SUPPLEMENTARY INFORMATION

TITLE

Single molecule methylation profiles of cell-free DNA in cancer with nanopore sequencing

AUTHORS

Billy T. Lau¹, Alison Almeda, Marie Schauer¹, Maddy McNamara¹, Xiangqi Bai¹, Qingxi Meng², Mira Partha², Susan M. Grimes¹, HoJoon Lee¹, Gregory M. Heestand¹, Hanlee P. Ji^{1,2}

¹Division of Oncology, Department of Medicine, Stanford School of Medicine, Stanford CA ²Department of Electrical Engineering, Stanford University, Stanford CA

Supplementary Figure 1. Sequencing library preparation workflow. The library preparation workflow used in this study for cfDNA samples. Sequencing was conducted on the Oxford Nanopore platform. These steps maximized ligation yields versus standard protocols.

Supplementary Figure 2. Digested nucleosome size comparison with cfDNA. The insert size distribution of digested PBMC nucleosomes (top), which was used as a model analyte. This size distribution was compared to the size distribution of cfDNA. Secondary peaks in the cfDNA distribution correspond to dinucleosomes and higher sizes. The PBMC nucleosomes consisted only of mononucleosomes due to complete digestion of the open chromatin.

Supplementary Figure 3. Computational workflow. The workflow for calling methylation from nanopore-based cfDNA sequencing data is shown. These steps enable streamlined processing of large data volumes (>10TB).

Supplementary Figure 4. Fragment size distribution of healthy donor and cancer patient cfDNA. The fragment size distribution of healthy control plasma and cancer patient-derived plasma is shown. The top row consists of cfDNA samples from healthy controls. The remaining rows come from cancer patients. Dotted lines indicated mono- and di-nucleosomes.

Supplementary Figure 5. Correlation between gene-level fold coverage and gene-level methylation. (A) The fold coverage of a specific genomic feature and its corresponding methylation is plotted. Fold coverage is defined as number of reads divided by the length of the feature. A single point represents a particular gene for one sample. Black: all features are considered. Red: genes found to be statistically significant between cancer patients and healthy controls. The overall Pearson correlation coefficient for all features and statistically shown genes is also displayed. (B) Per-sample fold-coverage to methylation correlation. The Pearson correlation of the gene-level methylation versus the gene-level fold-coverage is shown for each individual sample. A t-test was performed between the correlation when calculated on all genes versus only statistically significant genes, demonstrating that the differences in their correlation were not statistically significant. This shows that the statistically significant genes were selecting for differences in sequencing coverage.

Supplementary Figure 6. Analysis of variability in gene-level methylation. (A) Analysis of within-group variability for differentially methylated genes. We identified genes with different levels of methylation when comparing cfDNA from cancer patient versus healthy controls. Genes that passed an FDR-based multiple-testing significance value of q < 0.01 were considered to have differential methylation. We calculated the coefficient of variation for the methylation values of each gene based on cancer patients versus controls. (B) Random grouping. We randomly assigned the healthy controls and cancer patients into random groups and attempted to discover differentially methylated genes. After FDR-multiple testing correction, there were zero gene annotations passing the q < 0.01 threshold. We repeated this process 20 times. Each facet represents the q-value distribution for each trial. The dashed line represents the 0.01 threshold.

Gene body-level methylation

Supplementary Figure 7. Enrichment analysis for cancer patient cohort. Gene-level (left) and promoter-level (right) enrichment analysis was performed for significantly different genes between healthy and cancer patient-derived cfDNA. p-values are shown, alongside the associated pathway. Blue bars indicate p<0.05. A, C and B, D refer to two separate gene pathway sets curated by EnrichR.

Supplementary Figure 8. Framework for read classification. Individual nanopore reads from cfDNA are classified by using reference profiles that come from matched tumor or PBMC/immune cell methylation data. Each read, their associated CpG sites, and their methylation states, are compared to candidate references. The calculated score reflects the similarity of a read to a particular candidate reference methylome. Regardless of their methylation status, all reads were processed with this framework.

Supplementary Figure 9. Distribution of tumor classification scores for single reads. We provide an example of a tumor score histogram using an *in silico* admixture read data set. Each read has a calculated tumor score based on its methylation similarity to a matched tumor or immune reference profile. The title of each panel reflects the ground truth origin of each read set. Cancer reads are sequences that are mixed from GP2D cancer cell line nucleosomes that were nanopore sequenced and for which methylation calls were made, and immune cell reads are reads that are from healthy donor nucleosomes. There are two classification thresholds: one for immune cell origin, and one for classification of cancer cell origin. Reads matching the threshold criteria, such as tumor score > 0.9 or < 0.1, are classified as tumor-specific or immune-specific respectively. Reads falling outside the thresholds are not classified and are excluded from analysis.

Supplementary Figure 10. Examples of read classification. The methylation profiles of immune cells and the GP2D cancer cell line are shown in selected regions, along with an individual read to classify. The shaded bases correspond to a CpG site; blue represents a canonical cytosine, while red corresponds to a detected 5mC. An *in silico* mixture of reads from both sources are sampled. An individual read is classified if its methylation matches (A) immune cells, or (B) the cancer cell line GP2D. Ambiguous matches (eg. regions where the methylation is the similar for both samples) are shown in (C).

Supplementary Figure 11. Classification AUC for various thresholds. The AUC is calculated for various immune threshold values for one set of an *in silico* admixture between cancer cell line and healthy donor methylome data.

Supplementary Figure 12. Fraction of reads classified. The proportion of reads being classified is shown for various immune threshold values for one set of an *in silico* mixture between cancer cell line and healthy donor methylome data.

Supplementary Figure 13. Gene enrichment analysis for single molecular classifier using a GP2D cancer cell line and immune cell model. Regions with maximum methylation differences (eg. either 100% methylated in GP2D and 0% methylated in immune cells, or vice versa) between the cancer cell line and immune cells are intersected with GENCODE v38 gene-level annotations. These features are then subject to pathway enrichment analysis using different curated pathway sets in EnrichR.

Supplementary Figure 14. Experimental admixtures. Experimental admixtures were performed between digested nucleosomes of the cancer cell line GP2D and healthy donor PBMCs. Various mixture fractions and input amounts are shown.

Supplementary Figure 15. Gene-level visualization for longitudinally collected plasma samples for patient P6199. (A) Gene-level methylation is shown from the analysis of longitudinal cfDNA data as well as the matched tumor and immune methylomes. The top and bottom 25 genes with differing methylation between the primary tumor and immune cells were selected. Gray boxes indicate no reads were obtained for that sample. (B) The number of tumor-specific differentially methylated genes found to be matching in cfDNA is shown for each time point. Differentially methylated genes were defined as those with the largest difference in methylation between the primary tumor and immune cells. Such methylated genes observed in cfDNA are defined as matching the primary tumor when its methylation state (eg. hypermethylation or hypomethylation) is concordant. Specific time points are annotated with asterisks to denote clinical events with significant changes in methylation.

P4822 – Metastatic pancreatic neuroendocrine carcinoma

Supplementary Figure 16. Gene-level visualization for patient P4822 with metastatic pancreatic neuroendocrine carcinoma. Gene-level methylation is shown from the analysis of longitudinal cfDNA data as well as the matched tumor and immune methylomes. The top and bottom 25 genes with differing methylation between the primary tumor and immune cells were selected. Gray boxes indicate no reads were obtained for that sample.

P6527 – Intrahepatic cholangiocarcinoma

Supplementary Figure 17. Gene-level visualization for patient P6527 with metastatic cholangiocarcinoma. Gene-level methylation is shown from the analysis of longitudinal cfDNA data as well as the matched tumor and immune methylomes. The top and bottom 25 genes with differing methylation between the primary tumor and immune cells were selected. Gray boxes indicate no reads were obtained for that sample.

Supplementar	y Table 1. Sequencing Metrics	Europiment/Cohort	# made	# elianed	9/ aligned	# CaC aites assuranced	Convension run beteb ID	Bun NEO	Bun Chasses > 07	Number of flow collo
Patient	Sample R6604 puck	Experiment/Conort	# reads	# aligned	% aligned	# CpG sites sequenced	1234	285	17.05	Number of flow cells
P0004	P0004_IIUCI	Protocol Comparison - This work - Sng - Tepilcate 1	7.04M	0.47M	00%	N/A	1234	203	17.05	1
P0004	P0004_IIUCI	Protocol Comparison - This work - Sing - replicate 2	7.65W	0.7 SM	00%	N/A	1234	200	17.05	
P0004	P6604_nucl	Protocol Comparison - This work - ong - replicate 3	9.49M	4.70M	50%	N/A	1234	200	17.05	1
P0004	P6604_nucl	Protocol Comparison - This work - Ting - replicate 1	1.84M	1.44M	/8%	N/A	1234	265	17.05	
P0004	P6604_huci	Protocol Comparison - This work - Ing - replicate 2	1.61M	1.31M	82%	N/A	1234	265	17.05	
P6604	P6604_nucl	Protocol Comparison - This work - 1ng - replicate 3	1.69M	1.36M	81%	N/A	1234	285	17.05	1
P6604	P6604_nucl	Protocol Comparison - This work - 0.5ng - replicate 1	.89M	./1M	79%	N/A	1234	285	17.05	1
P6604	P6604_nucl	Protocol Comparison - This work - 0.5ng - replicate 2	1.37M	.82M	60%	N/A	1234	285	17.05	1
P6604	P6604_nucl	Protocol Comparison - This work - 0.5ng - replicate 3	.81M	.63M	77%	N/A	1234	285	17.05	1
P6604	P6604_nucl	Protocol Comparison - This work - 0.1ng - replicate 1	.21M	.13M	60%	N/A	1234	285	17.05	1
P6604	P6604_nucl	Protocol Comparison - This work - 0.1ng - replicate 2	.37M	.16M	42%	N/A	1234	285	17.05	1
P6604	P6604_nucl	Protocol Comparison - This work - 0.1ng - replicate 3	.34M	.14M	43%	N/A	1232	260	1.78	1
P6604	P6604_nucl	Protocol Comparison - ONT NBD196 protocol - 5ng - replicate 1	1.57M	1.34M	85%	N/A	1232	260	1.78	1
P6604	P6604_nucl	Protocol Comparison - ONT NBD196 protocol - 5ng - replicate 2	1.49M	1.26M	84%	N/A	1232	260	1.78	1
P6604	P6604_nucl	Protocol Comparison - ONT NBD196 protocol - 5ng - replicate 3	1.43M	1.22M	85%	N/A	1232	260	1.78	1
P6604	P6604 nucl	Protocol Comparison - ONT NBD196 protocol - 1ng - replicate 1	.33M	.27M	84%	N/A	1232	260	1.78	1
P6604	P6604 nucl	Protocol Comparison - ONT NBD196 protocol - 1ng - replicate 2	.34M	.28M	84%	N/A	1232	260	1.78	1
P6604	P6604 nucl	Protocol Comparison - ONT NBD196 protocol - 1ng - replicate 3	.43M	.36M	84%	N/A	1232	260	1.78	1
P6604	P6604 nucl	Protocol Comparison - ONT NBD196 protocol - 0.5ng - replicate 1	.12M	.10M	83%	N/A	1232	260	1.78	1
P6604	P6604 pucl	Protocol Comparison - ONT NBD196 protocol - 0.5ng - replicate 2	13M	10M	83%	N/A	1232	260	1.78	1
P6604	P6604 pucl	Protocol Comparison - ONT NBD196 protocol - 0.5ng - replicate 3	13M	11M	84%	N/A	1232	260	1.78	1
P6604	P6604 pucl	Protocol Comparison - ONT NBD196 protocol - 0 1pg - replicate 1	03M	02M	82%	N/A	1232	260	1.78	1
P6604	P6604_nucl	Protocol Comparison ONT NBD196 protocol 0 Ing. replicate 2	02M	.02M	80%	N/A	1232	260	1.70	1
P6604	P6604_nucl	Protocol Comparison - ONT NBD 196 protocol - 0. Ing - replicate 2	03M	02M	91%	N/A	1232	260	1.70	1
CD3D	CD2D_must	In elies administra	07.0614	00.64M	01%	56.41M	1105	£40	41.07	1
GF2D DRC04	GF2D_IUCI	In slice admixture	97.00W	101.00M	93%	30.4 IW	1195	2940	41.57	1
Administration	Adminture	Eventimental administrate E00 pg 1009/ CB2D	4414	1111	26%	42.0200	1170	201	20.73	1
Admixture	Admixture	Experimental admixture - 500 pg - 100% GP2D	.4110	.11M	20%	. 151M	1172	290	2.78	
Admixture	Admixture	Experimental admixture - 500 pg - 50% GP2D	.04M	.18M	29%	.16M	1172	296	2./0	
Admixture	Admixture	Experimental admixture - 500 pg - 10% GP2D	.5110	.2310	444.70	.1/M	1172	290	2.78	
Admixture	Admixture	Experimental admixture - 500 pg - 5% GP20	Moo.	.2/M	40%	.19M	11/2	296	2./8	1
Admixture	Admixture	experimental admixture - 250 pg - 100% GP2D	.33M	Mcu.	16%	.U8M	11/2	296	2./8	1
Admixture	Admixture	Experimental admixture - 250 pg - 50% GP2D	.28M	.u8M	29%	.UBM	1172	296	2.78	1
Admixture	Admixture	Experimental admixture - 250 pg - 10% GP2D	.44M	.12M	26%	.08M	1172	296	2.78	1
Admixture	Admixture	Experimental admixture - 250 pg - 5% GP2D	.42M	.12M	29%	.09M	1172	296	2.78	1
Admixture	Admixture	Experimental admixture - 125 pg - 100% GP2D	.46M	.03M	7%	.04M	1172	296	2.78	1
Admixture	Admixture	Experimental admixture - 125 pg - 50% GP2D	.34M	.04M	13%	.04M	1172	296	2.78	1
Admixture	Admixture	Experimental admixture - 125 pg - 10% GP2D	.48M	.06M	12%	.04M	1172	296	2.78	1
Admixture	Admixture	Experimental admixture - 125 pg - 5% GP2D	.48M	.06M	13%	.05M	1172	296	2.78	1
Admixture	Admixture	Experimental admixture - 63 pg - 100% GP2D	.27M	.02M	8%	.03M	1172	296	2.78	1
Admixture	Admixture	Experimental admixture - 63 pg - 50% GP2D	.41M	.04M	10%	.04M	1172	296	2.78	1
Admixture	Admixture	Experimental admixture - 63 pg - 10% GP2D	.45M	.05M	11%	.04M	1172	296	2.78	1
Admixture	Admixture	Experimental admixture - 63 pg - 5% GP2D	.15M	.05M	32%	.04M	1172	296	2.78	1
P6600	P6600 plas	20 patient cohort - Healthy Control	3.01M	1.37M	46%	3.02M	1140	360	50.22	2
P6601	P6601 plas	20 patient cohort - Healthy Control	4.56M	1.69M	37%	3.71M	1140	360	50.22	2
P6602	P6602 plas	20 patient cohort - Healthy Control	6.97M	2.10M	30%	3.12M	1140	360	50.22	2
P6603	P6603 plas	20 patient cohort - Healthy Control	2.64M	.66M	25%	1.77M	1140	360	50.22	2
P2574	P2574_3331A	20 patient cohort - Cancer	16.42M	14.54M	89%	11.66M	1051	270	173.67	4
P2592	P2592 3329A	20 patient cohort - Cancer	2 19M	1.95M	89%	2.07M	1051	270	173.67	4
P2621	P2621 2217A	20 patient cohort - Cancer	2.15W	1.69M	90%	2.07M	1051	270	173.67	4
P4776	P4776 3210A	20 patient cohort - Cancer	2 71M	2.27M	03%	2.200	1051	270	173.67	4
P4/70	P5070 2220A	20 patient cohort - Cancer	107.66M	170.90M	91%	52.49M	1051	270	173.67	4
D741	D741_2202A	20 patient cohort - Cancer	1.0714	1.00M	70%	32.4000	1051	270	173.67	4
F/41	F741_3303A	20 patient cohort - Cancer	1.07M	1.20M	70%	2.39W	1051	270	173.07	4
P9075	P9075_3301A	20 patient conort - Cancer	1.60M	1.40M	88%	1.69M	1051	270	1/3.0/	4
P9076	P9076_3305A	20 patient cohort - Cancer	2.59M	2.37M	91%	2.94M	1051	270	1/3.6/	4
P9077	P9077_3307A	20 patient cohort - Cancer	72.23M	64.74M	90%	33.69M	1051	270	173.67	4
P9078	P9078_3309A	20 patient cohort - Cancer	59.52M	54.30M	91%	35.20M	1051	270	173.67	4
P9079	P9079_3311A	20 patient cohort - Cancer	2.01M	1.71M	85%	2.11M	1051	270	173.67	4
P9080	P9080_3313A	20 patient cohort - Cancer	10.37M	9.45M	91%	8.83M	1051	270	173.67	4
P9081	P9081_3315A	20 patient cohort - Cancer	2.11M	1.63M	77%	2.14M	1051	270	173.67	4
P9082	P9082_3321A	20 patient cohort - Cancer	13.85M	12.40M	90%	10.34M	1051	270	173.67	4
P9083	P9083_3323A	20 patient cohort - Cancer	52.56M	47.41M	90%	30.97M	1051	270	173.67	4
P9084	P9084_3325A	20 patient cohort - Cancer	2.82M	2.47M	88%	3.35M	1051	270	173.67	4
P9085	P9085_3327A	20 patient cohort - Cancer	8.91M	7.88M	88%	6.78M	1051	270	173.67	4
P9086	P9086_3333A	20 patient cohort - Cancer	.81M	.67M	83%	2.64M	1051	270	173.67	4
P9087	P9087 3335A	20 patient cohort - Cancer	1.35M	1.20M	89%	2.11M	1051	270	173.67	4
P9088	P9088 3337A	20 patient cohort - Cancer	54.10M	49.21M	91%	29.96M	1051	270	173.67	4
P6199	P6199 19520	Longitudinal	25.65M	22.92M	89%	17.18M	1205	267	183.5	5
P6199	P6199 19526	Longitudinal	11.40M	10.20M	90%	7.72M	1205	267	183.5	5
P6199	P6199 19572	Longitudinal	17.67M	15.86M	90%	13.55M	1205	267	183.5	5
P6199	P6199 19585	Longitudinal	9.10M	8.08M	89%	6,25M	1205	267	183.5	5
P6199	P6199 19620	Longitudinal	9.89M	8,93M	90%	8,85M	1205	267	183.5	5
P6199	P6199 21306	l ongitudinal	27.27M	24 86M	91%	18 69M	1205	267	183.5	5
D2100	D6100_21300	Longitutitet	6 02M	5 40M	0170	6 AGM	1200	201	182 5	J F
P6199	P6199 21381	l ongitudinal	13.33M	12 02M	90%	12 43M	1205	267	183.5	5
P6100	P6100_21/001	Longitudinal	11 01M	10.6714	90%	9 7014	1205	267	183.5	5
P6199	P6199 21465	l ongitudinal	9.46M	8.47M	90%	8.28M	1205	267	183.5	5
P6199	P6199_21488	Longitudinal	10.23M	9.32M	91%	9.63M	1205	267	183.5	5
D6100	D6100_21900	Longitudinal	A 97M	0.J2W	9170	a.dow	1036	343	110.0	3
P6100	P6199_21530	Longitudinal	4.07M	5 / 1M	00% QD%	4.31M	1030	3/3	110.13	4
D2100	D6100_21049	Longitutitet	0.02W	2.4111	95%	0.44W	1030	340	110.13	+
P0199	P0199_21041 D6100_04674	Longitudinal	3.13M	2.0/M	00% 90%/	2.08M	1030	343	110.10	4
P0199	P0199_210/1	Longitudinal	1./UM	0.0/M	05%	7.08M	1030	343	113.13	4
P6199	Po199_immune	Longitudinal	14.94M	14.65M	98%	M98.00	1146	2.01K	41.91	1
P6199	P6199_primary	Longitudinal	29.43M	29.04M	99%	57.99M	1147	2.51k	50.44	1
P4822	P4822_18277	Longitudinal	57.12M	51.23M	90%	30.81M	1205	267	183.5	5
P4822	P4822_18284	Longitudinal	23.61M	20.94M	89%	17.07M	1205	267	183.5	5
P4822	P4822_18309	Longitudinal	26.81M	24.14M	90%	19.17M	1205	267	183.5	5
P4822	P4822_18317	Longitudinal	46.14M	41.39M	90%	27.94M	1205	267	183.5	5
P4822	P4822_18404	Longitudinal	33.10M	29.69M	90%	22.19M	1205	267	183.5	5
P4822	P4822_18452	Longitudinal	37.91M	33.91M	89%	24.78M	1205	267	183.5	5
P4822	P4822_19469	Longitudinal	30.17M	26.79M	89%	18.89M	1205	267	183.5	5
P4822	P4822_19502	Longitudinal	12.90M	11.51M	89%	8.03M	1205	267	183.5	5
P4822	P4822_21383	Longitudinal	8.46M	7.60M	90%	6.03M	1205	267	183.5	5
P4822	P4822 21431	Longitudinal	8.28M	7.24M	87%	7.13M	1205	267	183.5	5
P4822	P4822 21518	Longitudinal	4.35M	3.87M	89%	3.97M	1205	267	183.5	5
P4822	P4822 21540	Longitudinal	4.64M	4.02M	87%	4.21M	1205	267	183.5	5
P4822	P4822 21581	Longitudinal	2.52M	2.26M	90%	2.05M	1205	267	183.5	5
P4822	P4822 21682	Longitudinal	2.55M	2.24M	88%	2.50M	1205	267	183.5	5
P4822	P4822 22186	Longitudinal	4,93M	4,44M	90%	5.38M	1205	267	183.5	5
P4822	P4822 immune	Longitudinal	13.08M	12.90M	99%	57,90M	1223	17.82k	81.89	1
P4822	P4822 primary	l ongitudinal	27.39M	26.97M	98%	57 70M	1206	8.18k	80.27	1
P8527	P6527 19633	l ongitudinal	4 71M	3.82M	81%	5.29M	1139	367	91.96	4
P6527	P6527 21240	Longitudinal	6.4214	5.05M	70%	6.92M	1130	367	91.96	4
D2507	D8527 24440	Longitutitet	0.43M	3.00W	7/0	0.00W	1100	307	01.00	+
P002/	P0321_21410 D6527_24602	Longitudinal	4.40M	3.31M	/4% 00%/	3./5M	1139	307	91.90	4
P002/	P0321_21002	Longitudinal	10.08M	14.90M	9U%	10.30M	1139	307	31.30	4
P6527	P652/_21639	Longitudinal	2./8M	1.90M	80	2.38M	1139	367	91.96	4
F002/	Posoz :	Longitudinal	17.3UM	10.99M	90%	30.23M	1100	0.09K	30.33	1
P6527	P6527_primary	Longitudinal	31.53M	31.07M	99%	58.27M	1151	5.82K	90.1	1

Supplementary Table 2. Patient Information

Patient	Sequencing run batch ID	TNM staging reported at surgery	Number of time points	Primary tumor available/sequenced
P4822	Metastatic Pancreatic Neuroendocrine Carcinoma	N/A	14	Y
P6199	Invasive Adenocarcinoma, Poorly Differentiated, Extending Into Pericolonic Soft Tissue	ypT3 pN2b	15	Y
P6527	Intrahepatic Cholangiocarcinoma, Moderately Differentiated	ypT2 pN0	5	Y
P9075	Invasive Adenocarcinoma	pT3 pN2a	1	N
P741	Moderately Differentiated Colorectal Adenocarcinoma	pT4 pN2 pM1	1	Ν
P9076	Recurrent Adenocarcinoma, Colorectal Primary	pT3 pN1a	1	Ν
P9077	Invasive Adenocarcinoma	pT3 pN1b pM1a	1	N
P9078	Invasive Adenocarcinoma	урТ2 урN0 урМ0	1	Ν
P9079	Adenocarcinoma, Cribriform Comedo Type	pT2 pN0	1	Ν
P9080	Invasive Adenocarcinoma/Metastatic Adenocarcinoma	ypT2 ypN2a ypM1	1	Ν
P9081	Invasive Adenocarcinoma	ypT4b ypN0	1	Ν
P3621	Invasive Colorectal Adenocarcinoma	pT3 pN0	1	N
P4776	Invasive Adenocarcinoma	pT4b pN1b	1	N
P9082	Metastatic Adenocarcinoma, Colorectal Primary	pT4b pN1b	1	Ν
P9083	Metastatic Adenocarcinoma	N/A	1	Ν
P9084	Metastatic Adenocarcinoma, Colorectal Primary	N/A	1	N
P9085	Metastatic Adenocarcinoma, Colorectal Primary	ypT4b pN0 pM1a	1	N
P2592	Metastatic Adenocarcinoma In Three Of Four Lymph Nodes	N/A	1	N
P2574	Metastatic Adenocarcinoma, Colorectal Primary	T3N0	1	N
P9086	Metastatic Adenocarcinoma,Colorectal Primary	ypT1 pN1c pM1a	1	N
P9087	Metastatic Adenocarcinoma, Colonic Primary	pT3 pN1a	1	Ν
P9088	Metastatic Adenocarcinoma, Colorectal Primary	N/A	1	Ν
P5070	Metastatic Adenocarcinoma	N/A	1	N

Supplementary Table 3.	Genes with significant r	nethylation differences	s between healthy and patient-derived cfDNA in 20 patient cohort	

_		Mean difference		
Gene	q-value (fdr adjusted)	between groups		
0.515	0.705.00	(healthy - cancer)		
SPIB	3.70E-06	-41.39933674		
	6.52E-06	-53.22244908		
	2.30E-05	18.210444		
	0.00015059	-3/ 8770/316		
SI C25A1	0.000102290	60 80150323		
FLAC2	0.000102290	25.31557705		
ZNE572	0.000503628	-59 14379304		
ENPP4	0.000600976	45.02995548		
GPER1	0.000616948	26,90489456		
PLAGL2	0.000616948	37,94148816		
RPUSD4	0.000616948	37.03039294		
NUF2	0.000836028	-20.19624653		
SMIM10L2A	0.00083887	54.84387916		
GJC1	0.001031567	33.99002109		
ILRUN	0.001163916	10.93166634		
ZNF414	0.001198392	-60.93005356		
ZNF772	0.001198392	35.83525929		
ELL2	0.00154547	-30.51454594		
KLHL11	0.00154547	33.69456263		
LGR4	0.00160918	-20.65861339		
LHCGR	0.001730388	20.15967146		
ADGRG4	0.002000412	29.8121374		
CTD-2545M3.6	0.002000412	-41.10365785		
ELAPOR2	0.002000412	17.26097167		
MGMT	0.002000412	9.027538374		
NME1	0.002177991	-51.33222625		
NRTN	0.002240827	20.54819725		
USGEPL1	0.002240827	33.21504636		
AMDHD1	0.002413003	36.1677824		
MCHR2	0.002413003	25.94704782		
ROGDI	0.002413003	43.62026154		
ZNF774	0.002664044	33.96611201		
RER1	0.003040081	26.67522645		
OPN1MW2	0.00313277	29.30895359		
IUG1	0.00313277	44.06717689		
CAPN11	0.003149901	24.94768262		
MRPL52	0.003149901	-40.1475143		
NIAA I 145	0.003187013	24.34507503		
	0.00397628	27.17030470		
	0.004010930	29.90009000		
PUS3	0.004010330	43 49319279		
LAMP2	0.004263724	22 05689646		
	0.004563378	5 681992433		
TRIM51	0.004563378	43 78787467		
UCN	0.004563378	73.24983018		
CD79A	0.005618985	-48.92757848		
DNHD1	0.005909211	11.01400976		
ADAMTS14	0.006008943	12.90419821		
RNA5S5	0.006008943	51.83139542		
ULBP3	0.006008943	33.96751199		
EPPIN	0.006158961	44.53709195		
SSU72	0.006158961	20.63218936		
ZBTB22	0.006220455	-38.11904119		
FAIM	0.006354143	34.27565271		
TCTA	0.006503272	52.32468329		
OR4D2	0.006583676	39.60481249		
RETSAT	0.006583676	32.24024626		
RNFT1	0.006583676	-46.78586976		
HSD3B7	0.006606003	36.44872641		
NXF2	0.006695395	17.65769516		
DICER1	0.007310389	14.5453317		
CNKSR2	0.007376806	22.62391933		
MAGEA9B	0.007376806	32.9689437		
GST12B	0.007446381	42.193184/1		
ICLIB	0.007570005	30.32851384		
NEEDLO	0.007693346	30.20/30500		
	0.00/003310	22.90929200		
	0.000110172	14 66409014		
	0.000110172	-14.00498911		
	0.000010009	-23 80202624		
MRPS18A	0.000000900	23.03202034		
CCDC71	0.000302290	43 7421700		
	0.009340920	33 05517025		
	0.009000009	48 04111602		
OR1301	0.00900009	34 48073445		
GPATCH4	0 009717014	-44 38019697		
EPS8I 3	0.009012777	15 53967346		
2, 3010	0.000012111	10.00001040		

		Mean difference		
Gene	q-value (fdr adjusted)	between groups		
		(healthy - cancer)		
ADAMTS5	0.000744332	74.3651579		
ATP6V1C2	0.000744332	55.08625782		
GOLGA3	0.001040288	-65.84314568		
LMBR1L	0.001143591	-52.98385531		
ZNF70	0.001740186	68.29381334		
IQCE	0.001868279	43.21712284		
MCTS2P	0.001868279	-73.84181981		
NARS1	0.001868279	52.76182828		
PRMT6	0.001868279	-62.78849577		
RBM3	0.001868279	-62.67878454		
RFC4	0.001868279	-67.19968029		
TNRC6A	0.001868279	57.38201821		
ZNF302	0.001868279	62.41968858		
ZNF347	0.001868279	66.00328427		
ZNF547	0.00226444	-40.24916908		
LTA4H	0.003035531	-66.28461522		
AC003002.4	0.003871603	-39.316108		
GRAMD2B	0.003871603	-67.33218618		
TRAPPC2B	0.003871603	-39.316108		
TRIM37	0.004194124	63.26893732		
NCKIPSD	0.004398915	-56.20384937		
ABRAXAS2	0.004432868	50.25232108		
TMC6	0.004432868	-45.85008315		
TSSK4	0.004432868	-74.37285432		
S100A6	0.004875013	63.98208544		
TASOR	0.005014826	54.74321695		
LACTB2	0.005026056	51.95163346		
NUMBL	0.005026056	-46.12731636		
SYNJ1	0.005026056	44.01968376		
HLX	0.005736971	-26.0744204		
C11orf49	0.006799178	49.14447271		
SOS2	0.006799178	47.26719909		
TRA2B	0.006865967	53.18400708		
CCDC63	0.007253305	40.34577853		
TATDN3	0.007253305	53.71590157		
TRNT1	0.007253305	60.64754018		
ZNF512	0.007253305	43.96701187		
RP11-529K1.3	0.007464227	-50.32722662		
MRPL53	0.008000474	55.96806399		
ZNRF2	0.009027935	58.57515035		
TCAP	0.009356029	44.62004723		
ANKRD52	0.009626255	57,78896067		

• • •	T 1 1 4	D (1 1 1 1 1 1 1 1 1		1 1/1 1		(D) A . 00	
Sunniamontary		Promotor ro	aione with ei	aniticant moth	VISTION RITTOR	ancae hatwaan	noaltny and	notiont_dorivod	CTUNIA IN 20	nationt conort
JUDDICITICITIAT			uiuiis wiiii si	annicant incu	viation unier	CIICES DELWEEII	nealling and	ballent-derived		ραιιστιί συτιστί

Supplementary Table 5. Methods Comparison									
Method	Sequencing Platform	Resolution	PCR-free	Input requirement	Comments				
This work	Oxford Nanopore	Base-pair	Yes	pg to ng	Utlizes LSK110 latest chemistry on R9.4.1 flow cells				
Conventional Nanopore	Oxford Nanopore	Base-pair	Yes	>40ng	Barcoding adapters are stuck with an previous generation sequencing adapter				
Bisulfite	llumina	Base-pair	No	tens to hundreds of ng					
Enzymatic	llumina	Base-pair	No	tens to hundreds of ng					
cfMeDIP-Seq	Illumina	Binned	Yes	ng to hundreds of ng	requires carrier				

Supplementary Table 5 Methods Comparison