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Supplement 1: Examples of generated synthetic scans

Fig. S1. Representative samples from the presented generated model. Synthetic scans present a considerable diversity in terms of contrasts and resolutions,

but also in terms of sizes, shapes, bias fields, skull stripping, lesions, and anatomical morphology.
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Supplement 2: Values of the generative model hyperparameters

Table S1. Values of the hyperparameters controlling the generative model. Intensity parameters assume an input in the [0, 255] interval. Rotations are

expressed in degrees, and spatial measures are in millimeters.

Hyperparameter arot brot asc bsc ash bsh atr btr bnonlin aµ bµ aσ bσ bB σ
2
γ

rHR bres aα bα

Value -20 20 0.8 1.2 -0.015 0.015 -30 30 4 0 255 0 35 0.6 0.4 1 9 0.95 1.05

Supplement 3: List of label values used during training

Table S2. List of the labels used for image synthesis, prediction, and evaluation. Note that during generation, we randomly model skull stripping with

50% probability, by removing all extra-cerebral labels from the training segmentation. In addition, we also model imperfect skull stripping, with a further

50% chances (so 25% of the total cases), by removing all the extra-cerebral labels except the cerebro-spinal fluid (which surrounds the brain). Different

contralateral labels are used for structures marked with R/L.

Label
removed for skull

predicted evaluated
stripping simulation

Background N/A yes no

Cerebral white matterR/L no yes yes

Cerebral cortexR/L no yes yes

Lateral ventricleR/L no yes yes

Inferior Lateral VentricleR/L no yes no

Cerebellar white matterR/L no yes yes

Cerebellar grey matterR/L no yes yes

ThalamusR/L no yes yes

CaudateR/L no yes yes

PutamenR/L no yes yes

PallidumR/L no yes yes

Third ventricle no yes yes

Fourth ventricle no yes yes

Brainstem no yes yes

HippocampusR/L no yes yes

AmygdalaR/L no yes yes

Accumbens areaR/L no yes no

Ventral DCR/L no yes no

Cerebral vesselsR/L no no no

Choroid plexusR/L no no no

White matter lesionsR/L no no no

Cerebro-spinal Fluid (CSF) yes/no no no

Artery yes no no

Vein yes no no

Eyes yes no no

Optic nerve yes no no

Optic chiasm yes no no

Soft tissues yes no no

Rectus muscles yes no no

Mucosa yes no no

Skin yes no no

Cortical bone yes no no

Cancellous bone yes no no
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Supplement 4: Versions of the training label maps

b

a

Fig. S2. Example of all versions of the label maps used during training. Each map is available (a) with, or (b) without lesion labels (bright green), and at

different levels of skull stripping: perfect (left), imperfect (middle), or no skull stripping (right). Using these different versions of training label maps enables

us to build robustness to white matter lesions and to (possibly imperfect) skull stripping. The lesion labels are obtained with FreeSurfer (Fischl, 2012) and

directly “pasted” on the existing label maps. Training lesion labels are mainly located in the cerebral white matter, but occurrences are also found in the

cerebellum, thalamus, pallidum, and putamen. Regarding the extra-cerebral labels, these are obtained with a Bayesian segmentation approach (Puonti

et al., 2020).

Supplement 5: Modifications to the nnUNet, and TTA, and SIFA methods

All competing methods tested in this article are used with their default implementation, except for few minor differences that we

list here. All the following modifications improve the scores obtained by the original implementations on the validation set.

nnUNet (Isensee et al., 2021)6: We now apply random flipping along the right/left axis (Dice score improvement of 0.09 on

the validation set), as opposed to the original implementation where flipping was applied in any direction. This also mimics the

augmentation strategy used for SynthSeg (see Section 4.2).

TTA (Karani et al., 2021)7: First, the image normaliser now uses five instead of three convolutional layers, which increases

its learning capacity, especially in the case of large domain gaps (Dice improvement of 0.16 on the validation set). The second

modification is relative to the training atlas that is used in Karani et al. (2021) as ground-truth during the first steps of the adaptation.

Here, we add an offline step, where we rigidly register this atlas to the test scan with NiftyReg (Modat et al., 2010) We emphasise

that this step was not done in the original implementation, since test scans in Karani et al. were already pre-aligned. Moreover, we

also increase the number of steps during which the atlas is used by increasing the beta threshold from 0.25 to 0.4 (Karani et al.,

2021) (Dice improvement of 0.06 on the validation set). Finally, we replace the existing data augmentation scheme by the same

spatial, intensity and bias augmentations as for SynthSeg (Dice improvement of 0.03 on the validation set).

SIFA (Chen et al., 2019)8: For this method, we added an online data augmentation step during training, where we apply the same

spatial, intensity and bias augmentations as for SynthSeg (Dice improvement of 0.18 on the validation set).

6https://github.com/MIC-DKFZ/nnUNet
7https://github.com/neerakara/test-time-adaptable-neural-networks-for-domain-generalization
8https://github.com/cchen-cc/SIFA
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Supplement 6: Number of retraining for each value of N

Table S3. Number of label maps and associated retrainings used to assess performance against the amount of training subjects. Scores are then averaged

across the retrainings. We emphasise that the number of retrainings is higher for low values of N to compensate for the greater variability in random

subject selection. All training label maps are randomly taken from the manual segmentations of T1-39.

Number of training segmentations 1 5 10 15 20

Number of retrainings 8 5 4 3 2

Supplement 7: Training label maps for cardiac segmentation

Image (not for training) Training image

Enhanced training label maps for image generation Target segmentationManual labels

N=3 N=4 N=5 N=6

N=7 N=8 N=9 N=10

Fig. S3. Training label maps for extension to cardiac segmentation are obtained by combining three types of labels. We first start with manual delineations

(top left). Second, we obtain labels for sub-regions (represented in the middle label maps by slightly shaded colours) of each of these foreground regions

by clustering the associated intensities in the corresponding image (bottom left). Third, we obtain automated labels for the background structures (i.e.,

vessels, bronchi, bones, etc., for which no manual segmentations are available), by clustering the corresponding intensities into N classes (N ∈ [3, 10]), in

order to model them with different levels of granularity. During training, one of these enhanced label maps is randomly selected to synthesise a training

image (bottom right) by using the proposed generative model. Note that the target segmentation is reset to the initial manual labels.

Supplement 8: Values of the generative model hyperparameters used in the heart experiments

Table S4. Values of the hyperparameters controlling the generative model used in the heart experiments. As before, intensity parameters assume an input

in the [0, 255] interval. Rotations are expressed in degrees, and spatial measures are in millimeters.

Hyperparameter arot brot asc bsc ash bsh atr btr bnonlin aµ bµ aσ bσ bB σ
2
γ

rHR bres aα bα

Value -45 45 0.8 1.2 -0.02 0.02 -40 40 8 0 255 0 35 0.7 0.5 1 10 0.95 1.05


