# **Supplementary Information**

Metabolism-based targeting of MYC via MPC-SOD2 axis-mediated oxidation promotes cellular differentiation in group 3 medulloblastoma

Martell et al.,

Supplementary Figure 1.



Supplementary Figure 1. (A) Kaplan Meier analysis of progression-free survival probability of patients with MYC-altered versus non-MYC altered tumors from Pan-cancer TCGA data, N = 10612 cases<sup>1-3</sup>. Pvalues and hazard ratio were determined using the logrank method. (B) HD-MB03 cells and normal human astrocytes were treated with 10058-F4 at various doses (5, 10, 25, 50 & 150 µM) and cells were counted after 24 hours. Values are plotted as mean of % of controls +/- SEM and p-values were calculated using twosided student's t-test of maximum dose versus untreated controls. (C) Analysis of proteomics data of G3 MB tumors (N = 14) from Archer et al. 2018<sup>4</sup> and significantly differentially expressed proteins in MYCactivated versus non-MYC activated tumors (>2.0 fold-change and p < 0.05 based on two-sided student's ttest) were subjected to functional annotation clustering with gene ontology (GO) to identify differentially functionally enriched processes (p-values were determined using Fisher's exact t-test). (D) Analysis of RNAsequencing data of G3 MB tumors (N = 144) from Cavalli *et al.* 2017<sup>5</sup> and gene set enrichment analysis (GSEA) was performed with Hallmark and gene ontology (GO) gene sets (enrichment scores and p-values are calculated using a weighted two-sided Kolmogorov-Smirnov-like statistic and normalized based on the size of the gene set to yield the normalized enrichment score, NES)<sup>6,7</sup>. (E-F) HD-MB03 cells were treated for 24 hours with indicated doses of metabolic inhibitors CB-839, GW9662, 2-DG, 3-BrPA, siGAPDH (two independent clones) and (F) complex-I inhibitors phenformin, rotenone, or IACS-010759, and MAX protein levels were monitored by immunoblotting. Graph represents mean values +/- SEM of densitometry quantification of blots from N = 3 experimental replicates. P-values are calculated using two-way ANOVA with Tukey's multiple comparisons. Source data provided in Source Data File.



Supplementary Figure 2. (A) HD-MB03 G3 MB cells were treated with indicated doses of metabolic inhibitors CB-839, GW9662, 2-DG, 3-BrPA, siGAPDH (two independent clones), phenformin, rotenone, or IACS-010759 and counted after 24 hours. Values are plotted as mean percent cell number relative to respective vehicle controls +/- SEM from N = 3 experimental replicates. P-values were calculated using two-way ANOVA with Tukey's multiple comparisons. (B) Densitometry quantifications of western blots of MYC from N = 3 experimental replicates of HD-MB03, SU MB002, MB3W1, D283, and normal human brain cells (astrocytes and neural stem cells; NSCs) that were treated with IACS-010759 for 24 hours. Values are plotted as mean +/- SEM and p-values are calculated using two-sided students t-test. (C) The protein levels of MYC and mitochondrial metabolic enzymes (fumarate hydratase, FH; citrate synthase, CS; and succinate dehydrogenase, SDHA) were compared in various G3 MB cells (D283, MB3W1, SU MB002, and HD-MB03) by western blot analysis. Heat map displaying the log2 densitometry quantification of N = 3 experimental replicates. (D) The correlation between relative MYC protein abundance determined by western blot and the maximal oxygen consumption rate (OCR) of various G3 MB cells (D283, N = 4 experimental replicates; MB3W1, N = 4 experimental replicates; SU MB002, N = 5experimental replicates; and HD-MB03, N = 5 experimental replicates) was plotted as means +/- SEM of x and y values and Pearson correlation analysis was performed (R = 9.060, p = 0.048171). Source data provided in Source Data File.



Supplementary Figure 3. (A-B) Various cancer cell lines from ovarian (A2780 and HEYA8), colorectal (HCT116 and SW40), and breast (MDA-MB-468) cancer were treated with 100 nM of IACS-010759 and (A) subjected to immunoblot analysis for MYC and graph represents mean densitometry quantification +/-SEM from N = 3 blots and (B) mean cell number +/- SEM counted after 24 hours (N = 3 experimental replicates). P-values were calculated using two-sided student's t-test relative to respective vehicle controls. (C) Densitometry quantification of western blots of cleaved caspase-3 and cleaved PARP1 presented as mean +/- SEM from N = 3 experimental replicates of HD-MB03 and SU MB002 cells treated with IACS-010759 for 24 hours or positive control cytotoxic chemotherapy vincristine (1 µM). P-values were calculated using two-sided student's t-test relative to respective vehicle controls. N = 3 experimental replicates. (D) Gating strategy used for flow cytometry analysis in Figure 2F and percentage of Annexin V positive populations measured by flow cytometry presented as mean +/- SEM of vehicle control versus IACS-010759 treated (100 nM) HD-MB03 and SU MB003 G3 MB cells. P-values were calculated using two-sided student's t-test relative to respective vehicle controls from N = 3 experimental replicates. (E) Densitometry quantification of western blots of SOX2 and  $\beta$ 3-tubulin presented as mean +/- SEM from N = 3experimental replicates of HD-MB03 and SU MB002 cells treated with IACS-010759 for 24 hours. Pvalues were calculated using two-sided student's t-test relative to respective vehicle controls. (F) Representative tumorsphere images (Scale Bar =  $100 \mu m$ ) and quantification of total sphere number (>50 µm) from cancer cell lines (A2780 and HEYA8) treated with 100 nM of IACS-010759 presented as mean +/-SEM from N = 3 experimental replicates. P-values were calculated using two-sided student's t-test relative to respective vehicle controls. (G) Representative tumorsphere images (Scale Bar =  $100 \mu m$ ) and quantification of total sphere number (>50 µm) from neural stem cells (NSCs) treated with 100 nM of IACS-010759 presented as box-plot with the box limits at minima and maxima and centre line at mean from N = 6experimental replicates. P-values were calculated using two-sided student's t-test relative to respective vehicle controls. (H) Western blots along with densitometry quantification presented as mean +/- SEM of SOX2 and  $\beta$ 3-tubulin from N = 3 experimental replicates of normal human NSCs treated with IACS-010759 for 24 hours. P-values were calculated using two-sided student's t-test relative to respective vehicle controls. Source data provided in Source Data File.



Supplementary Figure 4. (A-B) SU MB002 cells were treated with IACS-010759 for 24 hours and subjected to Oroboros respirometry where (A) a representative tracing of oxygen consumption rate (OCR) substrate-specific oxygen consumption activity from N = 3 experimental replicates and **(B)** quantifications of basal and pyruvate-malate dependent OCR in SU MB002 cells treated with IACS-010759 for 24 hours presented as mean +/- SEM where p-values were calculated using two-sided student's t-test relative to vehicle control. (C) ATP levels in SU MB002 cells following IACS-010759 treatment for 24 hours presented as mean +/- SEM (N = 3 experimental replicates) where p-values were calculated using two-sided student's t-test relative to vehicle control. (D-E) Densitometry quantifications of western blots of MYC, TP53, and GLS1 presented as mean +/- SEM from N = 3 experimental replicates of HD-MB03 and SU MB002 G3 MB cells treated with IACS-010759 along with either (E) MitoTEMPO or (E) MnTmPyP for 24 hours. P-values were calculated using two-way ANOVA with Tukey's multiple comparisons. (F) Representative western blots and densitometry quantifications of MYC presented as mean +/- SEM from N = 3 experimental replicates of HD-MB03 and SU MB002 G3 MB cells treated with IACS-010759 along with the antioxidant glutathione (GSH). P-values were calculated using one-way ANOVA with Tukey's multiple comparisons. (G) Representative western blots and densitometry quantifications of MYC presented as mean +/- SEM from N = 3 experimental replicates of ovarian (A2780), colorectal (SW-480) and breast (MDA-MB-468) cells treated with IACS-010759 along with the antioxidant MitoTEMPO. P-values were calculated using one-way ANOVA with Tukey's multiple comparisons. Source data provided in Source Data File.

# Supplementary Figure 5.



Supplementary Figure 5. (A) Densitometry quantification of western blots of MYC, TP53, and GLS1 in HD-MB03 cells treated with IACS-010759 at various time points plotted as mean +/- SEM. P-values were calculated using one-way ANOVA with Dunnett's multiple comparisons relative to respective vehicle controls. N = 3 experimental replicates. (B-C) HD-MB03 G3 MB cells were treated with IACS-010759 for 3 hours and subjected to Oroboros respirometry where (B) a representative tracing of OCR shows substratespecific oxygen consumption and (C) baseline oxygen consumption, pyruvate-malate dependent oxygen consumption, and ATP levels were quantified and presented as mean +/- SEM from N = 3 experimental P-values were calculated using two-sided student's t-test relative to vehicle control. (D) replicates. Representative images (Scale Bar =  $100 \mu m$ ) of HD-MB03 cells treated with 100 nM of IACS-010759 and/or 10 µM of MitoTEMPO for 3 hours and labeled with DHE total superoxide stain and Syto9 green nuclear counter stain. Violin Plot represents the quantification of red fluorescent intensity per cell of N > 100cells from N = 3 experimental replicates with solid line at mean and dashed lines at quartiles. P-values were calculated using two-way ANOVA with Tukey's multiple comparisons. (E) HD-MB03 cells were treated with IACS-010759 followed by exogenous overexpression of MYC for 48 hours and subjected to analysis of ATP levels (N = 3 experimental replicates) and mitochondrial superoxide production by MitoSOX staining (N = 4 experimental replicates) presented as mean +/- SEM. P-values were calculated using one-way ANOVA with Fisher's LSD test. (F) Representative western blots of MYC in SU MB002 cells treated with IACS-010759 for 24 hours followed by the translation inhibitor cycloheximide (CHX) for 10, 20, and 30 minutes. Graphs represents densitometry quantification of blots from N = 3 experimental replicates presented as mean +/- SEM. P-values were calculated at final time point using two-sided student's t-test relative to respective vehicle control. (G-H) HD-MB03 cells were treated with 100 nM of IACS-010759 for 24 hours followed by the proteasome inhibitors (G) MG-132 (10  $\mu$ M; N = 6 experimental replicates) or (H) Bortezomib (500 nM; N = 8 experimental replicates) for 4 hours and subjected to immunoblot analysis for MYC. Graphs represents densitometry quantification of blots presented as mean +/- SEM. P-values were calculated using one-way ANOVA with Fisher's LSD test. (I) HD-MB03 cells treated with 100 nM of IACS-010759 and proteins with reduced cysteine thiols were labeled in lysates with maleimide-PEG2 biotin. Reduced proteins were precipitated with streptavidin agarose and subjected to immunoblot analysis for OTX2 relative to input lysates (no precipitation). Graphs represent densitometry quantification of blots from N = 3 experimental replicates presented as mean +/- SEM. P-values were calculated using two-sided student's t-test relative to vehicle control. (J) A2780 cells treated with 100 nM of IACS-010759 and proteins with reduced cysteine thiols were labeled in lysates with maleimide-PEG2 biotin. Reduced proteins were precipitated with streptavidin agarose and subjected to immunoblot analysis for MYC relative to input lysates (no precipitation). Graphs represent densitometry quantification of blots from N = 3 experimental replicates presented as mean +/- SEM. P-values were calculated using two-sided student's t-test relative to vehicle control. Source data provided in Source Data File.

# Supplementary Figure 6.



**Supplementary Figure 6. (A)** Densitometry quantification of western blots of SOX2 and  $\beta$ 3-tubulin in HD-MB03 cells treated with IACS-010759 and/or MitoTEMPO from N = 3 experimental replicates presented as mean +/- SEM. P-values were calculated using one-way ANOVA with Fisher's LSD test. (B) Overlay of GFP fluorescent and brightfield microscopy of HD-MB03 cells expressing exogenous pcDNA3.1-MYC-c-eGFP MYC protein containing either wild-type MYC or point mutations in one of the 10 individual cysteine residues to monitor expression efficiency. Representative images (Scale Bar = 100 µm) from N = 3 experimental replicates. (C) Dot blot analysis of oxidized immunoprecipitated exogenous pcDNA3.1-MYC-c-eGFP containing wild-type MYC protein in control and IACS-010759 treated HD-MB03 cells. Densitometry quantification of N = 3 experimental replicates presented as mean +/- SEM. P-values were calculated using two-sided student's t-test relative to vehicle control. Source data provided in Source Data File.



**Supplementary Figure 7.** (A) Representative images (Scale Bar =  $100 \ \mu m$ ) of MitoSOX red mitochondrialspecific superoxide stain with blue Hoechst nuclear counter stain in non-specific siRNA control HD-MB03 cells or siSOD2 knockdown cells from two independent siRNA clones (#1 and #2). Violin plot represents quantification of fluorescent intensity per cell with solid line at mean and dashed lines at quartiles. P-values were calculated using one-way ANOVA with Tukey's multiple comparisons. N > 100 cells from N = 3experimental replicates. (B) HD-MB03 cells with siSOD2 knockdown from two independent siRNA clones (#1 and #2) were subjected to western blot analysis for SOD2, MYC, TP53 and GLS1. Densitometry quantification of western blots from N = 3 experimental replicates relative to non-specific siRNA control cells presented as mean +/- SEM. P-values were calculated using one-way ANOVA with Tukey's multiple comparisons. (C) HD-MB03 cells were treated with 100 nM of IACS-010759 and subjected to western blot analysis for P-PDK1 (Ser241) and total PDK1. Densitometry quantification of western blots from N = 3experimental replicates presented as mean +/- SEM. P-values were calculated using two-sided student's ttest relative to vehicle control. (D) Densitometry quantification of western blots presented as mean +/- SEM from N = 3 experimental replicates of MPC1, MPC2, P-PDH (Ser293), PDH, Ac-SOD2 K68, Ac-SOD2 K122, and SOD2 from HD-MB03 cells treated with 100 nM IACS-010759 for indicated time points. Pvalues were calculated using one-way ANOVA with Dunnett's multiple comparisons relative to respective vehicle controls. Source data provided in Source Data File.

# Supplementary Figure 8.



**Supplementary Figure 8.** (A) HD-MB03 cells were treated with 100 nM of IACS-010759 followed by exogenous overexpression of MYC for 48 hours and subjected to immunoblot analysis of P-PDH (Ser293), PDH, MPC1, and MPC2. Densitometry quantification presented as mean +/- SEM from N = 3 experimental replicates. P-values were calculated using two-way ANOVA with Fisher's LSD test. (B-C) Densitometry quantification of western blots presented as mean +/- SEM from N = 3 experimental replicates for (B) p-PDH (Ser293), PDH, MYC, TP53, GLS1, (C) Ac-SOD2 K68, Ac-SOD2 K122, and SOD2 in HD-MB03 and SU\_MB002 G3 MB cells treated with IACS-010759 and/or UK-5099 for 24 hours. P-values were calculated using two-way ANOVA with Fisher's LSD test. Source data provided in Source Data File.

#### Supplementary Figure 9.

A H&E Staining Sample of MYC-Amplified Human G3 MB Patient Tumor Specimen Human G3 MB Patient Tumor Specimen



B H&E Staining of HD-MB03 Orthotopic G3 MB Tumors Xenografts







litoses 🔘 Apoptotic Bodies Scale bar = 50  $\mu$ m



Treatment started at day 10

С



**Supplementary Figure 9.** (A) Representative images of anaplastic large cell G3 MB patient tumor specimen with H&E staining and immunohistochemistry (IHC) staining of MYC available open access from the r2genomics server in the Pediatric PDX (Olson) portal (Med-411FH)<sup>8</sup>. (B) Representative images of HD-MB03 orthotopic intracerebellar tumor xenografts with H&E staining (Scale Bar = 200  $\mu$ m) and immunohistochemistry (IHC) staining of MYC (Scale Bar = 50  $\mu$ m) from N = 5 control animals. (C) T2 MRI images of tumor masses from matching planes at 18-days post-surgery and H&E stained brain slices from mice that received either placebo control (0.5% methylcellulose; N = 6 animals) or 7.5 mg/kg Q2Dx5 IACS-010759 treatment (N = 6 animals) starting at 10-days post-surgery. Quantification of tumor volume from 18-day MRI images presented as mean +/- SEM. P-values were calculated using two-sided student's t-test relative to vehicle control. Source data provided in Source Data File.

| Supplementary Table 1. List of treatment compounds used in this stud |
|----------------------------------------------------------------------|
|----------------------------------------------------------------------|

|                                                            | Vendor                         | Catalog No.                 | Dose(s)                             |
|------------------------------------------------------------|--------------------------------|-----------------------------|-------------------------------------|
| 10058-F4                                                   | Abcam                          | ab145065                    | 5, 10, 25, 50, & 150 μM             |
| CB-839                                                     | Selleckchem                    | S7655                       | 2.5 & 5 μM                          |
| GW-9662                                                    | Sigma-Aldrich                  | M6191                       | 5 & 10 μM                           |
| 2-DG                                                       | Sigma-Aldrich                  | D8375                       | 0.25, 0.5, 1, 2, 3 mM               |
| 3-BrPA                                                     | Sigma-Aldrich                  | 16490                       | 10, 25, 50, 100, & 250<br>μM        |
| Phenformin                                                 | Selleckchem                    | S2542                       | 10, 50, 100, 250, & 500<br>μM       |
| Rotenone                                                   | Sigma-Aldrich                  | R8875                       | 10, 50, 100, 500, & 1000<br>nM      |
| IACS-010759 (in vitro)                                     | Selleckchem                    | S8731                       | 100 nM (unless otherwise indicated) |
| IACS-010759 (in vivo)                                      | MedChem<br>Express             | HY-112037                   | 7.5 mg/kg                           |
| si <i>GAPDH</i> clone #1                                   | Invitrogen;<br>silencer select | 4390824; assay<br>ID: s5572 | 50 nM                               |
| si <i>GAPDH</i> clone #2                                   | Invitrogen;<br>silencer select | 4390824; assay<br>ID: s5573 | 50 nM                               |
| Negative control siRNA                                     | Invitrogen                     | AM4635                      | 50 nM                               |
| si <i>SOD2</i> clone #1                                    | Invitrogen;                    | 4390824; assay              | 50 nM                               |
|                                                            | silencer select                | ID: n323027                 |                                     |
| siSOD2 clone #2                                            | Invitrogen;                    | 4390824; assay              | 50 nM                               |
| Vin enjetine                                               | Silencer select                | ID: \$13268                 | 1                                   |
| v incristine                                               | Origona                        | DC201611                    | 1 μM                                |
| PCNIV6-EV                                                  | Origene                        | RC201011                    | 1.5 μg/mL                           |
| pcWIV0-c-WIIC<br>pcDNA31(+) MVC a cCEP                     | Gansarint                      | SC1844                      | 1.5 μg/mL                           |
| $pcDNA3.1(+)-MVC_CA0C_c_eCFP$                              | Genscript                      | SC1844                      | 1.5 μg/mL                           |
| pcDNA3.1(+)-MTC-C40G-C-CGFT<br>pcDNA3.1(+)-MVC-C85C-c-eCFP | Genscript                      | SC1844                      | 1.5 μg/mL                           |
| ncDNA31(+)-MVC-C132G-c-eGFP                                | Genscript                      | SC1844                      | 1.5 μg/mL                           |
| ncDNA31(+)-MYC-C148G-c-eGFP                                | Genscript                      | SC1844                      | 1.5 µg/mL                           |
| pcDNA3.1(+)-MYC-C186G-c-eGFP                               | Genscript                      | SC1844                      | 1.5 µg/mL                           |
| pcDNA3.1(+)-MYC-C203G-c-eGFP                               | Genscript                      | SC1844                      | 1.5 µg/mL                           |
| pcDNA3.1(+)-MYC-C223G-c-eGFP                               | Genscript                      | SC1844                      | $1.5 \mu\text{g/mL}$                |
| pcDNA3.1(+)-MYC-C315G-c-eGFP                               | Genscript                      | SC1844                      | 1.5 μg/mL                           |
| pcDNA3.1(+)-MYC-C357G-c-eGFP                               | Genscript                      | SC1844                      | 1.5 μg/mL                           |
| pcDNA3.1(+)-MYC-C453G-c-eGFP                               | Genscript                      | SC1844                      | 1.5 μg/mL                           |
| MitoTEMPO                                                  | Cayman                         | 16621                       | 10 µM                               |
| МпТтРур                                                    | Adipogen                       | AG-CR1-0026                 | 50 µM                               |
| Glutathione                                                | Santa Cruz                     | sc-203974                   | 100 µM                              |
| Cyclohexamide                                              | Sigma-Aldrich                  | C7698                       | 1.25 μM                             |
| MG-132                                                     | Sigma-Aldrich                  | M8699                       | 10 µM                               |
| Bortezomib                                                 | Selleckchem                    | S1013                       | 500 nM                              |
| UK-5099                                                    | Cayman                         | 16980                       | 10 µM                               |

|                          | Vendor                    | Catalog No.     | Dilution |
|--------------------------|---------------------------|-----------------|----------|
| CPTA1                    | Cell Signaling Technology | 97361S          | 1:1000   |
| ΡΡΑΒγ                    | Cell Signaling Technology | 24358           | 1:1000   |
| c-MYC                    | Cell Signaling Technology | 18583S          | 1:1000   |
| MAX                      | Cell Signaling Technology | 4739S           | 1:1000   |
| GAPDH                    | DSHB                      | DSHB-hGAPDH-2G7 | 1:250    |
| <b>Cleaved Caspase-3</b> | Cell Signaling Technology | 9661S           | 1:1000   |
| PARP1                    | Santa Cruz                | sc-8007         | 1:1000   |
| SOX2                     | Cell Signaling Technology | 35798           | 1:1000   |
| β3-tubulin               | R&D Systems               | MAB1195         | 1:1000   |
| P53                      | Santa Cruz                | sc-126          | 1:1000   |
| GLS1                     | Cell Signaling Technology | 88964S          | 1:1000   |
| Poly Ubiquitin           | Cell Signaling Technology | 3936S           | 1:1000   |
| OTX2                     | Abcam                     | ab21990         | 1:1000   |
| GFP                      | Santa Cruz                | sc-9996         | 1:1000   |
| SOD2                     | Cell Signaling Technology | 13141S          | 1:1000   |
| Acetylated SOD2 K68      | Abcam                     | ab137037        | 1:1000   |
| Acetylated SOD2 K122     | Abcam                     | ab214675        | 1:1000   |
| MPC1                     | Cell Signaling Technology | 14462           | 1:1000   |
| MPC2                     | Cell Signaling Technology | 46141           | 1:1000   |
| P-PDH                    | Cell Signaling Technology | 31866S          | 1:1000   |
| PDH                      | Cell Signaling Technology | 32058           | 1:1000   |
| P-PDK1                   | Cell Signaling Technology | 3438S           | 1:1000   |
| PDK1                     | Cell Signaling Technology | 3062S           | 1:1000   |
| Goat anti-mouse HRP      | Jackson Immunoresearch    | 115-035-003     | 1:10,000 |
| Goat anti-rabbit HRP     | Jackson Immunoresearch    | 111-035-003     | 1:10,000 |

Supplementary Table 2. List of antibodies used for immunoblotting

#### Supplementary Table 3. List of antibodies used for immunohistochemistry

|                             | Vendor                    | Catalog No. | Dilution |
|-----------------------------|---------------------------|-------------|----------|
| c-MYC                       | Abcam                     | ab32072     | 1:100    |
| Ki67                        | Cell Signaling Technology | 9449S       | 1:800    |
| SOX2                        | Abcam                     | ab97959     | 1:100    |
| β3-tubulin                  | R&D Systems               | MAB1195     | 1:250    |
| P53                         | Santa Cruz                | sc-126      | 1:50     |
| GLS1                        | Cell Signaling Technology | 56750       | 1:200    |
| 8-Hydroxy-2'-deoxyguanosine | Abcam                     | ab48508     | 1:50     |
| 4-Hydroxynonenal            | Abcam                     | ab48506     | 1:25     |
| MPC2                        | ThermoFisher              | PA5-63246   | 1:20     |
| MPC1                        | ThermoFisher              | PA5-60929   | 1:500    |
| Acetylated SOD2 K68         | Abcam                     | ab137037    | 1:100    |
| Sheep anti-mouse Biotin     | Jackson Immunoresearch    | 515-065-003 | 1:500    |
| Sheep anti-rabbit Biotin    | Jackson Immunoresearch    | 111-065-144 | 1:500    |

|           | Forward Primer              | Reverse Primer             |
|-----------|-----------------------------|----------------------------|
| МҮС       | CCTGGTGCTCCATGAGGAGAC       | CAGACTCTGACCTTTTGCCAGG     |
| SOX2      | GGGAAATGGAGGGGGGGGCAAAAGAGG | TTGCGTGAGTGTGGATGGGATTGGTG |
| NANOG     | TGAACCTCAGCTACAAACAG        | TGGTGGTAGGAAGAGTAAAG       |
| NES       | TCAAGATGTCCCTCAGCCTGGA      | AAGCTGAGGGAAGTCTTGGAGC     |
| TUBB3     | GGCCTCTTCTCACAAGTACG        | CCACTCTGACCAAAGATGA        |
| MAP2      | AGGCTGTAGCAGTCCTGAAAGG      | CTTCCTCCACTGTGACAGTCTG     |
| NEUROD1   | GGTGCCTTGCTATTCTAAGACGC     | GCAAAGCGTCTGAACGAAGGAG     |
| NEUROG1   | GCCTCCGAAGACTTCACCTACC      | GGAAAGTAACAGTGTCTACAAAGG   |
| MILIP     | AGAACCGCGAAAGGCTACTG        | CACTTAAAGCCGGTCGTGGA       |
| AIMP2     | ACCACCAATGCGCTGGACTTGA      | AGGACCCTGAAGTGCTCACAGA     |
| BYSL      | CTCTCCAACTGGGAGCAAATCC      | TGCGTTCCTTCAGGTTAGAGGC     |
| CBX3      | GCTGACAAACCAAGAGGATTTGC     | CAGCACCAAGTCTGCCTCATCT     |
| CDK4      | CCATCAGCACAGTTCGTGAGGT      | TCAGTTCGGGATGTGGCACAGA     |
| DCTPP1    | TCCATCAGCCTCGGAATCTCCT      | CCTCTTGAAGGGCTGCCCGTT      |
| DDX18     | GATGTGGCAGCGAGAGGACTAG      | GGCGCAAAATGAGCAAGGCATG     |
| DUSP2     | TGTGGAGGACAACCAGATGGTG      | GAGGTATGCCAGACAGATGGTG     |
| EXOSC5    | GAACGGAAGCTGCTGATGTCCA      | GGTAGAAACGGAAGACGTGTTGC    |
| FARSA     | TGGCTGAGTTCCACCAGATCGA      | TTGTAGGCTGGCTTGAAGCGGA     |
| GNL3      | TTTCCCAGGCTGATGCTCGACA      | GCAGTTTGGCAGCACCTTCAAC     |
| GRWD1     | CCATCTTCTCCTTCGCTGGACA      | AGGTGTCCAGAGGTGGATGTTC     |
| HK2       | GAGTTTGACCTGGATGTGGTTGC     | CCTCCATGTAGCAGGCATTGCT     |
| HSPD1     | TGCCAATGCTCACCGTAAGCCT      | AGCCTTGACTGCCACAACCTGA     |
| HSPE1     | GCTGAAACTGTAACCAAAGGAGG     | TCTCCAACTTTCACGCTAACTGG    |
| IMP4      | CACCTCATCACACACGGCTTCT      | GTAGTCGTCCTGGTTTGCGAAG     |
| IPO4      | CCTCGCAAGTTGTACGCAATGC      | TGTCCAAGAGGCACCGACTTCA     |
| LAS1L     | AAGGCAGCGAAGAGGTGGATTC      | GCACCGTAAACTGCTCCTCTTC     |
| MAP3K6    | CGCCACAAGAACATAGTGCGCT      | ACTGATGGTGCTCTCGTTGTCC     |
| MCM4      | CTTGCTTCAGCCTTGGCTCCAA      | GTCGCCACACAGCAAGATGTTG     |
| MCM5      | GACTTACTCGCCGAGGAGACAT      | TGCTGCCTTTCCCAGACGTGTA     |
| MPHOSPH10 | GGAAGTGACAGCACAGAAGAGG      | CCAGTTGAAGGGTGGTTTCCTC     |
| MRTO4     | ACAGCAAGCTGAAGGACATCCG      | GACCTGGTGCAGGTTGTCTTTG     |
| MYBBP1A   | CAGTTCGCAGACCTCCTGTTGA      | TCCAGCTCCTTCAGAGTCTGCA     |
| NDUFAF4   | CAGCAAGATGAAGCCCTCTGTC      | CACATCTTTTAGAAACGACAGCAG   |
| NIP7      | AGAGCAGTCCTTCCTGTATGGG      | GCAGTCTTGTGTAGATTTGGCTG    |
| NOC4L     | GGAACAATGCCTTCACGCTGCT      | TCAGGTGAGCAACCTTCCAGGT     |
| NOLC1     | GTAGCAGTGATGACTCAGAGGAG     | CTGGAGGAATCCTCACTGCTAG     |
| NOP16     | CCTATGTGCTGAATGACCTGGAG     | CGTGGTTCTCTACCATGTAGCG     |
| NOP2      | CTGTCAATGCGACCTCCAAGAC      | GAAAGCGGGTAAAACCTTCCTGG    |
| NOP56     | GGCTAAGGCTATTCTGGATGCC      | TGTGTAGGCTCTGGCGGTATTC     |
| NPM1      | GCCAGTGCATATTAGTGGACAGC     | GGAACCTTGCTACCACCTCCAG     |
| PA2G4     | GCTCACCTTTGTGCTGAAGCTG      | GCTGCTTCAACTGGTGTGACAG     |

Supplementary Table 4. List of primer sequences used in this study

| PES1          | TCGTGTGGATCACTCCCTATGC  | GGTTGAGCAACTGGTAAAGGCG  |
|---------------|-------------------------|-------------------------|
| РНВ           | AAGCGGTGGAAGCCAAACAGGT  | GCCAGTGAGTTGGCAATCAGCT  |
| PLK1          | GCACAGTGTCAATGCCTCCAAG  | GCCGTACTTGTCCGAATAGTCC  |
| PLK4          | GACACCTCAGACTGAAACCGTAC | GTCCTTCTGCAAATCTGGATGGC |
| <b>PPAN</b>   | AGCAGAAACGGCTTGCCAAGTC  | GAACCCACTGAGTTTGTCGTCG  |
| PPRC1         | ATTGAGGCATCGGACCTGTCCA  | CCTGAGTTTCCTACAGCCAAGC  |
| PRMT3         | CACTGTCTGCTGAAGCCGCATT  | GTAGATGACGAGCAGGTTCTGAC |
| PUS1          | TCAACAGCCACCTTCCCTCTCA  | GCAATAGGTCCTGGCATCACATC |
| RABEPK        | CACATCATCGGCAGCCATTGGA  | GGAGGATTTCCAAGTGTCTCTGG |
| RCL1          | CCTGTGAGGAAGGTCTTGAAGC  | GTTCGCCATCTGAGGTGACACA  |
| <i>RRP12</i>  | AGTGCCTCCTACACATCGTGAG  | GAGCAGTGCAAAAGCGTTCTTCC |
| RRP9          | GTTGGTGGCAAAAGAGATCCAGG | CTTTGGCAGCAGAGAAGATGGC  |
| SLC19A1       | CTTTGCCACCATCGTCAAGACC  | GGACAGGATCAGGAAGTACACG  |
| SLC29A2       | GGATCTTGACCTGGAGAAGGAG  | GTGAAGACCAACACAAGGCACAG |
| SORD          | GCCGATACAATCTGTCACCTTCC | CGCCTTCCTCAAAGGTGACATTG |
| SRM           | CTACCAGGACATCCTCGTCTTC  | AGAGGCAGGTTGGCGATCATCT  |
| SUPV3L1       | ACTTCTCAGCAAAGTCTGGAGTG | TGGCTGAACTGTCACACGCTCT  |
| TBRG4         | CAGCCTGACTTCTGGTGAGGTG  | GTGATGTCCTGCGCTCTGTTCA  |
| TCOF1         | CAGGAAGACTCTGAGAGCAGTG  | CCCTTTTGCTGAAGGTGCTCTG  |
| TFB2M         | GGGAAAACCAAGTAGACCTCCAC | TTTCGAGCGCAACCACTTTGGC  |
| <i>ТМЕМ97</i> | GAGCAAGATGGTGTCAGGAACC  | AGGTTGCAGTGAGCCGAGATCA  |
| UNG           | CCACACCAAGTCTTCACCTGGA  | CCGTGAGCTTGATTAGGTCCATG |
| UTP20         | GAGACTTTCCAGACCATCACCTC | ACTCATCAGGCACATGCTGGCA  |
| WDR43         | CCTCCACAAACCGAGCAAGTAG  | GCTATTCGTCTGGAGGTCTTCC  |
| WDR74         | GAAAACAGGCGGCGAACTTCAC  | TGCTGAAGTGCTTCACCGTCCT  |
| GLS1          | CAGAAGGCACAGACATGGTTGG  | GGCAGAAACCACCATTAGCCAG  |

#### SUPPLEMENTARY REFERENCES

- Hoadley, K. A. et al. Cell-of-Origin Patterns Dominate the Molecular Classification of 10,000 Tumors from 33 Types of Cancer. Cell 173, 291-304 e296, doi:10.1016/j.cell.2018.03.022 (2018).
- 2 Cerami, E. et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov 2, 401-404, doi:10.1158/2159-8290.CD-12-0095 (2012).
- 3 Gao, J. et al. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci Signal 6, pl1, doi:10.1126/scisignal.2004088 (2013).
- 4 Archer, T. C. et al. Proteomics, Post-translational Modifications, and Integrative Analyses Reveal Molecular Heterogeneity within Medulloblastoma Subgroups. Cancer Cell 34, 396-410 e398, doi:10.1016/j.ccell.2018.08.004 (2018).
- 5 Cavalli, F. M. G. et al. Intertumoral Heterogeneity within Medulloblastoma Subgroups. Cancer Cell 31, 737-754 e736, doi:10.1016/j.ccell.2017.05.005 (2017).
- 6 Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A 102, 15545-15550, doi:10.1073/pnas.0506580102 (2005).
- Liberzon, A. et al. The Molecular Signatures Database (MSigDB) hallmark gene set collection.
  Cell Syst 1, 417-425, doi:10.1016/j.cels.2015.12.004 (2015).
- 8 Brabetz, S. et al. A biobank of patient-derived pediatric brain tumor models. Nat Med 24, 1752-1761, doi:10.1038/s41591-018-0207-3 (2018).