1 Supplementary Material and Methods

2

3 **RT-PCR**

Total RNA was isolated from Wild Type (WT) and $Fgd4^{SC-/-}$ mouse sciatic nerves using the 4 5 Purelink RNA Minikit (#12183018A, Thermofisher Scientific, USA), following the manufacturer's protocol. cDNA was generated using the SuperScript III one-step RT-PCR 6 7 (#12574018, ThermoFisher Scientific, USA) and random hexamers (#48190011, Thermofisher Scientific, USA). The deletion of exon 4 was detected by the amplification, 8 9 from cDNA, of a fragment between exons 3 and 7 of the Fgd4 transcript, using the following 10 primers (Fgd4-mouse-3F: 5'- GAGTCTAATCCGGCCCCTAC-3'and Fgd4-mouse-7R: 5'-11 AAGGAATGGCGCCAACTTTT-3').

12

13 Behavioural gait test

For the gait experiment, sex and age-matched $Fgd4^{SC-/-}$ and WT littermates' mice were 14 15 monitored at 6 (n=9 WT and n=9 $Fgd4^{SC-/-}$), 12 (n=12 WT and n=13 $Fgd4^{SC-/-}$) and 18 (n=11 WT and n=13 Fgd4^{SC-/-}) months old. Gait was analyzed during spontaneous walk using an 16 automated gait analysis system (Gaitlab, Viewpoint, France). Before recording footprints, 17 18 mice were acclimated and trained to walk on the Gait system for two days. During the testing 19 session, a minimum of 2-3 completed runs were collected. We focused the analysis on 20 intensity-based parameters, paw-size as well as gait/posture, as previously described in¹. 21 Animals that did not complete at least 2 successful runs (stalling or reversing during gait,...) 22 were removed from the study.

23

24 Electron microscopy and morphometric analysis

25 The sciatic nerves were dissected and fixed in 2% ParaFormaldehyde (PFA) and 2.5% Glutaraldehyde in 0.1M cacodylate buffer for 2 hours. The next day, the nerves were washed 26 27 three times in 0.1M cacodylate buffer and post-fixed in buffered 1% OsO4 for one hour. After 28 washes in distilled water, the samples were contrasted in aqueous 1% uranyl acetate. Samples 29 were then dehydrated in graded series of ethanol baths (30 minutes each) and infiltrated with 30 epon resin in ethanol (1:3, 2:2, 3:1) for 2 hours for each, and finally in pure resin overnight. The next day the nerves were embedded in fresh pure epon resin and cured for 48h at 60°C. 31 32 500 nm semi-thin and 70 nm ultra-thin sections were performed on a Leica UCT 33 Ultramicrotome (Leica, Austria). Semi-thin sections were stained with toluidine blue and 34 ultrathin sections were deposited on formvar-coated slot grids. The grids were contrasted 35 using uranyl acetate (10 minutes) and lead citrate (5 minutes) and observed using an FEI 36 Tecnai G2 at 200 KeV. The acquisition was performed on a Veleta camera (Olympus, Japan).

The proportion of fibers having out- and infoldings was counted on ten fields correspondingto a range of 600-800 fibers for each sciatic nerve of at least three animals.

To perform g-ratio analysis, digitalized images of fiber semithin sections of the sciatic nerves were obtained with a 100× objective of a phase-contrast microscope (BX59, Olympus). At least ten images from three different animals per genotype at 3, 6, and 18 months old were acquired. g-ratio analysis was performed on micrographs using Image J (National Institutes of Health, Bethesda, MD) plug-in (g-ratio calculator) developed in collaboration with the cellular imaging facility of the University of Lausanne and available at http://cifweb.unil.ch, as previously described in Arnaud et al.2009².

- 46
- 47

48 Immunohistochemistry

49 Mice were sacrificed with an overdose of CO₂. Gastrocnemius muscles were dissected out 50 and fixed in 4 % PFA for 30 min. Samples were then incubated in 25 % sucrose solution at 4 51 °C for 24 h. Tissues were embedded in the Optimal Cutting Temperature compound 52 (#3801480, Leica, USA) and stored at -80 °C before processing. Embedded muscles were then cut to twenty-five µm-thick sections, mounted on slides coated with Superfrost Plus 53 54 (#LSFPLUS, THERMO SCIENTIFIC MENZEL, USA). Muscle sections were incubated 55 overnight at 4 °C in blocking solution (2 % BSA, 10 % Normal Goat Serum, 0.1 % Triton and 56 PBS) with chicken anti-NFM (#822701, BioLegend, USA, previously #PCK-593P, Covance, 57 USA). Sections were next incubated with Goat anti-Chicken IgY (H+L) Secondary Antibody, 58 Alexa Fluor 488, (#ab150169, Abcam, UK) and α-Bungarotoxin, Alexa Fluor[™] 555 59 conjugate (#B35451, thermofisher Scientific, USA), (1:500), and mounted in Duolink mounting medium (#DU082040, Sigma-Aldrich, USA) . Neuromuscular junctions were 60 imaged on a Zeiss ApoTome.2 microscope (Zeiss, Germany) equipped with an AxioCam 61 62 MRm camera.

63

64 Lentivirus infection

65

Fgd4/FRABIN was either overexpressed or downregulated in WT DRG/SC cocultures or in 66 67 rat primary SC using Lentivirus vectors (Lv) designed and produced by the Vector builder 68 company (https://en.vectorbuilder.com, USA). For overexpression, we designed control Lv 69 (Ly-control) expressing EGFP under the CMV promoter and Ly allowing the expression of 70 mouse Fgd4 (Lv-Fgd4) under the CMV promoter. For the knockdown experiments, we used 71 an Lv expressing a shRNA against rat Fgd4 previously validated in Horn et al. 2012³ 72 (targeted sequence: 5'-GAAGAAGAGGATATTGTA-3') referred to as LvSHFgd4-GFP. Lv-73 Shcontrol-GFP expressing a shRNA scramble, randomly produced, was provided by 74 Vectorbuilder (#VB151023-10034, Vectorbuilder, USA). Both Lv vectors express EGFP under the CMV promoter, in addition to the shRNA, allowing tracing of the infected cells. 75 76 We used the same strategy to knockdown the Snx3 gene in DRG/SC cocultures or in primary

76 We used the same strategy to knockdown the *Shub* gene in *Dico/Se* coeditates of in printary
77 SCs. Here, we used Lv expressing two shRNAs targeting *Snx3* (Sh-0: 5'78 GCCCAGAATGAACGTTGTCTT-3'; Sh-3: 5'-AGAGAGAGAGCAAGGTTGTAGTT-3'),
79 both provided by Sigma-Aldrich (USA). Cells (DRG/SC cocultures or primary SCs) were
80 infected with the described Lv at a dose of 15 TU/cell 24 h after plating.

81

82 Transferrin assay

83 Rat primary SCs were plated at a density of 50 000 cells per well and infected 24h later with 84 Lv-SHcontrol-GFP or SHFgd4-GFP (15 TU/cell). Two days after the infection, cells were incubated with pHrodo-red Transferrin conjugate (#P35376, Thermofischer Scientific, USA) 85 86 at a dilution of 50µg/ml, for 30 min on ice, followed by 15, 30 or 45 min of incubation at 37 87 °C. After one PBS wash, cells were fixed in 4% PFA for 15 min. Samples were then mounted 88 in Duolink mounting medium (#DU082040, Sigma-Aldrich, USA) and pHrodo-TF fluorescence intensities were visualized and captured on a Zeiss ApoTome.2 microscope 89 90 (Zeiss, Germany) equipped with an AxioCam MRm camera, with a 20 X objective. The 91 iintegrated density of fluorescence signal was analyzed only in the infected cells (*i.e.*, GFP+) 92 using ImageJ software.

93

94 Cell lines and transfection

HEK293 (Human embryonic kidney, # CRL-1573) and S16 rat SC (#CRL-2941) lines were
both provided by ATCC (Manassas, Virginie, USA). HEK293 and S16 cells were cultured in
DMEM (#41965, Thermofisher Scientific, USA) complemented with 10 % of FBS (#15000036, Thermofisher, USA) and 1 % of penicillin/streptomycin (#15070063, Thermofisher

Scientific, USA). To overexpress hFGD4/FRABIN in HEK293 cells, the pEx-FGD4-His-V5
vector was generated by Gateway cloning technology (ThermoFischer Scientific, USA).
Transfection experiments were performed using promofectin reagent (#PK-CT-2000-50,
PromoCell GmbH, Germany). Briefly, 300000 cells were seeded and transfected with 4µg of
plasmid following the manufacturer's recommendation. For immunoprecipitation, cells were
harvested 72 h post-transfection.

105

106 Plasmids

107 The plasmids used for the yeast-two hybrid experiment (pENTR-FL-hFGD4) and transfection 108 studies (pEx-FGD4-His-V5) were generated using Invitrogen Gateway cloning technology 109 (ThermoFischer Scientific, USA) following the manufacturer's instructions. Briefly, the entry 110 plasmid (i.e., pENTR-FL-hFGD4) was generated after the BP recombination reaction between 111 the attB-flanked hFGD4 fragment and the attP-containing donor vector pDONR221 (#12536017, ThermoScientific, USA) using the BP clonase enzyme kit (#11789013, 112 113 ThermoScientific, USA). The attB-flanked hFGD4 fragment was produced by PCR using the 114 "Expand High Fidelity Plus PCR System" (#3300226001, Roche, Switzerland) and the 115 following primers: FGD4-GATEWAY-116 1F:5'GGGGACAAGTTTGTACAAAAAGCAGGCTTCGAGGAAATTAAACCTGCCTC 117 TGC3' and FGD4-GATEWAY-1R: 5'GGGGACCACTTTGTACAAGAAAGCTGGGTTCAGCATTCTGATTTTTCTTAGG3'. 118 119 The expression vector pEx-FGD4-His-V5 was generated following an LR recombination 120 between the attL containing entry vector (pENTR-FL-hFGD4) and the attR destination vector 121 (pDEST40, #12274015, ThermoScientific, USA) using the LR Clonase enzyme mix 122 (#11791019, ThermoScientific, USA).

123

124 Immunocytochemistry

DRG/SC co-cultures were fixed with 4% PFA, washed in PBS, and then permeabilized for 5 minutes with methanol. After two PBS washes, cells were incubated 1-2 h in a blocking solution (20% fetal bovine serum, 1% bovine serum albumin, 0.01% Triton in 1 X PBS) at room temperature. Cells were then incubated with the following primary antibodies diluted in the incubation solution overnight: chicken anti-neurofilament NF-M (1:1000) (#822701, BioLegend, USA, previously #PCK-593P, Covance), rat anti-MBP (1:300) (#MAB386, Merck-Millipore, Germany). After two washes in PBS, cells were incubated with one of the following secondary antibodies: Donkey Anti-Rat IgG H&L (#150154, Alexa Fluor 555,
abcam, UK) (1:1000) and (#A21449, Goat Anti-Chicken IgY H&L (Alexa Fluor 647,
Invitrogen, USA) (1: 1000). Coverslips were then rinsed twice in PBS and mounted in a
duolink mounting medium (#DU082040, Sigma-Aldrich, USA) for microscope analysis.
Fluorescence images were captured with a Zeiss ApoTome.2 microscope (Zeiss, Germany)
equipped with an AxioCam MRm camera. Images were captured and merged with the ZEN
software (Zeiss, Germany) and were treated using ImageJ software.

139

140 **Protein extraction and Immunoblotting**

141 DRG/SC co-cultures or nerve samples were lysed in RIPA buffer supplemented with a 142 protease/phosphatase inhibitor cocktail (#78442, ThermoFisher Scientific, USA). The lysate 143 was passed through an 18–21-gauge needle and submitted to sonication using the Bioruptor 144 VCD-200 (Diagenode, Belgium). After centrifugation for 10 min at 20,000 x g at 4 °C, the 145 supernatant was removed and protein concentration was measured by use of a Bicinchoninic 146 acid (BCA) solution (#B9643-1LSigma-aldrich, USA) coupled to copper II sulfate solution 147 (#C2284-25ml, Sigma-aldrich, USA) following the manufacturer's recommandations. 40 µg 148 of samples' proteins were loaded on a Precast NuPage 4-12 % Bis-Tris gels (Thermofisher, 149 USA) and transferred onto a nitrocellulose membrane (GE healthcare life science, Germany). 150 The membrane was then blocked by incubation in blocking buffer (Intercept-blocking buffer, 151 Licor). The membrane was then incubated overnight with the following primary antibodies: 152 mouse anti-Neuregulin1 α/β 1/2 (D10) (1:500) (#sc-393009; Santa Cruz Biotechnology, USA), 153 rabbit anti-phospho-Akt (Ser473) (D9E) (1:2000) (#4060, Cell Signaling Technology, USA), 154 rabbit anti-Akt(pan) (C67E7) (1:1000) (#4691, Cell Signaling Technology, USA), rabbit anti-155 HER2/ERBB2 (29D8) (1:1000) (#2165, Cell Signaling Technology, USA), rabbit anti-156 phospho-HER2/ERBB2 (Tyr1248) (1:1000) (#2247, Cell Signaling Technology, USA), rabbit 157 anti-HER3/ERBB3 (1B2) (1:1000) (#4754, Cell Signaling Technology, USA), rabbit anti-158 phospho-HER3/ERBB3 (Tyr1289) (D1B5) 1:1000) (#2842, Cell Signaling Technology, USA), rabbit anti-rab11a (1:1000) (#ab65200, Abcam, UK), rabbit anti-rab5 (1:1000) 159 (#ab18211, Abcam, UK), rabbit anti-mTOR (7C10) (1:1000) (#2983T, Cell Signaling 160 161 Technology, USA), rabbit anti-SNX3 (1:300) (#ab56078, Abcam, UK), goat anti-gapdh 162 (1:1000) (#sc-48167, Santa Cruz Biotechnology, USA), rabbit anti-c-MAF (1:100) 163 (#ab77071, abcam, UK), rabbit anti-ERBIN (1:500) (#LSC47097, LSBio, USA), mouse anti-

164 tubulin (1:4000) (#T6074, Sigma-Aldrich, USA). After three final washes in 0.1 % PBS-Tween 20, the membranes were incubated with secondary antibodies: IRDye® 800CW 165 166 Donkey anti-Rabbit IgG (H + L), IRDye® 680RD Donkey anti-Goat IgG (H + L), and 167 IRDye® 680RD Donkey anti-Mouse IgG (H + L) from Li-Cor Biosciences(USA), diluted at 168 1:10000. Membranes were then developed using the ChemiDoc imaging system from Biorad(169 USA). Intensities of the bands were then analyzed using the ImageJ gel analyzer tool (ImageJ 170 Software, National Institute of Health, Bethesda, MD, USA, http://rsb.info.nih.gov/ij). A plot 171 profile of western blots was established, and the intensities of all bands were measured. For 172 each sample, the peak intensity was calculated for each target protein by dividing the target 173 protein intensity with the intensity of the loading control protein. Data were then normalized 174 to the control sample.

- 175
- 176

177 Immunoprecipitation

178 Co-immunoprecipitation (co-IP) experiments were performed using the Dynabeads Protein G Immunoprecipitation Kit (#10007D, Thermofisher Scientific, USA) following the 179 manufacturer's protocol. Briefly, HEK293 cells overexpressing His-V5-tagged human 180 181 FRABIN were washed with PBS 72 h post-transfection (with plasmid pEx-FGD4-His-V5), 182 and then incubated in a home-made lysis buffer (HEPES 50 mM, NaCl 150 mM, MgCl₂ 1.5 183 mM, EGTA 1 mM, Glycerol 10 %, Triton X100 0.1 %, protease inhibitor). First, 10ug of 184 primary mouse anti-V5 antibody (#ab27671, Abcam, UK) diluted in PBS-Tween 0.01% were 185 incubated with magnetic beads for 1h. The antibody-magnetic beads complex was then incubated with the lysate containing 1 mg of proteins, overnight with end over end rotation. 186 187 The flow-through is then discarded after placing the tube containing the beads-antigen-188 antibody lysate, on the magnet. Bound proteins were then eluted with elution buffer and 189 dissociated in 10 µl of NuPAGE LDS Sample Buffer (#NP0007, ThermoFisher Scientific, USA). Samples were then boiled at 70 °C for 10 min before loading on a NuPage Bis-Tris 190 191 gel.

192

193 Yeast two-hybrid (Y2H)

194 GAL4-based yeast two-hybrid assay was performed, using a commercial human fetal brain 195 cDNA library containing cDNAs fused to the gal4 activation domain of pEXP-AD502 196 (ProQuestTM, ThermoFisher Scientific, USA), as prey, and full length human *FGD4* cDNA as

197 a bait. To this purpose, the full-length coding sequence of FGD4 (NM_139241) was 198 subcloned from the pENTR-FL-hFGD4, into a pDBA vector, using the Gateway technology 199 (Thermofisher Scientific, USA). The bait plasmid was transformed in MAV03 yeast strain leu2-3,112; 200 trp1-901; his3 $\Delta 200$; ade2-101; (MATa; gal4 Δ ; ga180 Δ ; 201 SPAL10UASGAL1::URA3, GAL1::lacZ, GAL1::His3@LYS2, can1R, cyh2R) following the 202 previously described transformation protocol⁴. This bait did not show self-activation and was 203 further used for screening. MAV203 cells were then transformed with the prey cDNA library 204 as described⁴. Following transformation with the cDNA library, yeasts were plated onto 205 synthetic complete (SC) medium minus leucine (-L), minus tryptophane (-W), minus histidine (-H) +25 mM 3-amino-1,2,4-triazole (3-AT) and, incubated at 30°C for 4-5 days. 206 207 Positive clones were patched onto SC-WHL + 3-AT in 96-well plates, incubated for 3 days at 208 30°C and transferred in liquid SC-WL for 3 days at 30°C with agitation to normalize the yeast 209 cell concentration used for the phenotypic assay. Cells were then diluted 1/20 in water, 210 spotted onto a selective medium (-WHL+25 mM 3-AT or -WUL), and incubated at 30°C for 4 211 to 5 days. To perform the β -galactosidase assay, undiluted yeast cells were spotted onto YPD 212 (yeast extract peptone dextrose) medium plates with nitrocellulose filters, and β -galactosidase 213 activity was evaluated one day after. Positive clones were sequenced by Sanger sequencing, primers: 214 after PCR amplification the following forward: 5'using 215 CGCGTTTGGAATCACTACAGGG-3' 5'and reverse: GGAGACTTGACCAAACCTCTGGCG-3'). The clones were identified by using BLAST. 216 217

218

219 Legends to Supplementary Figures and Table

220

Supplementary Figure 1. Fgd4^{SC-/-} animals display normal myelination thickness of 221 222 sciatic nerves, but a late muscle denervation (A) G-ratio analysis revealed no statistical 223 differences in myelin thickness in the sciatic nerves of 3, 6 and 18 mo WT and $Fgd4^{SC-/-}$ mice. 224 A total of 500-1000 axons of diameter between 0.5 and 6 µm were analysed (n=3 animals per 225 genotype). Data are represented as scatter plots of individual axons as a function of their 226 respective diameters determined at 3, 6 and 18 months old. Each point corresponds to one 227 fiber (gray points: $Fgd4^{SC-/-}$ animals; black points: WT animals). (B-C) Late muscle denervation observed in the gastrocnemius of $Fgd4^{SC-/-}$ animals. Level of innervation of 228 229 gastrocnemius muscle evaluated by the colocalization of the neurofilament marker (NF-M)

230 and the acetylcholine receptor marker α -bungarotoxin in 12 months old WT (n=3) and $Fgd4^{SC-/-}$ (n=3) animals. Yellow asterisk indicate innervated NMJ, red asterisk indicate 231 232 denervated NMJ. Scale bar: 50 µm. Statistical analysis: two-way repeated-measures ANOVA 233 (genotype*type of NMJs) with Sidak post-hoc test. Two-way ANOVA revealed a significant difference on the proportion of the type of NMJs between WT and $Fgd4^{SC-/-}$ conditions 234 (p=0.001). Sidak post hoc test show a significant increase in the proportion of denervated 235 236 NMJs in $Fgd4^{SC-/-}$ compared to WT (p:0,01). (**D-E**) Levels of expression of cleaved and fulllength Neuregulin 1-type III (named respectively cNRG1 and fNRG1) were assessed by 237 western-blot analysis in $Fgd4^{SC-/-}$ cocultures compared to control. (**D**) Data are expressed as 238 239 mean \pm sem (n=3-4 cocultures). Statistical analysis: unpaired Student's t-test. (E) Western 240 blot pictures illustrating the expression of the markers described in (D). (F-G) Levels of 241 expression of cNRG1 and fNRG1 were assessed by western-blot analysis in the sciatic nerves 242 of $Fgd4^{-/-}$ mice compared to WT mice. (F) Data are expressed as mean \pm sem (n=3 animals 243 per genotype). Statistical analysis: unpaired Student's t-test. (G) Western blot pictures 244 illustrating the expression of the markers described in (E). * p<0.05, ** p<0.01, ***p<0.001.

245

Supplementary Figure 2. Protein levels of ERBIN, but not MAF-1, are upregulated in sciatic nerves from *Fgd4*^{-/-} knock-out mice .

248 (A-B) Levels of expression of MAF-1 and ERBIN were assessed by western-blot analysis in 249 the sciatic nerves of 1 year old $Fgd4^{-/-}$ mice. (A) Data are expressed as mean \pm sem (n=3 250 control and n=5 $Fgd4^{-/-}$ animals). (B) Western blot pictures illustrating the expression of the 251 markers described in (A).

252

Supplementary Figure 3. Effective knock-down of Snx3 and Fgd4/FRABIN in vitro. (A-253 254 **B**) Lentivirus (Lv) expressing shRNA targeting Snx3 lead to an efficient knock-down of Snx3 255 in primary rat SCs. Primary SCs were infected 1 day after plating with either Lv-SHcontrol, 256 LV-SH-SNX3-1 or 2, and harvested 7 days post-infection. Level of expression of SNX3 in 257 those conditions was evaluated by western-blot. (C) Knock-down of Fgd4/FRABIN in 258 primary SCs following Lv-shRNA targeting *Fgd4* and expressing GFP tag SHFgd4. Primary 259 SCs were infected 1 day after plating and fixed 3 days post-infection. Infected cells were 260 identified by GFP expression. Expression levels of FRABIN were evaluated by 261 immunofluorescence (in red). In contrast to non-infected cells (GFP negative, blue asterisks)

which express FRABIN, infected cells (GFP positive cells, yellow asterisks) are negative forFRABIN.

264

Supplementary Figure 4. Schematic figure summarizing the biochemical findings and 265 266 the proposed pathomechanisms underlying CMT4H pathology. (A) Description of the 267 role of FRABIN in the regulation of the NRG1-type III-ERBB2/3 pathway and endocytic 268 trafficking in control conditions. The NRG1-type III-ERBB2/3/AKT/mTOR pathway is one 269 of the main pathways regulating myelination thickness through the expression of myelin and 270 lipid genes. ERBB2/3 levels are mainly regulated through endocytic trafficking. Through its 271 two phosphoinositides binding domains, FRABIN interacts and/or regulates key factors 272 involved in endosomal trafficking such as SNX3, RAB11 and, RAB11FIP2, promoting either 273 ERBB2/3 degradation through lysosomes or its recycling back to the membrane through 274 recycling endosomes. (B) Loss of FRABIN impairs NRG1-type III-ERBB2/3/AKT/mTOR 275 and endocytic trafficking, leading to hypermyelination (i.e generation of outfoldings). Loss of 276 FRABIN leads to an increase of key proteins regulating endosomal trafficking (SNX3, 277 RAB11 and, RAB11FIP2), consequently accelerating endosomal recycling and the presence 278 of ERBB2/3 receptors at the membrane surface. The increase of ERBB2/3 receptors leads to 279 an increase in AKT/mTOR pathway and may finally promote the expression of genes 280 controlling lipid production, a key constituent of the myelin sheet, as well as othersgenes such 281 as RAB11FIP2, a regulator of endosomal trafficking, as well as ERBIN, an adaptor protein 282 for ERBB2 receptor, ensuring its proper localization on the membrane.

283 Supplementary Figure 5. Full western-blot membranes related to Figures 2 and 4.

284 (A-D) Western blot pictures illustrating the expression of P-ERBB2, P-AKT, AKT, and the related protein control GAPDH in $Fgd4^{SC-/-}$ and control cocultures conditions (see Figure 2). 285 286 The yellow rectangle represents the western blot part used in each corresponding Figure. (E-287 G) Western blot pictures illustrating the expression of ERRB2, mTOR and the related protein control GAPDH in $Fgd4^{SC-/-}$ and control cocultures conditions (see Figure 2). The yellow 288 289 rectangle represents the western blot part used in each corresponding Figure. (H-J) Western 290 blot pictures illustrating the expression of mTOR, ERBB2, and the related protein control GAPDH, in the sciatic nerves of $Fgd4^{SC-/-}$ and control animals (see Figure 2). The yellow 291 292 rectangle represents the western blot part used in each corresponding Figure. K-M) Western 293 blot pictures illustrating the expression of P-AKT, AKT, and the related protein control

GAPDH, in the sciatic nerves of $Fgd4^{SC-/-}$ and control animals (see Figure 2). The yellow 294 295 rectangle represents the western blot part used in each corresponding Figure (N-O) Western 296 blot pictures illustrating the expression of RAB11 as well as the related protein control GAPDH in $Fgd4^{SC-/-}$ and control cocultures conditions (see Figure 4). The vellow rectangle 297 represents the western blot part used in each corresponding Figure. (P-Q) Western blot 298 299 pictures illustrating the expression of RAB5 as well as the related protein control GAPDH in 300 $Fgd4^{SC-/-}$ and control cocultures conditions (see Figure 4). The yellow rectangle represents 301 the western blot part used in each corresponding Figure.

- 302
- 303

304 Supplementary Figure 6. Full western-blot membranes related to Figures 5, 6 and

305 Supplementary Figures 1 and 2.

306 (A) Western blot picture illustrating the immunoprecipitation of SNX3 and FRABIN in 307 HEK293 cells overexpressing V5-tagged FRABIN. SNX3 was detected using an anti-SNX3 308 antibody after immunoprecipitation of V5-FRABIN using an anti-V5 antibody (see Figure 5). 309 The yellow rectangle represents the western blot part used in the corresponding Figure. (B-C) 310 Western blot pictures illustrating the expression of SNX3 and the related protein control Tubulin in $Fgd4^{SC-/-}$ and control cocultures conditions (see Figure 4). (D-E) Full western blot 311 312 pictures illustrating the expression of ERBIN, MAF1 (see Supplementary Figure 2), SNX3 (see Figure 5), and the related protein control GAPDH, in the sciatic nerves of $Fgd4^{SC-/-}$ and 313 314 control animals. The yellow rectangle represents the western blot part used in each corresponding Figure. (F-H) Western blot pictures illustrating the expression of P-ERBB2, 315 ERBB2 and the related protein control GAPDH in $Fgd4^{SC-/-}$ and control cocultures conditions 316 317 (see Figure 6). The yellow rectangle represents the western blot part used in each 318 corresponding Figure. (I-J) Western blot pictures illustrating the expression of cleaved and full-length Neuregulin 1-type III and the related protein control Tubulin in $Fgd4^{SC-/-}$ and 319 320 control cocultures conditions (see Supplementary Figure 1). The yellow rectangle represents 321 the western blot part used in each corresponding Figure. (K-L) Full western blot pictures 322 illustrating the expression of cleaved and full-length Neuregulin 1-type III and the related protein control GAPDH in the sciatic nerves of $Fgd4^{SC-/-}$ and control animals (see 323 324 Supplementary Figure 1). (M) Western blot pictures illustrating the expression of SNX3 in primary rat SCs infected with Lentivirus-SHcontrol, LV-SH-SNX3-1 or 2 (see 325 326 Supplementary Figure 3). The vellow rectangle represents the western blot part used in each 327 corresponding Figure.

328

329 Supplementary Table1. Results of Differential Gene Expression analysis for a selected

330 list of genes involved in pathways relevant to PNS myelination.

- 331 Genes with significant deregulation are highlighted in bold (padj value<0.05). A Fold Change
- 332 (FC) threshold of 1.5 and 0.5 has been chosen for up- and down-regulation respectively.

333 Genes with padj<0.05 and FC >1.5 or <0.5 are in highlighted in bold blue.

- 334 *FC*=*Fold Change; padj*=*padjusted value. Basemean represents the average of the normalized*
- 335 *count values, dividing by size factors, taken over all samples. Pvalue=P-value of the test for*
- 336 the gene or transcript. padj=Adjusted P-value for multiple testing for the gene or
- 337 transcript.NA=Not Assessed

338

339 **References**

Bernard-Marissal N, van Hameren G, Juneja M, et al. Altered interplay between
 endoplasmic reticulum and mitochondria in Charcot-Marie-Tooth type 2A neuropathy.
 Research Support, Non-U.S. Gov't. *Proc Natl Acad Sci U S A*. Feb 5 2019;116(6):2328-2337.
 doi:10.1073/pnas.1810932116

Arnaud E, Zenker J, de Preux Charles AS, et al. SH3TC2/KIAA1985 protein is
required for proper myelination and the integrity of the node of Ranvier in the peripheral
nervous system. *Proc Natl Acad Sci U S A*. Oct 13 2009;106(41):17528-33.
doi:10.1073/pnas.0905523106

Horn M, Baumann R, Pereira JA, et al. Myelin is dependent on the Charcot-Marie Tooth Type 4H disease culprit protein FRABIN/FGD4 in Schwann cells. Research Support,
 Non-U.S. Gov't. *Brain*. Dec 2012;135(Pt 12):3567-83. doi:10.1093/brain/aws275

4. Walhout AJ, Vidal M. High-throughput yeast two-hybrid assays for large-scale protein
 interaction mapping. *Methods*. Jul 2001;24(3):297-306. doi:10.1006/meth.2001.1190

353

Supplementary Figure 2

С

A. control

B. Fgd4^{SC-/-}

padj	pvalue	Ensembl ID	HGNC Gene symbol	baseMean	log2(FC)	FC
NRGI-EBB2-3 pathway						
0.43819	0.180994	ENSMUSG0000062991.7 Nrg1	Nrg I	118.948	-0.54732	0.68429
0.28716	0.088773	ENSMUSG00000032311.17 Nrg4	Nrg4	26.50165	-1.31886	0.400852
0.141851	0.030578	ENSMUSG0000062312.5JErbb2	Erbb2	3855.963	0.366331	1.28907
0.006345	0.000445	ENSMUSG0000018166.8 Erbb3	Erbb3	7345.251	0.487969	1.402469
0.472484	0.206585	ENSMUSG0000062209.15JErbb4	Erbb4	40.39399	-0.86434	0.549299
0.000342	1.18E-05	ENSMUSG0000021709.14 Erbin	Erbin	10892.24	0.72783	1.656146
0.086574	0.015001	ENSMUSG00000013663.7 Pten	Pten	12586.44	0.300629	1.231681
0.041169	0.005329	ENSMUSG0000022770.16 Dlg1	Dlg I	7211.615	0.456034	1.371765
0.124126	0.025167	ENSMUSG00000041417.15 Pik3r1	Pik3r1	12356	0.292736	1.224961
0.162919	0.037558	ENSMUSG0000034614.14 Pik3ip1	Pik3ip I	2432.501	-0.32628	0.797592
0.374588	0.138018	ENSMUSG0000028698.13 Pik3r3	Pik3r3	2474.129	0.228918	1.171955
0.435797	0.179052	ENSMUSG00000033628.15 Pik3c3	Pik3c3	1632.136	0.217502	1.162719
0.485684	0.216219	ENSMUSG0000032571.14 Pik3r4	Pik3r4	2075.567	0.17431	1.128425
0.711939	0.44546	ENSMUSG00000031834.15 Pik3r2	Pik3r2	3950.073	0.105829	1.076112
0.721107	0.456363	ENSMUSG0000032462.14 Pik3cb	Pik3cb	433.0512	0.217911	1.163048
0.996264	0.989948	ENSMUSG0000026447.16 Pik3c2b	Pik3c2b	276.4396	-0.00377	0.99739
NA	0.015473	ENSMUSG00000046207.14 Pik3r6	Pik3r6	5.920665	5.729172	53.04601
6.29E-06	9.37E-08	ENSMUSG0000030660.9 Pik3c2a	Pik3c2a	3826.552	0.977572	1.969149
1.34E-05	2.35E-07	ENSMUSG00000025017.9 Pik3ap1	Pik3ap l	461.9112	2.25651	4.778342
7.35E-05	1.79E-06	ENSMUSG0000020573.17 Pik3cg	Pik3cg	117.1629	3.574393	11.91241
0.009386	0.000736	ENSMUSG00000039936.18 Pik3cd	Pik3cd	674.6376	0.635754	1.553749
0.020476	0.002102	ENSMUSG0000020901.13 Pik3r5	Pik3r5	378.2187	1.176062	2.259592
0.03711	0.004613	ENSMUSG00000027665.13 Pik3ca	Pik3ca	5124.153	0.377022	1.298659
0.891783	0.741992	ENSMUSG0000001729.14 Akt1	Akt l	9988.497	0.039302	1.027616
0.96188	0.905924	ENSMUSG0000004056.15 Akt2	Akt2	7633.627	0.016005	1.011156
0.039456	0.005015	ENSMUSG00000019699.16 Akt3	Akt3	3501.403	0.387865	1.308455
0.580322	0.297197	ENSMUSG0000028161.17 Ppp3ca	Ррр3са	8459.122	0.12355	1.089412

0.791934	0.558113	ENSMUSG0000022092.10 Ppp3cc	Ррр3сс	681.3545	-0.11055	0.926235
0.876171	0.708198	ENSMUSG0000028310.2 Ppp3r2	Ppp3r2	13.4879	-0.40122	0.757217
0.070239	0.011147	ENSMUSG0000021816.11 Ppp3cb	Ррр3сь	4763.976	0.345142	1.270276
0.654851	0.372752	ENSMUSG0000059923.13 Grb2	Grb2	3646.282	0.114613	1.082685
0.749643	0.497543	ENSMUSG00000016933.17 Plcg1	Plcg I	4356.898	0.090765	1.064935
0.015597	0.001445	ENSMUSG00000034330.10 Plcg2	Plcg2	146.1442	1.944124	3.848041
0.30888	0.100147	ENSMUSG0000042626.13 Shc1	Shc I	9074.716	0.216848	1.162192
0.745429	0.492031	ENSMUSG0000020312.12 Shc2	Shc2	1858.432	0.103934	1.0747
0.553667	0.272862	ENSMUSG00000035109.14 Shc4	Shc4	977.9834	0.233873	1.175988
0.808209	0.583182	ENSMUSG00000021448.7 Shc3	Shc3	69.73623	0.336288	1.262504
0.899781	0.757653	ENSMUSG0000022322.8 Shcbp1	Shcbp I	367.8136	-0.09946	0.933385
0.020802	0.00215	ENSMUSG00000031714.9 Gab1	Gabl	10659.16	0.390408	1.310764
0.894073	0.746486	ENSMUSG0000001847.14 Rac1	Racl	16699.4	0.043314	1.030478
0.850086	0.658274	ENSMUSG0000006699.17 Cdc42	Cdc42	21798.67	-0.05597	0.961945
0.000462	1.73E-05	ENSMUSG0000024241.6 Sos1	Sosl	2598.422	0.628269	1.545709
0.955817	0.89115	ENSMUSG0000025225.14 Nfkb2	Nfkb2	1618.804	0.023708	1.016569
0.970434	0.924565	ENSMUSG0000030595.15 Nfkbib	Nfkbib	416.7245	0.022398	1.015646
0.340651	0.118227	ENSMUSG0000023947.7 Nfkbie	Nfkbie	489.3592	-0.3758	0.770676
0.343576	0.119708	ENSMUSG0000028163.17 Nfkb1	Nfkb I	3895.871	0.206704	1.154049
0.351699	0.12434	ENSMUSG0000035356.16 Nfkbiz	Nfkbiz	722.8807	0.386129	1.306882
0.624303	0.33987	ENSMUSG0000042419.8 Nfkbil1	Nfkbil I	329.5072	-0.25265	0.839354
0.631793	0.346968	ENSMUSG0000021025.8 Nfkbia	Nfkbia	1390.241	0.16228	1.119054
0.830571	0.621747	ENSMUSG0000036931.15 Nfkbid	Nfkbid	21.94257	0.447472	1.363649
0.916137	0.79385	ENSMUSG0000063065.13 Mapk3	Марк3	7246.235	0.041078	1.028883
0.372786	0.137078	ENSMUSG0000063358.15 Mapk1	Mapk I	7794.191	0.188154	1.139305
0.019785	0.001995	ENSMUSG00000021754.17 Map3k1	Map3kl	1746.545	0.56038	1.474657
0.546057	0.266104	ENSMUSG0000035027.18jMap2k2	Map2k2	2303.944	-0.20246	0.869068
0.566792	0.284138	ENSMUSG0000052837.6JJunb	Junb	1418.494	-0.18866	0.877423
0.835999	0.632831	ENSMUSG0000071076.6JJund	Jund	4019.524	-0.09702	0.934961

0.96498	0.910985	ENSMUSG0000052684.4 Jun	Jun	9504.418	0.013414	1.009341
0.243296	0.068482	ENSMUSG0000020516.15 Rps6kb1	Rps6kb1	2809.235	0.277378	1.21199
0.279578	0.085021	ENSMUSG0000028991.15 Mtor	Mtor	2649.592	0.235803	1.177562
0.247636	0.070246	ENSMUSG0000026812.16 Tsc1	Tscl	1431.294	0.297643	1.229135
0.611303	0.327886	ENSMUSG0000002496.9 Tsc2	Tsc2	3582.222	0.127857	1.092669
0.00173	8.68E-05	ENSMUSG00000042406.7 Atf4	Atf4	7319.911	-0.57001	0.673613
0.001872	9.61E-05	ENSMUSG0000005667.8 Mthfd2	Mthfd2	1109.636	-0.90232	0.535026
0.011004	0.000912	ENSMUSG00000031490.6 Eif4ebp1	Eif4ebp1	1254.967	-0.66088	0.632493
0.762307	0.515451	ENSMUSG0000028156.12 Eif4e	Eif4e	3268.458	0.08441	1.060254
8.91E-05	2.27E-06	ENSMUSG0000003847.16 Nfat5	Nfat5	6856.594	0.709679	1.63544
0.023569	0.002554	ENSMUSG00000031902.10 Nfatc3	Nfatc3	4338.228	0.461474	1.376948
0.253156	0.072699	ENSMUSG0000023411.11 Nfatc4	Nfatc4	1795.49	-0.29686	0.814023
Endocytic trafficking			-			
0.293808	0.092099	ENSMUSG0000019804.12 Snx3	Snx3	4878.23	-0.24198	0.845583
0.002403	0.00013	ENSMUSG00000071669.14 Snx29	Snx29	406.6079	0.919201	1.891068
0.128409	0.026519	ENSMUSG0000022500.14 Litaf	Litaf	4149.401	-0.37776	0.769633
0.296879	0.093789	ENSMUSG0000017831.7 Rab5a	Rab5a	5292.429	0.225821	1.169442
0.57979	0.296661	ENSMUSG0000027637.3 1110008F13Rik	Rab5if	1993.569	-0.17004	0.88882
0.642659	0.359081	ENSMUSG0000000711.3 Rab5b	Rab5b	6268.775	0.119281	1.086193
0.998431	0.995078	ENSMUSG0000019173.11 Rab5c	Rab5c	5851.344	-0.00077	0.999463
0.000378	1.35E-05	ENSMUSG00000040022.14 Rab11fip2	Rabl I fip2	1744.883	0.764147	1.698365
0.41397	0.163463	ENSMUSG0000017639.13 Rab11fip4	Rab I I fip4	277.7209	-0.57684	0.67043
0.886834	0.730381	ENSMUSG0000037098.17 Rab11fip3	Rab I I fip3	2391.225	0.048893	1.034471
0.901869	0.763519	ENSMUSG0000031488.14 Rab11fip1	Rab I I fip I	99.6553	0.146736	1.107062
0.997491	0.992665	ENSMUSG0000004771.12 Rab11a	Rablla	3994.743	-0.00141	0.999025
0.908187	0.780765	ENSMUSG00000077450.12 Rab11b	Rablib	5658.079	-0.03805	0.973969
0.941931	0.851932	ENSMUSG0000051343.11 Rab11fip5	Rab I I fiþ5	2767.754	-0.02548	0.982492
Myelin ger	nes					
0.898169	0.754411	ENSMUSG0000056569.10 Mpz	Mpz	21482.08	-0.22693	0.854452

0.144957	0.031642	ENSMUSG0000018217.12 Pmp22	Pmp22	16422.81	-0.49145	0.71131		
0.680595	0.403483	ENSMUSG00000041607.16 Mbp	Mbp	10741.13	-0.6543	0.635384		
0.552567	0.271691	ENSMUSG00000036634.15 Mag	Mag	382.9271	-1.24442	0.422078		
0.377353	0.139799	ENSMUSG00000047797.14 Gjb1	Gjb I	13.37527	1.909331	3.756348		
0.762179	0.515278	ENSMUSG00000037868.15 Egr2	Egr2	1131.125	0.163869	1.120288		
0.622139	0.337443	ENSMUSG0000033006.9 Sox10	Sox10	7814.012	0.17023	1.125238		
0.407887	0.159458	ENSMUSG0000090125.3 Pou3f1	Pou3fl	336.5669	0.577193	1.491943		
0.210427	0.054811	ENSMUSG00000095139.2 Pou3f2	Pou3f2	137.4265	-0.92968	0.524976		
0.704889	0.436666	ENSMUSG0000052468.7 Pmp2	Pmp2	838.2964	-0.32763	0.796846		
0.530544	0.253464	ENSMUSG00000053198.13 Prx	Prx	2837.423	-0.36805	0.774827		
Lipid meta	bolism and	cholesterol synthesis						
8.21E-05	2.06E-06	ENSMUSG00000055435.6 Maf	Maf	6049.204	0.657916	1.577801		
0.545362	0.265642	ENSMUSG0000020538.15 Srebf1	Srebfl	4318.675	0.190077	1.140825		
0.765008	0.519542	ENSMUSG0000022463.7 Srebf2	Srebf2	8066.606	0.082783	1.059059		
ECM/integ	ECM/integrins							
3.88E-05	8.31E-07	ENSMUSG00000027111.15 ltga6	ltga6	12394.81	0.982093	1.97533		
2.90E-09	1.70E-11	ENSMUSG00000039115.13 ltga9	ltga9	7156.76	0.905284	1.872913		
0.000474	1.79E-05	ENSMUSG00000030786.18 Itgam	ltgam	507.6395	4.037302	16.41909		
0.000492	1.88E-05	ENSMUSG00000032243.8 Itga	ltgal l	1407.479	-0.81339	0.569043		
0.001767	8.95E-05	ENSMUSG00000030830.18 Itgal	Itgal	100.9593	3.273645	9.670868		
0.003732	0.000229	ENSMUSG00000027087.11 ltgav	ltgav	9771.51	0.43798	1.354706		
0.012968	0.001124	ENSMUSG00000090210.7/ltga10	ltga l 0	640.1986	-0.73403	0.601221		
0.066913	0.010474	ENSMUSG0000027009.18 ltga4	ltga4	381.0249	0.63189	1.549593		
0.127424	0.026148	ENSMUSG0000026768.10 ltga8	ltga8	5094.602	0.53972	1.453691		
0.299509	0.095298	ENSMUSG0000000555.7 ltga5	ltga5	4157.454	-0.2217	0.857554		
0.354608	0.126038	ENSMUSG0000034664.13 ltga2b	ltga2b	173.4799	-0.57587	0.67088		
0.598459	0.315172	ENSMUSG0000001507.16 ltga3	ltga3	1174.635	0.180398	1.133197		
0.641351	0.357489	ENSMUSG00000042284.10 ltga1	ltga l	14742	0.142267	1.103638		
0.943815	0.857184	ENSMUSG00000015533.9 ltga2	ltga2	1249.488	0.03837	1.026953		

0.996754	0.991393	ENSMUSG0000025348.9 ltga7	ltga7	8358.219	-0.0015	0.99896	
9.88E-20	1.07E-22	ENSMUSG00000025321.14 Itgb8	ltgb8	19569.38	1.176076	2.259613	
7.32E-07	8.29E-09	ENSMUSG0000000290.13 ltgb2	ltgb2	228.669	3.307438	9.900066	
0.0031	0.000179	ENSMUSG00000020689.4 Itgb3	ltgb3	2213.103	0.581636	1.496545	
0.056372	0.008227	ENSMUSG00000022817.14 ltgb5	ltgb5	6858.318	-0.51889	0.697907	
0.447299	0.186731	ENSMUSG0000025809.15 ltgb1	ltgb l	64736.22	0.157445	1.11531	
0.491626	0.220459	ENSMUSG0000028549.17 Itgb3bp	ltgb3bp	298.5605	-0.35543	0.781634	
0.653405	0.371103	ENSMUSG0000020758.15 ltgb4	ltgb4	9286.396	0.160876	1.117965	
0.785845	0.549528	ENSMUSG0000062352.13 ltgb1bp1	ltgb l bp l	1146.963	-0.09858	0.93395	
0.853009	0.664619	ENSMUSG0000001281.9 ltgb7	ltgb7	300.1425	0.1541	1.112727	
0.856983	0.671372	ENSMUSG0000032925.16 ltgb1	ltgbl l	9900.586	-0.07517	0.949233	
0.747194	0.494004	ENSMUSG00000019899.16 Lama2	Lama2	12565.15	-0.09002	0.939512	
0.937544	0.843337	ENSMUSG0000002900.16 Lamb1	Lamb I	19794.36	-0.03484	0.97614	
0.400955	0.155105	ENSMUSG0000026478.14 Lamc1	Lamcl	32910.12	0.177825	1.131177	
0.918246	0.797716	ENSMUSG0000022607.14 Ptk2	Ptk2	4506.624	0.031356	1.021972	
GPCR sign	naling						
9.82E-05	2.54E-06	ENSMUSG0000063234.4 Gpr84	Gpr84	28.17772	7.978702	252.2485	
0.000138	3.93E-06	ENSMUSG00000040133.2 Gpr176	Gpr176	695.3308	-1.13642	0.454888	
0.010094	0.000815	ENSMUSG00000021886.7 Gpr65	Gpr65	42.05601	3.398591	10.54576	
0.022427	0.002378	ENSMUSG00000040836.15 Gpr161	Gpr161	1346.138	0.52714	1.441069	
0.041099	0.005306	ENSMUSG00000046961.7 Gpr156	Gpr156	131.4803	-1.51648	0.349539	
cAMP signaling							
2.56E-08	1.85E-10	ENSMUSG00000022376.7 Adcy8	Adcy8	131.2815	-2.55334	0.17036	
1.95E-05	3.72E-07	ENSMUSG0000005580.11 Adcy9	Adcy9	531.147	1.20252	2.301413	
0.00027	8.96E-06	ENSMUSG00000031659.13 Adcy7	Adcy7	8184.577	0.688989	1.612153	
0.007014	0.000502	ENSMUSG00000024256.6 Adcyap1	Adcyapl	418.6966	1.101277	2.145444	
0.009386	0.000735	ENSMUSG00000022840.8 Adcy5	Adcy5	2227.753	0.540373	1.454348	
9.38E-09	5.92E-11	ENSMUSG00000029778.12 Adcyap1r1	Adcyaplrl	1375.504	1.240339	2.36254	
Other signaling pathways							

0.003026	0.000172	ENSMUSG00000015340.10 Cybb	Суbb	413.9266	4.116552	17.34625
0.011383	0.000949	ENSMUSG00000042286.13 Stab1	Stabl	1920.658	2.782242	6.879205
0.005292	0.00035	ENSMUSG00000024401.14 Tnf	Tnf	26.17281	4.397772	21.07954
0.005004	0.000328	ENSMUSG00000045382.6 Cxcr4	Cxcr4	141.6688	-1.44541	0.367187

Supplementary Table1. Results of Differential Gene Expression analysis for a selected list of genes involved in pathways relevant to PNS myelination.

Genes with significant deregulation are highlighted in bold (padj value<0.05). A Fold Change (FC) threshold of 1.5 and 0.5 has been chosen for up- and down-regulation respectively. Genes with padj<0.05 and FC >1.5 or <0.5 are in highlighted in bold blue.

FC=Fold Change; padj=padjusted value. Basemean represents the average of the normalized count values, dividing by size factors, taken over all samples. Pvalue=P-value of the test for the gene or transcript. padj=Adjusted P-value for multiple testing for the gene or transcript.NA=Not Assessed