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Genomic complexity predicts resistance to endocrine therapy and CDK4/6 inhibition in 
hormone receptor-positive (HR+)/HER2-negative metastatic breast cancer  
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SUPPLEMENTARY METHODS 

 

Blood collection and cfDNA/gDNA extraction 

Each single draw of 8 mL of whole blood was collected into a Streck tube before undergoing a 

two-step centrifugation to separate plasma and buffy coat compartments. Aliquoted samples 

were stored at -80°C for batch processing. Circulating cell-free DNA (cfDNA) was extracted from 

plasma samples using the QIAamp circulating nucleic acid kit (Qiagen, Hilden, Germany).  

Quantity and quality of the purified cfDNA were checked using a Qubit fluorimeter (ThermoFisher 

Scientific, Waltham, Massachusetts, USA) and Bioanalyzer 2100  (Agilent Technologies, California, 

USA. For cfDNA samples with severe genomic contamination from peripheral blood cells, a bead-

based size selection was performed to remove large genomic fragments (AMPure XP beads, 

Beckman Coulter, California, USA).  Genomic DNA (gDNA) was extracted from matched peripheral 

blood mononuclear cells (PBMCs) using the QIAamp DNA Blood Mini Kit (Qiagen), then 

enzymatically fragmented and purified.  

   

Library preparation, hybrid capture and sequencing 

Five to 30 ng of extracted cfDNA or 30-50 ng of fragmented PBMC gDNA were then processed for 

library construction including end-repair dA-tailing and adapter ligation. Ligated library 

fragments with appropriate adapters were amplified via PCR. The amplified DNA libraries were 

then further checked using a Bioanalyzer 2100 and samples with sufficient yield were advanced 

to hybrid capture.  

 

Hybrid capture was conducted using Biotin labelled DNA probes. In brief, each library was 

hybridized overnight with a Predicine NGS panel and paramagnetic beads. The unbound 

fragments were washed away, and the enriched fragments were amplified via PCR amplification. 

The purified product was checked on a Bioanalyzer 2100 and then loaded into an Illumina 

NovaSeq 6000 (San Diego, CA, USA) for NGS sequencing with paired-end 2x150bp sequencing 

kits.  
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Analyses of NGS data from cfDNA 

NGS data from cfDNA were analyzed using the Predicine DeepSea NGS analysis pipeline, which 

starts from the raw sequencing data (BCL files) and outputs the final mutation calls. Briefly, the 

pipeline first performed adapter trimming, barcode checking, and correction. Cleaned paired 

FASTQ files were aligned to human reference genome build hg19 using the BWA alignment tool 

(BWA, RRID:SCR_010910). Consensus bam files were then derived by merging paired-end reads 

originated from the same molecules (based on mapping location and unique molecular 

identifiers) as single strand fragments. Single strand fragments from the same double strand DNA 

molecules were further merged as double stranded. By using the error suppression method 

described in [Newman, 2016], both sequencing and PCR errors were mostly corrected during this 

process.  

 

Somatic mutation identification 

Candidate variants were called by comparing with local variant background (defined based on 

plasma samples from healthy donors and historical data). Variants were further filtered by log-

odds (LOD) threshold [Cibulskis 2013], base and mapping quality thresholds, repeat regions and 

other quality metrics.  

 

Candidate somatic mutations were further filtered on the basis of gene annotation to identify 

those occurring in protein-coding regions. Intronic and silent changes were excluded, while 

mutations resulting in missense mutations, nonsense mutations, frameshifts, or splice site 

alterations were retained. Mutations annotated as benign or likely benign were also filtered out 

based on the ClinVar, database (ClinVar, RRID:SCR_006169), or as common germline variants in 

databases including 1000 genomes, ExAC, gnomAD and KAVIAR with population allele frequency 

>0.5%. Finally, hematopoietic expansion-related variants that have been previously described, 

including those in DNMT3A, ASXL1, TET2, and specific alterations within ATM (residue 3008), 

GNAS (residue 201, 202), or JAK2 (residue 617) were marked as CHIP-related mutations . 
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Germline DNA analysis 

Germline variants were determined by concurrent sequencing of buffy coat PBMCs. Candidate 

variants with low base quality, mapping scores, and other poor quality metrics were filtered. 

Candidate variants with an allelic frequency <5% or with less than 8 distinct reads containing the 

mutation were excluded. Unknown variants in repeat regions were also excluded. Details of the 

analytical workflow are provided above in “Analyses of NGS data generated from cfDNA”. 

 

Copy number analysis by targeted panel 

Copy number variations were estimated at the gene level. The pipeline calculates the on-target 

unique fragment coverage based on consensus bam files, which is first corrected for GC bias, and 

is then adjusted for the probe level bias (estimated from a pooled reference). Each adjusted 

coverage profile is self-normalized (assuming a diploid status of each sample) first, and then 

compared against correspondingly adjusted coverages from a group of normal reference samples 

to estimate the significance of the copy number variant. To call an amplification or deletion of a 

gene requires the absolute z-score and copy number change pass minimum thresholds.  

 

DNA re-arrangements  

DNA re-arrangement was detected by identifying the alignment breaking points based on the 

bam files before the consensus step. Suspicious alignments were filtered based on repeat 

regions, local entropy calculation and similarity between reference and alternative alignments. 

Larger than 3 unique alignments (at least one of them should be double stranded) are required 

to report a DNA fusion. 

 

ctDNA fraction  

ctDNA fractions are estimated based on the allele fractions of autosomal somatic mutations as 

described previously [Vandekerkhove, 2017]. Briefly, the mutant allele fraction (MAF) and ctDNA 

fraction are related as MAF = (ctDNA * 1) / [(1 - ctDNA) * 2 + ctDNA *1], and thus ctDNA = 2 / ((1 
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/ MAF) + 1). Somatic mutations in genes with a detectable copy number change are omitted from 

ctDNA fraction estimation.  

 

Tumor Fraction 

ichorCNA, adapted from the ABSOLUTE method [Carter, 2012], was applied to estimate tumor 

fraction using a hidden Markov model (HMM) based on genome-wide copy number variation at 

a segment level. 

 

bTMB score estimation 

Blood-based tumor mutational burden (bTMB) was defined as the number of somatic coding 

SNVs including synonymous and nonsynonymous variants within panel target regions. The bTMB 

score was then normalized by the total effective targeted panel size within the coding region 

[Gandara, 2018].  

 

Copy number burden analysis using low-pass whole genome sequencing  

Low-pass whole genome sequencing (LP-WGS) with an overall average coverage of 5x was 

performed on patient samples. The ichorCNA algorithm [Adalsteinsson, 2017] was applied to GC 

and mappability-normalized reads to estimate plasma copy number variations using the hidden 

Markov model (HMM). The pipeline first estimated the segment level (1Mb genomic regions) 

copy number deviation as log2 ratio of the normalized reads between the test sample and a pool 

of normal plasma samples, then the sample level copy number burden (CNB score) was calculated 

as the logarithm of the sum of absolute CNV z-scores, where higher/lower CNB score indicates 

higher/lower CNV abnormality compared with normal background. The CNB score cutoff of 5.6 

was defined as three standard deviations away from the population mean of normal plasma CNB 

scores.   

 

Mutational signature analysis  

Mutational signature analysis was performed to compare patterns of single base substitutions 

(SBS) with previously reported SBS signatures [Alexandrov, 2013, 2020] now available in the 
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COSMIC data base using the maftools package (version 2.4.15) in R (version 3.6.3). Briefly, each 

of the 96 possible mutation substitution types is defined by one of six substitution types (T>A, 

T>C, T>G, C>A, C>G, C>T) and the bases immediately 5’ and 3’ to the mutated base. For each 

sample, the number of mutation substitutions was counted. Non-negative matrix factorization 

was used to decompose the count matrix into n signatures. The number of signatures (n) best 

fitting the data was estimated using Cophenetic correlation. Signatures were compared to the 78 

available SBS COSMIC signatures (v3.2 - March 2021, 

https://cancer.sanger.ac.uk/signatures/sbs/ ) using cosine similarity. A dominant signature was 

defined as the signature with the maximum signature score in each sample.  

Oncogenic signaling pathway analysis  

To compare the relative proportion of mutations within key oncogenic signaling pathways in high 

vs. low bTMB patients, we filtered the list of genes included in a previous publication describing 

oncogenic signaling pathways  [Sanchez-Vega, 2018] to include only those identified as breast 

cancer driver genes [Dietlein, 2020; Martinez-Jiminez, 2020]. The list of resulting genes is shown 

in the table below. The frequency of SNVs across these genes was compared between high vs. 

low bTMB patients and statistical significance was evaluated using the Fisher’s Exact Test.   

 

Pathway                                                              Gene List 
HRD BRCA1,BRCA2 
DDR BRCA1,TP53,BAP1,BRCA2,PTEN,ATM,ARID1A,POLD1 
PI3K PIK3CA,AKT1,PTEN,PIK3R1,MTOR 
Cell_Cycle RB1,CDKN2A,CDKN1B 
TP53 TP53,ATM 
RTK-RAS EGFR,FGFR2,BRAF,NF1,KRAS,ERBB3,ERBB4,JAK2,ALK,PDGFRB,HRAS,ERBB2 
Hippo FAT1,FAT4,FAT3 
NOTCH NOTCH2,CREBBP,NCOR2,FBXW7,SPEN 
WNT   
MYC   
NRF2   
TGF-Beta SMAD2,SMAD4 
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