Supporting Information

Catalytically Active Snake Venom PLA₂ enzymes: An Overview of Its Elusive Mechanisms of Reaction

Juliana Castro-Amorim,¹ Ana Novo de Oliveira,¹ Saulo Luís Da Silva,¹ Andreimar M. Soares,^{2,3} Ashis K. Mukherjee,^{4,5} Maria João Ramos,¹ and Pedro A. Fernandes^{1*}

¹LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal

² Laboratory of Biotechnology of Proteins and Bioactive Compounds (LABIOPROT), Oswaldo Cruz Foundation, National Institute of Epidemiology in the Western Amazon (INCT-EpiAmO), Porto Velho, Rondônia 76812-245, Brazil

³ Sao Lucas Universitary Center (UniSL), Porto Velho, Rondônia 76805-846, Brazil

⁴ Microbial Biotechnology and Protein Research Laboratory, Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur 784028, Assam, India

⁵ Division of Life Sciences, Institute of Advanced Studies in Science and Technology, Vigyan Path, Garchuk, Paschim Boragaon, Guwahati 781035, Assam, India

Email: pafernan@fc.up.pt

Contents of SI file

Table S1. The sequence identity matrix of six different sPLA₂ resulted from the multiple sequence alignment of a human synovial (UniProtKB AC: P14555), bovine pancreatic (UniProtKB AC: P00593), *B. asper* (UniProtKB AC: P20474), *E. carinatus* (UniProtKB AC: Q7T3S7), *N. atra* (UniProtKB AC: P00598) and *N. sputatrix* (UniProtKB AC: Q92085). Percent sequence identity matrix was created by ClustalW. ¹ Higher percentages are represented with darker colors.

Synovial (GIIA)	Pancreatic (GIB)	B. asper (GIIA)	E. carinatus (GIIA)	N. atra (GIA)	N. sputatrix (GIA)	
100	37	45	47	35	33	Synovial
	100	36	35	54	52	Pancreatic
		100	52	33	32	B. asper
			100	35	33	E. carinatus
				100	95	N. atra
					100	N. sputatrix

Figure S1. Cartoon representation of PLA₂ tertiary structure. (left) Superimposition of a bovine pancreatic (PDB 1MKV) (white) and snake venom GI-PLA₂ from the Chinese cobra (*Naja atra*) (PDB 1POA); (right) Superimposition of a human synovial (white) (PDB 1POE) and snake venom GII-PLA₂ from the Indian saw-scaled viper (*Echis carinatus*) (PDB 1OZ6). All PLA₂ have highly similar tertiary structures: Helices (lightblue), loops (salmon) and β -sheets (magenta) cartoon. The Ca²⁺ is show as an orange sphere and the disulfide bonds as yellow lines. The Ca²⁺ binding loop, the N- and C-terminal are also identified. The PyMOL molecular graphics software package was used to generate the representations.

Group	Source	Species	PDB	Ligands	Resolution	Ref.
GIA	Elapid snake venom	Naja atra	1POB	holo	2.00 Å	2
GIA	Elapid snake venom	Naja atra	1POA	apo	1.50 Å	3
GIB	Bovine pancreas	Bos taurus	1BP2	apo	1.70 Å	4
GIB	Bovine pancreas	Bos taurus	1MKV	holo	1.89 Å	5
GIB	Porcine pancreas	Sus scrofa	5P2P	holo	2.40 Å	6
GIIA	Human synovial fluid	Homo sapiens	1KVO	holo	2.00 Å	7
GIIA	Human synovial fluid	Homo sapiens	1POE	holo	2.10 Å	8
GIIA	Viperid snake venom	Crotalus atrox	1PP2	apo	2.50 Å	9
GIIA	Viperid snake venom	Bothrops asper	5TFV	apo	2.54 Å	10
GIIA	Viperid snake venom	Gloydius halys	1PSJ	apo	2.00 Å	11
GIIA	Viperid snake venom	Echis carinatus	10Z6	apo	2.60 Å	12

Table S2. A selection of the reported X-ray crystallographic structures of snake venom, human, porcine and bovineGI/GII PLA2.

40 0 60	. 70	80	90	100
BthTX-II PKDATDRCCFVHDCCVGKLTNCKPK	T - DRY SYSRENGV	IICGEGTPCEK	QICECDKAAAVCF	RENL
PrTX-III TKD DRCCYYHDGCYKKLTGC - PK	TODRYSYSWLDLT	IVCGEDDPC - K	ELCECOKAIAVCE	RENL
Basic-Ag PKDATDRCCFVHDCCYEKLTGCDPK	N-DDYTYSWKNGT	IVCGGDDPCKK	EVCECDKAAAICF	RDNL
Acidic-Ag PQDATDRCCFVHDCCYGKVTGCDPK	M - DVYSFSEENGD	IVCGGDDPCKK	EICECDRAAAICF	RDNL
BthTX-I PKDATDRCCYVHKCCYKKLTGCDPK	K - DRYSYSWKDKT	IVCGENNPCLK	ELCECOKAVAICL	RENL
PTX-II PKDATDRCCYVHKGCYKKLTGCNPK	K - DRYSYSWKDKT	IVCGENNPCLK	ELCECDKAVAICL	RENL
PLAJ-like PKDATDRCCYYHKCCKKKLTGCDPK	K - DRYSYSWKDKT	IVCGENNPCLK	ELCECDKAVAICL	RENL
BnSP-VIII PKDATDRCCYWHKCCYKKLTGCDPK	K - DRYSYSWKDKT	IVCGENNPCLK	ELCECOKAVAICL	RENL

Figure S2. Sequence alignment of four classic PLA₂ (BthTX-II, PrTX-III, Basic-PLA₂ and Acidic-PLA₂ - UniProtKB ACs: P45881, P58464, O42187 and P14418, respectively) and four PLA₂-like proteins (BthTX-I, PrTX-II, PLA₂-like and BnSP-VIII – UniProtKB AC: Q90249, P82287, I6L8L6 and Q9IAT9, respectively). The replacement of the Asp residue by a Lysine at position 49 is highlighted in a red dashed box. High sequence identity is also evidenced. Amino acids are colored according to the ClustalX color scheme: hydrophobic (blue), positive charge (red), negative charge (magenta), polar (green), cysteines (pink), glycines (orange), prolines (yellow), aromatic (cyan) and unconserved (white). Created with Jalview 2.11 software. ¹³

References

(1) Thomopson, J.; Higgins, D. G.; Gibson, T. J. ClustalW. Nucleic Acids Res 1994, 22, 4673-4680.

(2) White, S. P.; Scott, D. L.; Otwinowski, Z.; Gelb, M. H.; Sigler, P. B. Crystal structure of cobra-venom phospholipase A2 in a complex with a transition-state analogue. *Science* **1990**, *250* (4987), 1560-1563. <u>https://doi.org/10.1126/science.2274787</u>.

(3) Scott, D. L.; White, S. P.; Otwinowski, Z.; Yuan, W.; Gelb, M. H.; Sigler, P. B. Interfacial catalysis: the mechanism of phospholipase A2. *Science* **1990**, *250* (4987), 1541-1546. <u>https://doi.org/10.1126/science.2274785</u>.

(4) Dijkstra, B. W.; Kalk, K. H.; Hol, W. G. J.; Drenth, J. Structure of bovine pancreatic phospholipase A2 at 1.7 Å resolution. *J. Mol. Biol.* **1981**, *147* (1), 97-123. DOI: <u>https://doi.org/10.1016/0022-2836(81)90081-4</u>.

(5) Sekar, K.; Kumar, A.; Liu, X.; Tsai, M. D.; Gelb, M. H.; Sundaralingam, M. Structure of the complex of bovine pancreatic phospholipase A2 with a transition-state analogue. *Acta Crystallogr. D Biol. Crystallogr.* **1998**, *54* (Pt 3), 334-341. <u>https://doi.org/10.1107/s090744499701247x</u>.

(6) Thunnissen, M. M. G. M.; Ab, E.; Kalk, K. H.; Drenth, J.; Dijkstra, B. W.; Kuipers, O. P.; Dijkman, R.; de Haas, G. H.; Verheij, H. M. X-ray structure of phospholipase A2 complexed with a substrate-derived inhibitor. *Nature* **1990**, *347* (6294), 689-691. <u>https://doi.org/10.1038/347689a0</u>.

(7) Cha, S.-S.; Lee, D.; Adams, J.; Kurdyla, J. T.; Jones, C. S.; Marshall, L. A.; Bolognese, B.; Abdel-Meguid, S. S.; Oh, B.-H. High-resolution X-ray crystallography reveals precise binding interactions between human nonpancreatic secreted phospholipase A2 and a highly potent inhibitor (FPL67047XX). *J. Med. Chem.* **1996**, *39* (20), 3878-3881. <u>https://doi.org/10.1021/jm960502g</u>.

(8) Scott, D. L.; White, S. P.; Browning, J. L.; Rosa, J. J.; Gelb, M. H.; Sigler, P. B. Structures of free and inhibited human secretory phospholipase A2 from inflammatory exudate. *Science* **1991**, *254* (5034), 1007-1010. <u>https://doi.org/10.1126/science.1948070</u>.

(9) Brunie, S.; Bolin, J.; Gewirth, D.; Sigler, P. B. The refined crystal structure of dimeric phospholipase A2 at 2.5 A. Access to a shielded catalytic center. *J. Biol. Chem.* **1985**, *260* (17), 9742-9749.

(10) Salvador, G. H. M.; dos Santos, J. I.; Lomonte, B.; Fontes, M. R. M. Crystal structure of a phospholipase A2 from Bothrops asper venom: Insights into a new putative "myotoxic cluster". *Biochimie* 2017, *133*, 95-102. DOI: <u>https://doi.org/10.1016/j.biochi.2016.12.015</u>.

(11) Wang, X.-q.; Yang, J.; Gui, L.-l.; Lin, Z.-j.; Chen, Y.-c.; Zhou, Y.-c. Crystal Structure of an Acidic Phospholipase A2from the Venom of Agkistrodon halyspallas at 2.0 Å Resolution. *J. Mol. Biol.* 1996, 255
(5), 669-676. DOI: <u>https://doi.org/10.1006/jmbi.1996.0054</u>.

(12) Jasti, J.; Paramasivam, M.; Srinivasan, A.; Singh, T. P. Structure of an acidic phospholipase A2 from Indian saw-scaled viper (Echis carinatus) at 2.6 A resolution reveals a novel intermolecular interaction. *Acta Crystallogr. D Biol. Crystallogr.* 2004, *60* (Pt 1), 66-72. <u>https://doi.org/10.1107/s090744490302208x</u>.
(13) Waterhouse, A. M.; Procter, J. B.; Martin, D. M.; Clamp, M.; Barton, G. J. Jalview Version 2—a multiple sequence alignment editor and analysis workbench. *Bioinformatics* 2009, *25* (9), 1189-1191. https://doi.org/10.1093/bioinformatics/btp033.