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A
( ) Mock DOX washout
6000 6000
o o welll
4000 wel
2 2 4000 well4
: =
wel
T 2000 © 2000
IE \“ - A |2 p
r’ S i
0 0
0 2 4 6 8 0 2 4 6 8
Time (day) Time (day)
(B) (C)
0.30; POX (hg/mD 0.14p POX (gimD
— 4 — 4
I 8 0.12f 8
0.10f
0.20} — % g — 5
S — 230 5 0.08} — 250
=015} i
® = 0.06}
I |
0.10 0.04}
0.05}/ 0.02}
ol ——— 0k — _—
5 6 7 8 9 10 11 12 13 14 5 6 7 8 9 10 11 1213 14 15
Mean BRAFYeE-HA intensity (Log2) Mean pERK intensity (Log2)
(D) (E)
30r 30 95% confidence interval
DOX 0 ng/ml
25}
25 DOX 250 ng/ml
220 0 20
S 15 8
o L [oR
o 19
=10} R 10
St 5
0 0 - - - : - -
Q 1?3 '59»\6%'\%'2,?’\16160 6 7 8 9 10 1 12

Mean pERK intensity (Log2)

DOX (ng/ml)



Figure S1. Tunable expression of BRAFV6E combined with heterogeneity in ERK
activation and proliferation achieves a wide range of downstream responses. Related to

Figure 1.

(A) Total cell numbers over time following mock (DOX present at all time) or DOX washout at
time 0 in RPE/tet-BRAFV600E cells pre-treated with DOX (250 ng/ml) for 8 days. Cells were
imaged every 45 min for 8 days after DOX washout. Each line represents a single well in a 96-
well plate.

(B & C) Frequency plots showing BRAFV6%E (A) and pERK (B) distribution following DOX
treatment. RPE/tet-BRAFV6%E cells were treated with serial doses of DOX (0-250 ng/ml, 2-fold
dilution) for 72 h and immunostained for HA and pERK.

(D) RPE/tet-BRAFVG600E cells were pulsed with EdU for 30 min after 72 h of DOX treatment
and the percent of cells in S phase (% S) was quantified and plotted as a function of the DOX
dose.

(E) Ranges of proliferation (percent of cells in S phase) observed at lower pERK levels in the
absence of DOX or at higher pERK levels induced by DOX (250 ng/ml) 72 h post treatment.
Shaded area shows a 95% confidence interval of pERK intensity in cells treated with 0 or 250
ng/ml DOX.
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Figure S2. S-phase reporter accumulates with increasing G1 and G2 lengths. Related to

Figure 2.
(A) mCherry-PIP signal at the end of G2 (left, n=607 cells) or G1 (right, n=458 cells) in single

cells plotted as a function of G2 or G1 duration, respectively. RPE cells stably expressing
mCherry-PIP were imaged for 96 h. Single cell traces of mCherry-PIP were quantified and
used in combined with nuclear divisions to derive G1 and G2 lengths. Each dot represents a
single cell. The weak but significant correlation between mCherry-PIP signal and the G1 or G2
duration indicates that mCherry-PIP reporter accumulates with increasing G1 or G2 duration.
(B) S-phase reporter dynamics following G1 arrest. BRAFY®%E Dual Reporter cells (see also Fig
3B-D & Fig S3A-F) were treated with DMSO, 62.5, or 500 nM ERK:i in the absence or
presence of DOX at 24 h after the start of imaging and imaged for an additional 3 days. Cells
remaining longer than 30 h in G1 phase at the end of imaging were defined as G1-arrested.
mCherry-PIP traces from G1 arrested cells were pooled together and in silico synchronized at
the latest mitosis prior to the G1 arrest. Bold lines and shaded areas correspond to median
and interquartile range, respectively (n=788).

(C) Two representative single-cell traces of mCherry-PIP (with DOX added at 24 h after the
start of imaging) in G1-arrested RPE cells. Blue star indicates cell division and the start of G1
phase. Green and orange dots mark the start of S and G2 phases, respectively. Respective
length of each cell cycle phase is shown above.

(D) S-phase reporter dynamics following G2 arrest. BRAFY®%€ Dual Reporter cells were treated
as in (B) and cells that remained longer than 30 h in G2 phase at the end of imaging were
defined as G2-arrested. mCherry-PIP traces from G2 arrested cells were pooled together and
in silico synchronized at the start of G2 phase prior to the G2 arrest (n=22).

(E) Two representative G2-arrested cells depicted as in (C).
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Figure S3. ERK activation lengthens G2 duration and alters proliferation in a non-
monotonic fashion. Related to Figure 3.



(A) Dynamics of ERK activity measured by the traditional EKAREV (top) or the improved
EKARENS probe (down) in the vicinity of mitosis. RPE cells stably expressing the EKAREV
reporter or the EKARENS reporter were treated with DMSO or 500nM ERK inhibitor followed
by 48 h of live imaging (EKAREV DMSO, n=294; EKAREV ERKIi, n=100; EKAREN5 DMSO,
n=139; EKARENS ERKI, n=48). Cells were in silico synchronized at mitosis. Bold lines and
shaded areas correspond to median and interquartile range, respectively. Non-specific activity
of EKAREYV prior to mitosis is indicated with an arrow.

(B) Box plots comparing G1 (left), S (middle) and G2 (right) duration in untreated or DOX-
treated BRAFY690E Dual Reporter cells. Duration of each cell cycle phase in individual cells was
computationally derived based on the mCherry- PIP reporter. n=260 (-DOX, G1), 61 (+DOX,
G1), 334 (-DOX, S), 164 (+DOX, S), 399 (-DOX, G2), and 236 (+DOX, G2).

(C) Box plots comparing G2 duration in BRAFV8°E Dual Reporter cells treated with DMSO, 62.5
nM ERKi or 500 nM ERK:i in the absence or presence of DOX. Each dot represents a single
cell (n>130 cells per condition).

(D) Frequency of divisions in BRAFV6%E Dyal Reporter cells treated with DMSO, 62.5, or 500
nM ERK:i in the absence or presence of DOX. Individual cells were tracked for 72 h; after
division, one daughter cell was randomly selected for further tracking (also see Fig 3B). n>200
cells for each condition.

(E) Percent of cells entering S-phase (Fig 3D) that subsequently divide. The percent of
dividing cells within 24 h after the S-phase entry in each mean ERK activity span (between 8-
12h post treatment) shown in Fig 3D was quantified. Cells that reached the end of live imaging
before 24 h following S-phase entry without dividing were not counted (mean £ 95%
confidence interval, n=33, 309, 186, 57 and 54 cells per ERK activity bin).

(F) Percent of S-phase entry in response to increasing ERK activity. Similar to Fig 3D, data
from all treatments were pooled together and the mean ERK activity between 12-16 h and 16-
24 h post treatment was calculated. The percent of cells entering into S-phase was quantified
within 24 h after the time-frame in which ERK activity was monitored (mean + 95% confidence
interval, n>150 for each binning ERK activity).

(G) p16, p21 and p27 mMRNA levels after siRNA-mediated depletion of the indicated CDK
inhibitors (individually or in combination) in RPE/tet-BRAFY6%E cells (mean + SD, n=4

replicates). The values were normalized to HPRT and reported relative to control knockdown



cells (si-Ctrl). Cells were transfected with siRNAs for 24 h and then treated with DOX for 2
days before subjecting to RNA isolation and gPCR.
(H) RPE/tet-BRAFV600E_HA cells were transfected with the indicated siRNA for 24 h and treated

with DOX for 2 days before fixation and immunostaining. Scale bars, 20um.
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Figure S4. ERK activity and pairwise correlations between RNA-seq replicates as a
function of time and ERK inhibitor dose, gene set enrichment analysis of ERK-
responsive genes, and p15 and p21 expression profiles upon BRAFV6°E induction.

Related to Figure 4.

(A) Dynamics of ERK activity following DOX and ERK inhibitor treatments. BRAFV6%E Dual
Reporter cells were treated with DMSO (ERKIi 0) in the absence or presence of DOX or with
different concentrations of ERK inhibitor in the presence of DOX followed by 24 h of live
imaging (median + SD of fourteen imaging positions).

(B) Heatmap of pairwise Pearson correlation coefficients between all RNA-seq replicates, with
one replicate on the x-axis and the other on the y-axis. Replicates with the same treatments
are marked with white stroke. In the margins of the heatmap, the treatment of samples with
ERK inhibitor, doxycycline, and time of collection are shown. Correlations are computed using
normalized gene counts from DESeqg2, considering only the 1000 most differentially expressed
genes.

(C) Relative EGR1 and DUSP4 transcripts levels as measured by gPCR in response to
variable time of DOX treatment (left) or variable ERKi concentrations in the presence of 250
ng/ml DOX for 24 h (right). Data represent mean + SD (n=4 replicates). The values were
normalized to HPRT and reported relative to target gene levels at time 0 h in the absence of
DOX and ERKIi treatment.

(D) Gene set enrichment analysis (GSEA) of the 1958 genes that were significantly
differentially expressed across all conditions (see Fig 4E). Shown are the most enriched
MsigDB gene sets in the Hallmark (H), curated pathways (C2: CP), and ontology (C5)
categories, excluding Human Phenotype Ontology (HPO). P-values are derived from Fisher’s
exact test on a contingency table showing the association between membership in the set of
differentially expressed genes versus membership in the given external gene sets.

(E) GSEA of selected BRAFV6E and ERK-related gene sets amongst 1958 significantly
expressed genes. ERK-related gene sets include all gene sets in MSigDB that mentioned
“ERK”, “MAPK”, “senescence”, or “melanoma”. BRAFV0E related gene sets include the set of
differentially expressed genes from a BRAFV6E gverexpression experiment from GEO
(GSE46801). Odds ratio, p-value, and FDR adjusted p-value (fdr) are derived from Fisher’s

exact test as in (D).



(F) Relative p15 and p21 transcripts levels as measured by gPCR over time following 250 ng/
ml DOX treatment. Data represent mean + SD (n=4 replicates). The values were normalized to
HPRT and reported relative to target gene data at time 0 h in the absence of DOX treatment.
(G) Bar plots showing knockdown efficiency after siRNA-mediated depletion of the indicated
CDK inhibitors (individually or in combination) in RPE/tet-BRAFV6%E (mean + SD, n=4
replicates). Cells were transfected with siRNAs for 24 h and then treated with DOX for 2 days
before subjecting to RNA isolation and qPCR.
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Figure S5. Rescue of ERKi effects on gene expression by BRAFV%E gverexpression.

Related to Figure 5.

(A) Volcano plots of the differential gene expression between two treatment conditions and the
untreated control condition. On the left, inhibition with 250 nM ERK:i results in large changes in
gene expression (438 genes; absolute log2FoldChange > 1; p < 0.05). On the right, in addition
to 250 nM ERKi, DOX was used to induce BRAFY6%E gverexpression (highlighted in red). At
this concentration of ERKIi, its effects were largely rescued by BRAFY69°E overexpression, with
only 42 differentially expressed genes remaining.

(B) (Left) Box plots showing similar ERK activities in BRAFY69°E Dual Reporter cells treated
with 250 nM ERKI in the absence of DOX, or 1000 nM ERKI in the presence of 250 ng/ml
DOX. The ERK activity of each cell was measured at 24 h post treatment. Each dot represents
a single cell (n>5000 cells per condition). (Right) Correlation between the differential gene
expression in cells treated with 250 nM ERKi (x-axis) and 1000 nM ERK:i plus DOX to induce
overexpression of BRAFV60E (y-axis). For each condition, differential gene expression was



calculated in comparison to untreated control cells. The two conditions display extremely
similar differential gene expression (R-squared 0.97; p < 2.2e-16), indicating that the effect of
BRAFV600E gverexpression can be rescued by increasing the concentration of the ERK
inhibitor.
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Figure S6. Association of ERK responsive clusters with functional GO enrichment

groups, and gene expression trajectories of each cluster over time. Related to Figure 6.

(A) GO term enrichment analysis for genes in all eight ERK response clusters. The 10 most
significant GO terms per cluster are shown, with a maximum of 50 clusters in total. Rows are
ordered using hierarchical clustering. Terms are prefixed with their GO domain. “mf”
corresponds to Molecular Function and “bp” to Biological Function.

(B) Expression of 20 representative genes in each ERK response cluster. All data shown are
at the 24 h time point. The x-axis corresponds to the different treatment conditions at 24 h
ordered in terms of their ERK activity. Treatment conditions 1-12 are listed below. Genes were
selected by picking the 20 genes with the highest “mean” absolute log2 fold change across all
conditions at 24 h. Log2 fold changes compared to the control condition were scaled for unit
variance but not zero centered.

(C) Gene expression trajectories over time. Gray lines represent normalized expression of
individual genes, and colored lines show the average trajectory for the group. Each row
represents an ERK-response cluster. Each column represents the time point at which genes in
that group first reached half of their maximum induction. Vertically, the panels are divided into
the four ERK response clusters that we identified. Gene expression was normalized to the

maximum value observed in the dataset, and plotted as an absolute value ranging from 0 to 1.
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