1	Supplementary Material
2	
3	
4	SNP-based heritability estimates of gout and its subtypes determined by genome-wide association studies of
5	clinically defined gout
6	
7	Yu Toyoda, Masahiro Nakatochi, Akiyoshi Nakayama, <i>et al.</i>
8 9	Correspondence to:
10	Hirotaka Matsuo (hmatsuo.ndmc@gmail.com)
11	
12	
13	Supplementary Methods
14	
15	Supplementary References
16	
17	Supplementary Tables
18	
19 20	Supplementary Figure
20	

21 Supplementary Methods

22

23 Ethics Statement

Data and sample collection from the cohorts participating in the present study were approved by the individual research ethics committees (National Defense Medical College and Nagoya University). All the studies were performed according to the guidelines of the Declaration of Helsinki. All the participants had provided their written informed consent. This research was carried out without patient involvement.

28

29 Gout patients as cases and non-gout subjects for controls

30 An overview of the characteristics of the study populations is provided in **Supplementary Table S6**. The analyzed 31 set consists of two groups of Japanese males: a clinically-defined gout group consisting of 3,053 patients and a non-32 gout (control) group consisting of 5,637 subjects, which are respectively the same cohort and a larger cohort than 33 that with 4,554 subjects derived from our previous study, respectively [1]. In brief, patients with known clinical 34 parameters were recruited from Japanese male outpatients at gout clinics as previously described [1]; all the patients 35 were clinically diagnosed with primary gout according to the criteria established by the American College of 36 Rheumatology [2]. Of the 3,053 gout cases, urinary data were available for 2,137 patients; based on clinical 37 parameters, their subtypes of gout (Fig. 1) were diagnosed as previously described [1, 3], which resulted in dividing 38 all gout cases into four subtypes: the renal underexcretion (RUE) type (654 cases), the renal overload (ROL) type 39 (486 cases), the combined (RUE + ROL) type (905 cases), and the normal type (92 cases) (Supplementary Table 40 **S7**). In addition to the previously assigned 4,554 subjects as normouricemia controls (serum urate \leq 7 mg/dL; without 41 past histories of gout) [1] who had taken part in the Japan Multi-Institutional Collaborative Cohort Study (J-MICC 42 Study) [4, 5], in this study we enrolled 1,083 hyperuricemia subjects without gout as asymptomatic hyperuricemia 43 controls (serum urate > 7 mg/dL; without gout), who were excluded in the previous study [1], to extend the range 44 covered for serum urate concentrations in controls. With these subjects newly assigned in this study, we conducted 45 single nucleotide polymorphism (SNP) genotyping for a genome-wide association study (GWAS). Meta-analyses 46 using the obtained and previous data were then carried out as described below.

47

48 Genotyping, quality control, and genotype imputation

Information regarding study specific genotyping, imputation, and analysis tools is provided in Supplementary Table S8. Genotyping, quality control, and imputation for the Japonica Array data set that were obtained using a Japonica SNP Array [6] or the Illumina Array data set, obtained using HumanOmniExpress or HumanOmniExpress-Exome BeadChip Arrays (Illumina, San Diego, CA, USA) have been described previously [1].

Post-imputation quality control was conducted as reported previously [7], with minor modifications; SNPs with an imputation quality of $r^2 < 0.3$ or a minor allele frequency (MAF) of < 1% or 0.1% were excluded. To identify studies with inflated GWAS significance, which can result from population stratification, we computed the genomic control lambda [8] and the intercept of LD score regression [9]. We calculated the genomic control lambda using R statistical software (ver. 3.6) (http://www.r-project.org/).

After passing post-imputation quality control, with the Japonica Array data set, 1,028 case subjects and 1,125 control subjects as well as 8,581,683 (MAF \ge 1%) or 10,779,400 (MAF \ge 0.1%) SNPs remained for the subsequent GWAS analysis; with the Illumina Array data set, 2,025 case subjects and 4,512 control subjects as well as 8,359,615 (MAF \ge 1%) or 10,473,049 (MAF \ge 0.1%) SNPs remained for the subsequent GWAS analysis.

62

63 Association analysis for SNPs and clinically-defined gout including its subtypes

The association of SNPs with clinically-defined gout including its subtypes was assessed using logistic regression analysis (generalized linear model), as described previously [1] with minor modifications. In brief, the dependent variable was gout label (case = 1, control = 0), and the independent variables included imputed genotypes of each SNP and covariates—the first ten principal component scores. The effect sizes and standard errors estimated in logistic regression analysis were used in the subsequent meta-analysis. The association analysis was performed using the Efficient and Parallelizable Association Container Toolbox (https://genome.sph.umich.edu/wiki/EPACTS). 70

71 Meta-analyses

72 Meta-analyses were performed using a total of 3,053 cases (for all gout; numbers of cases for each subtype are

- described above) and 5,637 controls from the two data set as described previously [1]. In brief, the association results for each SNP across the studies were combined with METAL software [10] using the fixed-effects inverse-varianceweighted method. Heterogeneity of effect sizes was assessed via the l^2 index. The genome-wide significance level α was set to a *P* value of $< 5 \times 10^{-8}$. As an overview of the results, Manhattan plots of the genome-wide meta-analyses for genetic loci are provided in **Fig. 1B–E**.
- 78

79 Estimation of the SNP-based heritability of gout

Based on the obtained results of our Japanese meta-analyses, SNP-based heritability of gout was estimated using LD score regression [9] as described previously [7]. In brief, the heritability estimates were calculated from the summary statistics of 1,029,593 SNPs for all gout, which have MAF \geq 1% and were not palindromic SNPs. With gout subtypes, three parts of the summary statistics of 1,029,179 (for the RUE type), 1,029,019 (for the ROL type), and 1,029,173 (for the combined type) SNPs were used, respectively. In a similar manner, single nucleotide variation (SNV)-based heritability estimates were calculated from 1,058,455 (for all gout), 1,058,284 (for RUE type), 1,058,247 (for ROL type), and 1,058,367 (for combined type) SNVs with MAF \geq 0.1%.

87

88 Partitioning heritability

To partition heritability from summary statistics into multiple categories derived from functional annotations for certain parts of a genome, stratified LD score regression was conducted as described previously [11, 12]. In this study, we employed the full baseline model with 53 categories [11] and examined in which functional categories the heritability of gout is enriched. Significant heritability enrichments were defined when the false discovery rate (FDR) was below 0.1, as calculated using the Benjamini and Hochberg method [13].

95 Supplementary References

- 971Nakayama A, Nakatochi M, Kawamura Y, et al. Subtype-specific gout susceptibility loci and enrichment of98selection pressure on ABCG2 and ALDH2 identified by subtype genome-wide meta-analyses of clinically defined99gout patients. Ann Rheum Dis 2020;79(5):657-65.
- Wallace SL, Robinson H, Masi AT, Decker JL, McCarty DJ, Yu TF. Preliminary criteria for the classification of
 the acute arthritis of primary gout. Arthritis Rheum 1977;20(3):895-900.
- Ichida K, Matsuo H, Takada T, *et al.* Decreased extra-renal urate excretion is a common cause of hyperuricemia.
 Nat Commun 2012;3:764.
- 1044Asai Y, Naito M, Suzuki M, et al. Baseline data of Shizuoka area in the Japan Multi-Institutional Collaborative105Cohort Study (J-MICC Study). Nagoya J Med Sci 2009;71(3-4):137-44.
- 1065Hamajima N, J-Micc Study Group. The Japan Multi-Institutional Collaborative Cohort Study (J-MICC Study) to107detect gene-environment interactions for cancer. Asian Pac J Cancer Prev 2007;8(2):317-23.
- 1086Kawai Y, Mimori T, Kojima K, *et al.* Japonica array: improved genotype imputation by designing a population-109specific SNP array with 1070 Japanese individuals. J Hum Genet 2015;60(10):581-7.
- 1107Nakatochi M, Kanai M, Nakayama A, *et al.* Genome-wide meta-analysis identifies multiple novel loci associated111with serum uric acid levels in Japanese individuals. Commun Biol 2019;2:115.
- 112 8 Devlin B, Roeder K. Genomic control for association studies. Biometrics 1999;55(4):997-1004.
- 1139Bulik-Sullivan BK, Loh PR, Finucane HK, et al. LD Score regression distinguishes confounding from114polygenicity in genome-wide association studies. Nat Genet 2015;47(3):291-5.
- 10 Willer CJ, Li Y, Abecasis GR. METAL: fast and efficient meta-analysis of genomewide association scans.
 Bioinformatics 2010;26(17):2190-1.
- 11711Finucane HK, Bulik-Sullivan B, Gusev A, *et al.* Partitioning heritability by functional annotation using genome-118wide association summary statistics. Nat Genet 2015;47(11):1228-35.
- 11912Kanai M, Akiyama M, Takahashi A, *et al.* Genetic analysis of quantitative traits in the Japanese population links120cell types to complex human diseases. Nat Genet 2018;50(3):390-400.
- 12113Benjamini Y, Hochberg Y. Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple122Testing. J R Stat Soc Ser B Methodol 1995;57(1):289-300.
- 12314Matsuo H, Yamamoto K, Nakaoka H, et al. Genome-wide association study of clinically defined gout identifies124multiple risk loci and its association with clinical subtypes. Ann Rheum Dis 2016;75(4):652-9.
- 125

126 Supplementary Table S1. Estimation of the SNP-based heritability of gout and its subtypes using clinically-

127

1	0	O
	1	×
	-	v

T	D*	vs. no	n-gout	vs. normouricemia			
I rait	Prevalence	h^2 g	SE	$h^2_{ m g}$	SE		
All gout	0.0106	0.279	0.085	0.333	0.098		
RUE type	0.0032	0.332	0.118	0.342	0.120		
ROL type	0.0024	0.355	0.135	0.397	0.148		
Combined type	0.0045	0.309	0.099	0.368	0.110		

defined gout patients in Japanese populations

*Data are derived from previous studies [1, 14]. SNPs with minor allele frequency $\ge 1\%$ were used for calculation. SNP, single nucleotide polymorphism; RUE, renal underexcretion; ROL, renal overload; h^2_g , heritability; SE, standard error of h^2 .

132 133

135

134 Supplementary Table S2. Genetic correlations based on SNPs among major subtypes of gout

Trait 1	Trait 2	N	r _g	SE	Р
Combined type	RUE type	1,039,419	0.683	0.193	$0.4 imes 10^{-4}$
Combined type	ROL type	1,039,330	0.623	0.204	$2.2 imes 10^{-4}$
ROL type	RUE type	1,039,423	0.737	0.189	$9.9 imes 10^{-5}$

RUE, renal underexcretion; ROL, renal overload; r_g , genetic correlation coefficient; SE, standard error of r_g .

136 137 138

Supplementary Table S3. Statistically significant heritability enrichments for clinically-defined gout (all gout)

Categories*	Prop. SNVs	Prop. h ² g	Enrichment	Enrichment <i>P</i> -value	Q-value
Enhancer + 500bp	0.089	0.547 (0.133)	6.115 (1.486)	1.12×10^{-3}	0.019
Repressed + 500bp	0.720	0.279 (0.120)	0.387 (0.166)	$0.75 imes 10^{-3}$	0.019
Super Enhancer + 500bp	0.170	0.440 (0.085)	2.581 (0.500)	0.66×10^{-3}	0.019
H3K4me1	0.423	1.126 (0.294)	2.663 (0.695)	6.19×10^{-3}	0.081

Each value for standard error is noted in brackets. *Functional categories are from Finucane *et al.* [11]; categories with false discovery rate (Q-value) < 0.1 were defined as statistically significant in this analysis.

143 H3k4me1, monomethylation of histone H3 at lysine 4; Prop., proportion; SNVs, single nucleotide variations with 144 minor allele frequency $\geq 0.1\%$; h^2_{g} , heritability.

Supplementary Table S4. Estimation of the SNV-based heritability of gout and its subtypes using clinically defined gout patients in Japanese populations

149

Tueit	Duovalon oo*	vs. no	n-gout	vs. normouricemia		
Irall	Prevalence	h^2 g	SE	h^2 g	SE	
All gout	0.0106	0.294	0.083	0.346	0.096	
RUE type	0.0032	0.349	0.118	0.362	0.120	
ROL type	0.0024	0.379	0.131	0.428	0.144	
Combined type	0.0045	0.334	0.098	0.395	0.110	

^{*}Data are derived from previous studies [1, 14]. SNVs with minor allele frequency $\geq 0.1\%$ were used for calculation.

151 SNV, single nucleotide variation; RUE, renal underexcretion; ROL, renal overload; h_{g}^2 , heritability; SE, standard 152 error of h_{g}^2 .

¹⁰¹

¹⁴⁵

¹⁴⁶

153 Supplementary Table S5. Significant loci identified in the present genome-wide meta-analysis of SNPs with minor allele frequency $\geq 1\%$

154

SNP*	Locus	Position [†]	Gene	Al	leles		1	llumina arrav			J	aponica arrav			Meta-analysi	s	
						R	AF			R	AF					-	
				Risk	Non-risk	Case	Ctrl	OR (95%CI)	P value	Case	Ctrl	OR (95%CI)	P value	OR (95%CI)	P value	I^2	HetP
All gout patients rs6547692	2p23.3	27734972	GCKR	G	А	0.623	0.547	1.30	7.10×10 ⁻¹¹	0.608	0.563	1.18	1.07×10^{-2}	1.27	5.55×10 ⁻¹²	34.3	0.22
rs3775948	4p16.1	9995182	SLC2A9	С	G	0.680	0.587	(1.20-1.41) 1.55 (1.42, 1.68)	1.16×10 ⁻²⁴	0.673	0.565	(1.04-1.35) 1.61 (1.41, 1.84)	1.47×10 ⁻¹²	(1.18 - 1.56) 1.56 (1.46 - 1.68)	1.44×10 ⁻³⁵	0	0.62
rs4148155	4q22.1	89054667	ABCG2	G	А	0.454	0.289	(1.42-1.08) 2.04 (1.87-2.21)	2.80×10 ⁻⁶³	0.462	0.281	(1.41-1.04) 2.17 (1.90-2.48)	9.86×10 ⁻³⁰	(1.40-1.08) 2.07 (1.93-2.23)	4.49×10 ⁻⁹¹	0	0.43
rs1184804	6p22.2	25868226	SLC17A3	С	Т	0.874	0.829	$(1.07 \ 2.021)$ 1.31 (1.16-1.48)	2.00×10-5	0.868	0.832	1.45 (1.21-1.75)	7.28×10 ⁻⁵	(1.95 - 2.25) 1.35 (1.22 - 1.49)	9.00×10-9	0	0.35
rs3129473	10q23.2	88922846	FAM35A	G	С	0.424	0.367	(1.25 - 1.49) (1.25 - 1.49)	9.21×10 ⁻¹³	0.427	0.379	1.29 (1.12–1.48)	2.94×10-4	(1.25 - 1.45)	1.48×10 ⁻¹⁵	0	0.50
rs145954970	11q13.1	64273830	LOC100996455-SLC22A11	С	G	0.995	0.976	7.93 (4.46–14.08)	1.71×10 ⁻¹²	0.997	0.971	23.47 (7.25–76.01)	1.41×10 ⁻⁷	9.77 (5.83–16.38)	5.05×10 ⁻¹⁸	62.2	0.10
rs671	12q24.12	112241766	ALDH2	G	А	0.823	0.737	1.80 (1.63–1.99)	5.64×10 ⁻³²	0.821	0.687	2.00 (1.73–2.32)	4.96×10 ⁻²⁰	1.86 (1.72–2.02)	4.97×10 ⁻⁵⁰	23.7	0.25
rs76499759	13q22.1	73568511	PIBF1	А	G	0.219	0.181	1.29 (1.17–1.42)	2.34×10-7	0.212	0.183	1.21 (1.04–1.41)	1.61×10 ⁻²	1.27 (1.17–1.38)	1.51×10 ⁻⁸	0	0.49
rs7224656	17q23.2	59434815	BCAS3	А	Т	0.447	0.404	1.19 (1.10–1.30)	3.47×10 ⁻⁵	0.462	0.409	1.28 (1.13–1.47)	1.94×10-4	1.22 (1.14–1.31)	3.95×10-8	0	0.35
RUE type gout p	atients																
rs3775948	4p16.1	9995182	SLC2A9	С	G	0.705	0.587	1.75 (1.50–2.04)	1.47×10 ⁻¹²	0.717	0.565	1.98 (1.56–2.50)	1.45×10 ⁻⁸	1.81 (1.59–2.06)	1.79×10 ⁻¹⁹	0	0.39
rs4148155	4q22.1	89054667	ABCG2	G	А	0.388	0.289	1.56 (1.35–1.81)	2.47×10-9	0.382	0.281	1.57 (1.26–1.95)	6.82×10 ⁻⁵	1.57 (1.38–1.77)	7.46×10 ⁻¹³	0	0.99
rs9420434	10q23.2	88843209	GLUD1(SHLD2)	С	Т	0.316	0.253	1.45 (1.25–1.70)	1.79×10 ⁻⁶	0.342	0.247	1.61 (1.28–2.03)	4.60×10-5	1.50 (1.32–1.71)	4.52×10 ⁻¹⁰	0	0.46
rs76741582	11q13.1	64247850	LOC100996455–SLC22A11	Т	С	0.028	0.010	3.05 (1.89–4.94)	5.49×10 ⁻⁶	0.036	0.008	5.23 (2.51–10.90)	9.83×10-6	3.59 (2.40–5.37)	4.81×10 ⁻¹⁰	31.1	0.23
rs4646776	12q24.12	112230019	ALDH2	G	С	0.819	0.734	1.79 (1.50–2.15)	3.28×10 ⁻¹⁰	0.796	0.683	1.78 (1.38–2.32)	1.33×10-5	1.79 (1.54–2.08)	2.07×10 ⁻¹⁴	0	0.97
ROL type gout po rs4148155	<i>atients</i> 4q22.1	89054667	ABCG2	G	А	0.515	0.289	2.67	9.99×10 ⁻³²	0.493	0.281	2.34	1.40×10 ⁻¹⁰	2.57	1.43×10 ⁻⁴⁰	0	0.40
rs12231737	12q24.13	112574616	TRAFD1(ALDH2)	С	Т	0.812	0.757	(2.26-3.14) 1.88 (1.46-2.42)	1.11×10-6	0.810	0.668	(1.81-3.03) 2.10 (1.52-2.01)	7.95×10-6	(2.24-2.95) 1.96 (1.61-2.40)	4.46×10 ⁻¹¹	0	0.60
Combined type a	out natients							(1.40–2.43)				(1.52–2.91)		(1.61–2.40)			
rs1260326	2p23.3	27730940	GCKR	Т	С	0.647	0.550	1.42	1.95×10 ⁻⁷	0.615	0.564	1.23	2.65×10 ⁻²	1.35	3.58×10 ⁻⁸	39.1	0.20
rs3775948	4p16.1	9995182	SLC2A9	С	G	0.690	0.587	(1.23 - 1.02) 1.61 (1.40 - 1.85)	2.14×10 ⁻¹¹	0.672	0.565	(1.02-1.47) 1.57 (1.3-1.88)	2.16×10-6	(1.21 - 1.50) 1.59 (1.42 - 1.78)	2.41×10 ⁻¹⁶	0	0.83
rs2231142	4q22.1	89052323	ABCG2	Т	G	0.474	0.289	2.27	1.06×10 ⁻³²	0.474	0.281	(1.5 - 1.66) 2.30 (1.91 - 2.76)	5.37×10 ⁻¹⁹	(1.42 - 1.76) 2.28 (2.04 - 2.54)	5.20×10 ⁻⁵⁰	0	0.90
rs3129399	10q23.2	88951662	FAM35A	G	А	0.458	0.377	(1.56 - 2.55) (1.56 - 1.80)	1.07×10-9	0.438	0.399	(1.01 - 2.00) (1.30 - 1.61)	1.37×10^{-2}	1.47 (1.31–1.66)	1.33×10 ⁻¹⁰	49.8	0.16
rs56093838	11q13.1	64383327	NRXN2	С	Т	0.489	0.428	1.36	1.27×10-5	0.493	0.409	1.48 (1.22-1.78)	4.88×10-5	1.40 (1.25–1.56)	3.28×10-9	0	0.46
rs116873087	12q24.13	112511913	NAA25(ALDH2)	G	С	0.828	0.759	2.12 (1.72–2.60)	1.12×10 ⁻¹²	0.845	0.686	2.50 (1.97–3.17)	4.19×10 ⁻¹⁴	2.27 (1.95–2.66)	5.31×10 ⁻²⁵	4.9	0.31

55 *dbSNP rs number, †SNP positions are based on NCBI human genome reference sequence Build hg19. SNP, single nucleotide polymorphism; RAF, risk allele frequency; Ctrl, control; OR, odds ratio; CI, confidence interval; HetP, heterogeneity P

 155
 *dbSNP rs number, [†]SNP positions are based on NCBI H

 156
 value; RUE, renal underexcretion; ROL, renal overload.

157 Supplementary Table S6. Characteristics of Japanese males without medication for urate-lowering therapy

158 who took part in the study

159

	Japonica arr	ay platform	Illumina arr	ay platform	Total		
	Case	Control	Case	Control	Case	Control	
Number	1,028	1,125	2,025	4,512	3,053	5,637	
Age (year)	44.6 ± 11.4	53.9 ± 9.2	48.0 ± 11.8	55.3 ± 9.3	46.9 ± 11.8	55.0 ± 9.3	
Body-mass index (kg/m ²)	25.2 ± 3.6	23.1 ± 2.9	25.0 ± 3.5	23.8 ± 3.1	25.0 ± 3.6	23.7 ± 3.1	

160 Data are expressed as means \pm SD; case data are from Nakayama *et al.* [1], under the terms of the Creative Commons

161 Attribution 4.0 international License (https://creativecommons.org/licenses/by/4.0/.).

162 163

10

164 Supplementary Table S7. Clinical parameters of subtype gout cases

165

		Number	Age (year)	BMI (kg/m ²)	SUA (mg/dL)	FE _{UA} (%)	UUE (mg/h/1.73m ²)
Japonica array platform	RUE type	211	47.7 ± 10.8	24.9 ± 3.4	8.36 ± 1.28	3.78 ± 0.82	20.6 ± 3.6
	ROL type	137	48.7 ± 11.2	24.3 ± 2.9	8.17 ± 1.18	6.58 ± 0.96	37.6 ± 8.6
	Combined type	349	43.6 ± 10.0	25.4 ± 3.7	8.75 ± 1.22	4.34 ± 0.69	31.9 ± 7.3
Illuimina	RUE type	443	47.6 ± 11.0	25.0 ± 3.8	8.38 ± 1.15	3.78 ± 0.82	20.2 ± 3.5
array	ROL type	349	50.0 ± 10.9	24.5 ± 3.0	8.20 ± 1.14	6.89 ± 1.62	36.4 ± 9.2
platform	Combined type	556	44.4 ± 9.9	25.9 ± 3.8	8.76 ± 1.24	4.41 ± 0.72	31.6 ± 6.5
Total	RUE type	654	47.6 ± 10.9	24.9 ± 3.6	8.37 ± 1.19	3.78 ± 0.82	20.3 ± 3.5
	ROL type	486	49.7 ± 11.0	24.4 ± 2.9	8.19 ± 1.15	6.81 ± 1.47	36.7 ± 9.0
	Combined type	905	44.1 ± 9.9	25.6 ± 3.7	8.75 ± 1.22	4.39 ± 0.71	31.7 ± 6.8

166 Data are expressed as means \pm SD; some case data are from Nakayama *et al.* [1], under the terms of the Creative 167 Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/.).

168 Normal type, which is characterized by UUE $\leq 25 \text{ mg/h/1.73 m}^2$ and FE_{UA} $\geq 5.5\%$, was excluded in this study due to 169 the small number of patients (total 92 cases). BMI, body-mass index; SUA, serum uric acid; FE_{UA}, fractional

170 excretion of uric acid; UUE, urinary urate excretion; RUE, renal underexcretion; ROL, renal overload.

172 Supplementary Table S8. Genotyping, imputation, and association testing

173

Study name	Genotyping	Genotype	Pre-imputati	on QC				#SNPs for	Imputation	Imputation	Post-impu	tation QC	Association	Study specific
	platform	calling	Sample call	Other criteria	SNP call	SNP MAF	SNP HWE	imputation	reference	software	SNP r ²	SNP MAF	study	covariates for
		algorithm	rate cutoff		rate cutoff	cutoff	P cutoff				cutoff	cutoff	software	association study
Japonica array	Japonica SNP	Genome	0.98	Sex mismatches; related	0.98	0.01	1×10^{-6}	603,009	1000G	SHAPEIT2	0.3	0.001	EPACTS	Top 10 principal
platform	Array	Studio		samples (IBD 0.1875);					phase3v5;	minimac3		or		components
				samples not mapping to JPT					individuals of			0.01		
				(1000 genomes phase 3)					all ancestries					
Illumina array	Illumina	Genome	0.98	Sex mismatches; related	0.98	0.01	1×10^{-6}	553,321	1000G	SHAPEIT2	0.3	0.001	EPACTS	Top 10 principal
platform	HumanOmni	Studio		samples (IBD 0.1875);					phase3v5;	minimac3		or		components
	Express or			samples not mapping to JPT					individuals of			0.01		
	HumanOmni			(1000 genomes phase 3)					all ancestries					
	ExpressExome													

174 QC, quality control; MAF, minor allele frequency; HWE, Hardy-Weinberg equilibrium; #SNPs, the number of autosomal single nucleotide polymorphisms.

194 Supplementary Figure S1. Manhattan plots of genome-wide meta-analyses of gout using single nucleotide 195 variations (SNVs) with minor allele frequency (MAF) $\geq 0.1\%$

196 For all gout, (A); RUE type, (B); combined (RUE +ROL) type, (C); ROL type, (D). The horizontal axis represents

197 chromosomal positions and the vertical axis indicates the $-\log_{10}(P \text{ value})$ for the assessment of the association.

198 Horizontal lines represent the genome-wide significance threshold ($\alpha = 5 \times 10^{-8}$). While all data shown in **Fig. 1** were 199 derived from SNPs with MAF $\ge 1\%$, all data in this **Supplementary Figure S1** were from SNVs with MAF $\ge 0.1\%$.