Supplementary Material

A swapped genetic code prevents viral infections and gene transfer

Akos Nyerges^{1*}, Svenja Vinke¹, Regan Flynn¹, Siân V. Owen², Eleanor A. Rand², Bogdan Budnik³, Eric Keen^{4,5}, Kamesh Narasimhan¹, Jorge A. Marchand¹, Maximilien Baas-Thomas¹, Min Liu⁶, Kangming Chen⁶, Anush Chiappino-Pepe¹, Fangxiang Hu⁶, Michael Baym², George M. Church^{1,3*}

¹Department of Genetics, Harvard Medical School, Boston, MA 02115, USA

²Department of Biomedical Informatics and Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA 02115, USA

³Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA ⁴Department of Pathology and Immunology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA

⁵The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA

⁶GenScript USA Inc., Piscataway, NJ 08854, USA

*Corresponding author. E-mail: <u>gchurch@genetics.med.harvard.edu</u> (G.M.C.); <u>akos nyerges@hms.harvard.edu</u> (A.N.)

Supplementary Note

Comparison of tRNA expression levels and phage resistance assays between Zürcher, J. F. et al.³³ and this work.

	Plasmid copy/cell	tRNA promoter	Relative tRNA expression level
This work	pUC-based, ~400	<i>proK</i> promoter (Relative promoter strength = 2.4);	~192 for <i>proK</i> -based expression, as in tRNA screen of Fig. 3c*;
	pUC-based, ~400	SLP2018-2-101 promoter ⁶² (Relative promoter strength = 775)	~62,000 for SLP2018-2-101- based expression, as in pLS1 and pLS2 in Ec_Syn61∆3-SL.
Zürcher, J. F. et al.	pSC101-based, ~5	<i>lpp</i> promoter (Relative promoter strength = 1.0)	1.0

Comparison of mistranslating tRNA expression:

*According to our quantitative tRNAseq measurements (**Extended Data Figure 6**), the pUC plasmid + *proK* promoter-based expression system results in an expression level of the mistranslating viral Leu-tRNA_{YGA} tRNAs that is similar to the cellular serine tRNAs, *i.e.*, a relative expression level of 172% and 140% for Leu-tRNA_{UGA} and Leu-tRNA_{CGA} respectively, compared to *serV*. This *proK*-based system provides broad virus resistance, as demonstrated on **Fig. 3c**.

Viral resistance assays and their sensitivity:

Assay(s) to determine viral resistance			
This work	Modified single-step growth curve with virion counting on phage-susceptible MDS42 <i>E. coli</i> strain (estimated detection limit: 200 PFU/ml, detects slowly-replicating viruses); Experiments performed with 12 viruses , including REP8-12 phages ~100× more virulent than T4-like phages (<i>i.e.</i> , REP1- 4), Fig. 2a & Fig. 3c.	Enrichment-based resistance analysis using environmental samples (estimated detection limit: 200 PFU/ml post-enrichment, ~1 infecting virion / ml pre-enrichment**). Analyzed environmental samples contained ~3×10 ⁷ coliphages.	
Zürcher, J. F. et al.	Efficiency-of-plating assay directly on resistant strain (detection limit not reported; previously noted to not detect slowly-replicating or non-plaque-forming viruses ^{34,35}), Experiments performed with two T4-like phages (Tequatrovirus), $\Phi 6$ and $\Phi 12$.	Not tested using environmental samples.	

**Based on the dilution factors in our enrichment-based analysis (Methods), if one phage produces ten progenies (burst size = 10) and the phage replication cycle is ~24 hours, the overall detection limit is 100 PFU/ml. If any virus replicates faster than ~12 hours, the detection limit is 1 PFU/ml.

Supplementary Figure 1. Gene expression of REP12. (a) Transcriptomic analysis of the REP12 genome at 20 minutes post-infection in Syn61 Δ 3 cells. Blue shading indicates RNA sequencing read coverage. Numbers indicate genomic positions on the REP12 genome. (b) Predicted promoters (marked in green) and transcriptomic analysis of phage RNA expression at the genomic region of REP12 phage containing tRNA genes. tRNAs are marked as magenta arrows, and protein-coding sequences are marked as yellow arrows. Blue shading indicates RNA sequencing read coverage at 20 minutes post-infection based on a single experiment. *E. coli* σ^{70} promoters were predicted using the statistical thermodynamic model of transcriptional initiation described in Ref⁶⁷. Source data is available within this paper.

Supplementary Figure 2.

Supplementary Figure 2. REP12 viral tRNA operon-expressed tRNA-Ser_{UGA} decodes TCR codons as serine. The amino acid identity of the translated TCG and TCA codon within elastin_{16TCR}-sfGFP-His6 was confirmed by tandem mass spectrometry from Syn61 Δ 3 cells containing the REP12 viral tRNA operon together with its native promoter (**a**) or the REP12 viral tRNA operon-derived tRNA-Ser_{UGA}, driven by a *proK* promoter (**b**). The figure shows the amino acid sequence and MS/MS spectrum of the analyzed elastin_{16TCR} peptide. MS/MS data was collected once.

Supplementary Figure 3.

Supplementary Figure 3. Serine-to-leucine mistranslation of viral TCR serine codons in Ec_Syn61 Δ 3-SL cells (Example 2). The figure shows the amino acid sequence and MS/MS spectrum of a REP12 bacteriophage-expressed protein, together with its viral genomic sequence, in which the naturally serine-coding TCA codon is mistranslated as leucine. The experiment was performed by infecting Ec_Syn61 Δ 3-SL cells, expressing Leu9-tRNA_{YGA} from *Escherichia* phage OSYSP (GenBank ID MF402939.1), with the REP12 lytic phage at an MOI = 12, and the proteome of infected cells was analyzed by tandem mass spectrometry (Methods). MS/MS data was collected once.

References:

67. Fleur, T. L., Hossain, A. & Salis, H. M. Automated Model-Predictive Design of Synthetic Promoters to Control Transcriptional Profiles in Bacteria. BioRxiv, 2021.09.01.458561 Preprint at https://doi.org/10.1101/2021.09.01.458561 (2021).