies with different subsampling of the data. We observe that, for subsampling
greater than 10% (which corresponds to a sample size of ∼4k samples in the case of simulated data),
the AMI stays consistent. Note that, while the AMI is lower for the smallest subsampling fractions, the
same pattern for the JO method, which is independent on other sequences when clustering, was observed.
Therefore, one could argue that the observed decrease in AMI for low subsampling fractions is an artifact
of having low number of sequences rather than an actual decrease in performances. To further support this
argument, we observe the same trend with the adjusted rand index (ARI) (Figure S6B).
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Figure S6: Clone identification performance on the simulated dataset for different subsampling,
quantified in terms of (A) adjusted mutual information (AMI) and (B) adjusted rand score (ARI)
to the ground truth labels. The subsampling was repeated 20 times and the shaded area indicates
one standard deviation.
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