Anti-inflammatory Activity of Tanshinone-related Diterpenes from

Perovskia artemisioides Roots

Zahra Sadeghi,^{†,‡,§} Antonietta Cerulli,^{‡,§} Stefania Marzocco,[‡] Mahdi Moridi Farimani,^{†,*} Milena Masullo[‡], and Sonia Piacente^{‡,*}

[†]Department of Phytochemistry, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Evin, Tehran, Iran

[‡]Dipartimento di Farmacia, Università degli Studi di Salerno, via Giovanni Paolo II n. 132, 84084

Fisciano (SA), Italy

*Corresponding authors:

Tel: +98 21 29904043. Fax: +98 21 22431783. E-mail addres: m_moridi@sbu.ac.ir

Tel.: +39 089969763; Fax:+39 089969602. E-mail address: piacente@unisa.it

Supplementary materials

- **Table S1.** Retention Times (R_t), $[M+H]^+$, $[M+Na]^+$, Molecular Formula, Δ ppm and MS/MS Values
- of Compounds 1-25 of *n*-Hexane Extract of *P. artemisioides* roots by LC-ESI/LTQOrbitrap/MS.
- Figure S1. ESI/LTQOrbitrap spectrum of compound 2, in positive ion mode.
- Figure S2. ¹H NMR Spectrum (600 MHz, CD₃OD) of compound 2.
- Figure S3. ¹³C Spectrum (150 MHz, CD₃OD) of compound 2.
- Figure S4. HSQC Spectrum (CD₃OD) of compound 2.
- Figure S5. HMBC Spectrum (CD₃OD) of compound 2.
- Figure S6. COSY Spectrum (CD₃OD) of compound 2.
- Figure S7. ROESY Spectrum (CD₃OD) of compound 2.
- Figure S8. ESI/LTQOrbitrap spectrum of compound 9, in positive ion mode.
- Figure S9.¹H NMR Spectrum (600 MHz, CD₃OD) of compound 9.
- Figure S10. ¹³C Spectrum (150 MHz, CD₃OD) of compound 9.
- Figure S11. HSQC Spectrum (CD₃OD) of compound 9.
- Figure S12. HMBC Spectrum (CD₃OD) of compound 9.
- Figure S13. COSY Spectrum (CD₃OD) of compound 9.
- Figure S14. ROESY Spectrum (CD₃OD) of compound 9.
- Figure S15. ESI/LTQOrbitrap spectrum of compound 10, in positive ion mode.
- Figure S16.¹H NMR Spectrum (600 MHz, CD₃OD) of compound 10.
- Figure S17. ¹³C Spectrum (150 MHz, CD₃OD) of compound 10.
- Figure S18. HSQC Spectrum (CD₃OD) of compound 10.
- Figure S19. HMBC Spectrum (CD₃OD) of compound 10.
- Figure S20. COSY Spectrum (CD₃OD) of compound 10.
- Figure S22. ESI/LTQOrbitrap spectrum of compound 11, in negative ion mode.
- Figure S23. ¹H NMR Spectrum (600 MHz, CD₃OD) of compound 11.
- Figure S24. ¹³C Spectrum (150 MHz, CD₃OD) of compound 11.

- Figure S25. HSQC Spectrum (CD₃OD) of compound 11.
- Figure S26. HMBC Spectrum (CD₃OD) of compound 11.
- Figure S27. COSY Spectrum (CD₃OD) of compound 11.
- Figure S28. ROESY Spectrum (CD₃OD) of compound 11.
- Figure S29. ESI/LTQOrbitrap spectrum of compound 16, in negative ion mode.
- Figure S30. ¹H NMR Spectrum (600 MHz, CD₃OD) of compound 16.
- Figure S31. ¹³C Spectrum (150 MHz, CD₃OD) of compound 16.
- Figure S32. HSQC Spectrum (CD₃OD) of compound 16.
- Figure S33. HMBC Spectrum (CD₃OD) of compound 16.
- Figure S34. COSY Spectrum (CD₃OD) of compound 16.
- Figure S36. ¹H NMR Spectrum (600 MHz, CD₃OD) of compound 20.
- Figure S37. ¹H NMR Spectrum (600 MHz, CD₃OD) of compound 20.
- Figure S38. ¹³C Spectrum (150 MHz, CD₃OD) of compound 20.
- Figure S39. HSQC Spectrum (CD₃OD) of compound 20.
- Figure S40. HMBC Spectrum (CD₃OD) of compound 20.
- Figure S41. COSY Spectrum (CD₃OD) of compound 20.

Table S1. Retention Times (R_t), $[M+H]^+$, $[M+Na]^+$, Molecular Formula, Δ ppm, and MS/MS Values of Compounds 1-25 of *n*-Hexane Extract of *P*.

artemisioides roots by LC-ESI/LTQOrbitrap/MS.

	R _t	[M+H]+	Mol Formula	Дррт	MS/MS	Name
1	3.52	327.1218	C ₁₉ H ₁₈ O ₅	-2.69	309, 283	castanol A
2	5.02	313.1423	$C_{19}H_{20}O_4$	-3.72	269, 294, 252	1β-hydroxy-isocryptotanshinone
3	7.73	311.1270	$C_{19}H_{18}O_4$	-2.40	265, 283, 293	1-oxocryptotanshinone
4	10.41	329.1374	$C_{19}H_{20}O_5$	-2.92	314, 267	15 hydroxy-anhydride-16R cryptotanshinone
5	10.74	311.1269	$C_{19}H_{18}O_4$	-2.59	265, 281, 293	1α-hydroxytanshinone
6	12.86	309.1112	$C_{19}H_{16}O_4$	-2.90	281, 263, 235	1-oxotanshinone IIA
7	13.25	317.2104	$C_{20}H_{28}O_3$	-2.21	299, 273, 213	1,14-dihydroxy-8,11,13-abietatrien-7-one
8	14.73	315.1579	$C_{19}H_{22}O_4$	-3.57	297, 241	miltiorin D
9	15.03	331.1534	$C_{19}H_{22}O_5$	-1.96		perovskin A
10	15.51	345.1685	$C_{20}H_{24}O_5$	-3.45	327, 313, 179, 123	perovskin B
11	16.00	287.1332	$C_{18}H_{22}O_3$	-0.96	269, 217	perovskin C
12	16.39	241.1584	C17H20O			12-hydroxy-16,17-bis-nor-simonellite
13	16.67	317.2102	$C_{20}H_{29}O_3$	-2.78	299, 271, 199	demethylsalvican-11,12-dione
14	16.69	273.1844	$C_{18}H_{24}O_2$	-1.89		przewalskin
15	17.52	313.1430	$C_{19}H_{20}O_4$	-1.26	295, 267, 243	1β-hydroxycryptotanshinone
16	18.07	271.1684	$C_{18}H_{22}O_2$	-3.05	229, 201	perovskin D
17	19.32	303.1945	$C_{20}H_{30}O_2$		203, 189, 161	pisiferol
18	20.02	297.1481	$C_{19}H_{20}O_3$	-1.42	279, 251	cryptotanshinone
19	20.62	301.2154	$C_{20} H_{28}O_2$	-2.71	259, 163, 173	11-hydroxyabieta-8,11,13-trien-7-one
20	22.11	329.1739	$C_{20}H_{24}O_4$	-2.66	315, 297, 241	12-O-methyl-miltiorin D
21	23.26	287.1633	$C_{18}H_{22}O_3$	-3.033	269	epicryptoacetalide
22	23.34	315.1945	$C_{20}H_{27}O_3$	-2.92	205, 179	montbretrol
23	24.97	317.2101	$C_{20}H_{28}O_3$	-3.19	299, 27	6-deoxy-salviphlomone
24	25.25	299.1630	$C_{19}H_{23}O_3$	-3.71		miltiodiol
25	26.19	269.1528	$C_{18}H_{21}O_2$	-0.78		salviolone

Figure S1. ESI/LTQOrbitrap spectrum of compound 2, in positive ion mode.

Figure S2. ¹H NMR Spectrum (600 MHz, CD₃OD) of compound 2.

Figure S3. ¹³C Spectrum (150 MHz, CD₃OD) of compound 2.

Figure S4. HSQC Spectrum (CD₃OD) of compound 2.

Figure S5. HMBC Spectrum (CD₃OD) of compound 2.

Figure S6. COSY Spectrum (CD₃OD) of compound 2.

Figure S7. ROESY Spectrum (CD₃OD) of compound 2.

Figure S8. ESI/LTQOrbitrap spectrum of compound 9, in positive ion mode.

Figure S10. ¹³C Spectrum (150 MHz, CD₃OD) of compound 9.

Figure S11. HSQC Spectrum (CD₃OD) of compound 9.

Figure S12. HMBC Spectrum (CD₃OD) of compound 9.

Figure S13. COSY Spectrum (CD₃OD) of compound 9.

Figure S14. ROESY Spectrum (CD₃OD) of compound 9

Figure S15. ESI/LTQOrbitrap spectrum of compound 10, in positive ion mode.

Figure S16.¹H NMR Spectrum (600 MHz, CD₃OD) of compound 10.

Figure S17. ¹³C Spectrum (150 MHz, CD₃OD) of compound 10.

Figure S18. HSQC Spectrum (CD₃OD) of compound 10.

Figure S19. HMBC Spectrum (CD₃OD) of compound 10.

Figure S20. COSY Spectrum (CD₃OD) of compound 10.

Figure S21. ROESY Spectrum (CD₃OD) of compound 10.

Figure S22. ESI/LTQOrbitrap spectrum of compound 11, in negative ion mode.

Figure S24. ¹³C Spectrum (150 MHz, CD₃OD) of compound 11.

Figure S25. HSQC Spectrum (CD₃OD) of compound 11.

Figure S26. HMBC Spectrum (CD₃OD) of compound 11.

Figure S27. COSY Spectrum (CD₃OD) of compound 11.

Figure S28. ROESY Spectrum (CD₃OD) of compound 11.

Figure S29. ESI/LTQOrbitrap spectrum of compound 16, in negative ion mode.

Figure S31. ¹³C Spectrum (150 MHz, CD₃OD) of compound 16.

Figure S32. HSQC Spectrum (CD₃OD) of compound 16.

Figure S33. HMBC Spectrum (CD₃OD) of compound 16.

Figure S34. COSY Spectrum (CD₃OD) of compound 16.

Figure S36. ESI/LTQOrbitrap spectrum of compound 20, in negative ion mode.

Figure S37. ¹H NMR Spectrum (600 MHz, CD₃OD) of compound 20.

Figure S39. HSQC Spectrum (CD₃OD) of compound 20.

Figure S40. HMBC Spectrum (CD₃OD) of compound 20.

Figure S41. COSY Spectrum (CD₃OD) of compound 20.