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Supplementary figure 1. Linear encoding of the kinematics of microsaccades by mossy fibers 29 
(MFs). a, b, c Population response of burst-tonic (BT, purple, n=24), short-lead burst (SL, 30 
brown, n=27) and long-lead burst (LL, green, n=60) MFs to saccades of different peak 31 
velocities (PV, see insets for average velocity profiles), represented by different shades. d, e, 32 
f Average peak firing rate as a function of saccade peak velocity (bin size=20 deg/s) for each 33 
MF category. Linear regression parameters: Burst-tonic: p=0.012, R2=0.85; Short-lead burst: 34 
p=0.01, R2=0.85; Long-lead burst: p=0.001, R2=0.95. g, h, i Average burst offset relative to 35 
saccade onset as a function of saccade duration (calculated from velocity bins) for each MF 36 
category. Linear regression parameters, Burst-tonic: p=0.18, R2=0.21; Short-lead burst: 37 
p=0.01, R2=0.02; Long-lead burst: p=0.22, R2=0.44. Solid gray lines represent the linear 38 
regression fits. Dark and light-colored bins correspond to the high and low peak velocity bins, 39 
respectively, for which population responses in a, b and c are plotted for comparison. Data 40 
are mean±SEM. 41 
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Supplementary figure 2. MF and PC units appear continuous in their distributions. a 45 
Coefficients of MFs for the first (Left) and second (Right) dimension in the MF manifold. 46 
Horizontal bar: median. Vertical bar: Range from the first to third quantile. b 2D scatterplot for 47 
the coefficients in a. Note a nearly continuous distribution of data points with significant 48 
overlaps between BT (n=24 units), SL (n=27 units) and LL (n=60) MF types (denoted by 49 
colors). c Average firing response of all PCs categorized into burst (n=107 units; blue), pause 50 
(n=99; orange), burst-pause (green; 72) and pause-burst (n=24; red) types by threshold-based 51 
labeling (dashed lines) and linear discriminant analysis (LDA). Purple dashed lines indicate 52 
the average response of those PCs units (n=17) which could not be classified into any of the 53 
four categories by the threshold-based method. d 2D scatterplot of the coefficients of first two 54 
principal components identified by the PCA for individual PC units recorded for centrifugal (CF, 55 
circles) and centripetal (CP, triangles) saccades. Dashed lines indicate the decision 56 
boundaries estimated by the LDA. Colors represent the PC category. Note, the overlap 57 
between different categories.            58 
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Supplementary figure 3. MF and PC-SS linear firing rate models. a Schematic illustration 64 
showing the steps involved in the construction of a rate model for individual (MF and PC) 65 
units/neurons using PV as the control kinematic parameter for the model. From the time-66 
dependent firing rate estimations for individual trials of a given unit (Left), we create the linear 67 
regression model of movement kinematics, such as PV, versus firing rates at each time point 68 
(Middle). For example, given a linear dependence of MF or PC-SS firing rates on saccade PV, 69 
a randomly chosen saccade with high PV will be associated with higher firing rates (fast trial, 70 
dark green) as compared to a low PV saccade (slow trial, light green) and the difference 71 
between firing rates will be more pronounced during the initial phase of a saccade. Also, the 72 
slopes of regression will be much steeper at time points that fall within the peri-saccadic period 73 



In pre- and post-saccadic periods, where fast and slow trials can no longer be differentiated 74 
by PV, the differences in firing rates will also eventually disappear and the slopes will also be 75 
flatter. From the center (mean) and slope of the result, we obtain the kinematics-independent 76 
and dependent components (Right). b,c Top: Heat-map showing PV-independent (R0) and 77 
dependent components (∂PVR) for individual MF (b) and PC models (c). Bottom: Population 78 
averages. The baseline firing rates are subtracted. d Pseudo-population average firing rate 79 
for different PVs, computed from MF models in b. The red arrow indicates the point of burst 80 
offset. e Average peak firing rate (Left) and burst offset time (Right) vs PV from the models 81 
and test data. Goodness of fit: R2 = 0.929±0.005 (Left), 0.887±0.026 (Right). f,g Same plots 82 
as d,e but for PCs. R2 = 0.809±0.023 (Left), 0.619±0.095 (Right). Note that using the PV-and-83 
duration model did not significantly improve the predictions in e,g: peak firing rate vs PV, MFs: 84 
R2=0.929 ± 0.005, PCs: R2=0.791 ± 0.017; burst offset vs PV, MFs: R2=0.892 ± 0.021; PCs: 85 
R2=0.702 ± 0.05. Data are mean±SEM.   86 
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Supplementary figure 4.  Pseudo-population SS response for CS-ON and CS-OFF 130 
population of PCs. a PV-dependent population average firing rates. The red arrow indicates 131 
the point of burst offset. b Average peak firing rate (Left) and burst offset time (Right) versus 132 
PV from the models and test data in CS-OFF direction. Goodness of fit: R2 =0.689±0.051 133 
(Left), 0.433±0.121 (Right). c Same as a, but for CS-ON PCs. d Same plots as b but for CS-134 
ON PCs. R2 = 0.018±0.033 (Left), 0.092±0.088 (Right). The baseline rates are subtracted in 135 
all data. e,f Variance explained by each dimension in the PCA analysis of the PV-dependent 136 
components of the MF (e) and PC-SS models (f). Components with >78% are marked in red. 137 
Data are mean±SEM. Note that we did not apply physiologically unjustifiable normalizations 138 
to the PV-dependent components for MFs and PCs (inputs to the PCA) since individual units 139 
exhibit different discharge rates.   140 
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Supplementary figure 5. Step-by-step procedure for identifying manifolds. a PV-independent 145 
components of all MF units (parameter: PV). First, PCA is performed on the average PV-146 
independent components of individual MF units. b The first two principal components (or 147 
dimensions, red dots) of the PV-independent components explain a dominant fraction of cell-148 
to-cell variability. c Matrix perturbation analysis (see Methods and Supplementary Methods) 149 
computes PV-dependent changes in the first two dimensions, plotted against time. d MF 150 
manifolds are identified by plotting the first two dimensions against each other for different 151 
values of PV (shades of green). Note the separation of curves, depicting increase in manifold 152 
size, with increments in PV, both before and after saccade onset (triangles). Arrows indicate 153 
the direction of rotation. e-h Same as a-d, for PCs. Here, four dimensions explain majority of 154 
cell-to-cell variability. Note how the differences in manifold, in the first two dimensions, are 155 
limited to periods after saccade onset, whereas in the third and the fourth dimension, changes 156 
also appear before saccade onset. The trajectories for the third and fourth dimensions (h, 157 
bottom) are plotted only until 50 ms after saccade onset to highlight the changes occurring 158 
before saccade onset.  i-l Approximation of the movement parameter-dependent manifolds, 159 



based on the matrix perturbation theory (Equation 2 and Supplementary Methods), provides 160 
good accuracy. For different PVs, the true eigenvalues from PCA of the PC-SS data (solid) 161 
match the predictions of the matrix perturbation theory (dotted) well (i). The PV-dependent 162 
perturbation of the PCA eigenvectors (row) get significant contributions from a limited number 163 
of dimensions in the unperturbed eigenvectors (column). The coefficients (color) are 164 
normalized by N1/2, where N =151 is the number of PCs (j). Therefore, even when PV 165 
significantly deviates from the mean value (here PV=500°/s in k), Equation 2 (red dots) 166 
provides a good approximation of the principal components (here the fourth dimension; black 167 
solid) while ignoring the eigenvector perturbation (j) (black dotted; see Supplementary 168 
Methods) will lead to inaccuracy (k). This holds for all the principal components of the PC SS 169 
data and a wide range of PVs (l). 170 
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Supplementary figure 6. MF and PC-SS firing rate models and manifolds for different eye 200 
movement directions. a,b 2D plots of the MF manifolds from the left- and right-directed 201 
saccades. Insets show the population average of the PV-independent components of all MF 202 
firing rate models (control parameter: PV). c Canonical correlation of each dimension in the 203 
MF manifold between the left and right directions. Dotted line represents correlation=0.9. d-f 204 
Same plots as a-c for PC-SS manifolds. g-h 2D manifolds of PC-SSs separately for a 205 
population of CS-ON and CS-OFF PCs. Note that the similarity in d and e to g and h, 206 
respectively, is because most PCs had their CS-ON in leftward direction and CS-OFF in the 207 
rightward direction. i Same as f, but for PCs. 208 
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Supplementary figure 7. CSs influence PC-SS manifolds differently, depending on the error 217 
type, irrespective of its direction. a Illustration showing simulation of inward and outward 218 
errors. Gray circles with arrows represent individual PCs with preferred error direction (CS-219 
ON) Black arrows indicate over- and undershooting primary saccades, which could lead to 220 
inward (blue arrows) and outward errors (orange arrows) in individual recording sessions. 221 
Trials with CS activity (i.e., ‘CS-trials’) within the post-saccadic period of 50-140 ms are 222 
labelled as 1, and 0 otherwise (‘no CS-trials’). Depending on a PC’s CS-ON direction, every 223 
‘CS-trial’ is hypothesized to report an inward or outward error, and every ‘no CS-trial’ should 224 
report error in the opposite direction, regardless of whether these errors actually occur or not. 225 
We did this for every PC and combined all trials (with and without CSs) that reported outward 226 
and inward errors, separately, to determine the influence of CS in the simulated inward and 227 
outward error conditions. b Up: Manifolds when outward (left) and inward (right) errors 228 
occurred in trial ‘n’ accompanied by CS firing in the post-saccadic period. Down: Manifolds in 229 
the subsequent trial ‘n+1’ change differently for outward and inward errors, like those for 230 
simulated error trials shown in Fig. 5b. Filled triangles are saccade onsets and black arrows 231 



indicate the direction of rotation for all manifolds. c Manifolds for simulated post-inward and 232 
post-outward error trials controlled for error direction (i.e., Leftward errors). d Rotation speed 233 
as a function of manifold size for simulated post-inward (blue), post-outward (orange) and no-234 
CS control (gray) trials. e A comparison of normalized slope angles for each condition. Note 235 
that the error-type specific changes in manifolds are preserved, i.e., an outward error-related 236 
increase in manifold size (indicated by the relatively flatter slope of the orange curve as 237 
compared to No-CS) and inward-error related change in rotation speed (indicated by relatively 238 
steeper slope as compared to the No-CS condition), despite the error vector pointing in the 239 
same left direction. Data are jackknife mean±SEM from n=151 PCs. T-value (No-CS, 240 
Outward) =5.93, p=9.88x10-9; T-value (Outward, Inward) = -28.28, p=1.59x10-62; T-value (No-241 
CS, Inward) =-23.03, p=1.41x10-51. P-values are from one-sided Student t-tests. 242 
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Supplementary figure 8. Influence of CSs during 140-250 ms from saccade offset on 251 
subsequent trial’s PC-SS manifolds for simulated inward and outward errors. a Left: PC 252 
manifolds reflecting the combined influence of simulated outward errors on subsequent trials. 253 
Right: Same as left, but for inward errors. b Top: Manifold size versus rotation speed after the 254 
outward (orange) and inward (blue) error-encoding CS-trials, and after no-CS trials (grey). 255 
Color bar gradient represents PV from 500 deg/s (brightest) to 660 deg/s (darkest). Bottom: 256 
Comparison of normalized slope angles for each condition. Data are jackknife mean±SEM 257 
from n=151 PCs. T-val (No-CS, Outward) = -2.71; p=3.81x10-3, T-val (Outward, Inward) = -258 
17.18; p=1.22x10-37, T-val (No-CS, Inward) = -17.77; p=4.00x10-39. P-values are from one-259 
sided Student t-tests. c Top: Average saccade velocity profiles in the CS (black) and post-CS 260 
trials (colored) for the simulated outward (Left) and inward (Right) errors. For highlighting the 261 
differences in velocity profiles, colored lines represent the cumulative effect of five CSs. Note, 262 
how both inward and outward errors are corrected by changing the duration of the subsequent 263 
saccade, as suggested by relatively steeper slopes (or larger slope angles) in inward and 264 
outward error conditions shown in b. Bottom: Average eye velocity change from the CS to 265 
post-CS trials. Data are mean±SEM. *: p<0.05 (two-sided Student t-test).  266 
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Supplementary figure 9. Linear feed-forward network (LFFN) model for MF-to-PC 280 
transformation with PV and duration dependence. a Weight matrix of the MF-to-PC network 281 
model. b Goodness of fit for individual PCs. Colored circles represent the examples in c. 282 
Horizontal bar: Median. Vertical bar: Range from the first to third quantile. c PV-independent 283 
(Left), PV- (Middle), and duration-dependent (Right) component of example PC-SS rate 284 
models (black) and prediction by LFFN (color). The baseline rates are subtracted in the PV-285 
independent components. d A schematic illustration of the communication subspace model of 286 
MF-to-PC transformation. A communication subspace is a (d-dimensional) neural subspace 287 
of all MF activity that can best predict individual PC-SS rates given dimensionality d. See 288 
Supplementary Methods for how we found the communication subspace given d. e 289 
Goodness of fit for model prediction of PC-SS rates. Red dots represent d=2, 4, and 20. Data 290 
are mean±SEM. 291 
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Supplementary figure 10. Summary figure. 306 
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Supplementary methods 312 

Fitting the linear rate model to data 313 

In the main text, we modeled the firing rate vector of a “pseudo-population” containing N number of neurons, 314 
𝐑(𝑡, 𝐳) = [𝑅1(𝑡, 𝐳); 𝑅2(𝑡, 𝑣); … ; 𝑅𝑁(𝑡, 𝐳)], as 315 

𝐑(𝑡, 𝐳) = 𝐑0(𝑡) +∑𝛿

𝑧

𝑧 𝐑𝑧(𝑡). 316 

where 𝐑0 and ∂𝑧𝐑 are the kinematics-independent and dependent part, respectively. 𝛿𝑧 = 𝑧 − 𝑧0 is the 317 
deviation of z from the mean value of z, 𝑧0.  318 

We fitted this model to the MF and PC data in the following way: We first estimated the firing rate at each trial 319 
by the fractional interspike interval method1 (𝜏=5 ms). Other estimation methods, such as spike train 320 
smoothening by a Gaussian kernel, did not change the results. We sub-selected the firing rate data from t=-250 321 
ms to 250 ms and subtracted the baseline firing, estimated by averaging the firing rates from t=-250 ms to -150 322 
ms for each trial. By estimating the firing rate for every time bin (=1 ms), our firing rate data became a (𝑁trial, 𝑇)-323 
dimensional matrix for each neuron where 𝑁trial is a number of trials and 𝑇=501, the length of each trial. As for 324 
the kinematic parameters, peak velocity (PV) and duration were computed from an eye movement velocity 325 
profile for each trial. However, the distribution of saccade duration was skewed and can lead to inaccuracy in 326 
regression. In estimation, therefore, we used average velocity (AV), defined by 15°/(saccade duration), as a 327 
regression variable, instead of duration since the AV distribution was significantly more symmetric. Finally, we 328 
performed the multivariate linear regression of the firing rate data for the kinematic parameters 329 
(Supplementary fig. 3a) for each unit to find the model components for all unit data (Supplementary fig. 3b,c). 330 

We checked the explanation power of the model fitted to each unit data, especially ∂𝑧𝐑, by computing the 331 
Akaike information criterion (AIC). We found that AIC decreased significantly (P<0.01, Student t-test) in all units 332 
when the PV-dependence is added (∂PV𝐑) (MF: 𝛥AIC=-65.33 ± 5.39, PC: -23.76 ± 1.65). Also, AIC significantly 333 
decreased (P<0.01, Student t-test) in a majority of the units (MF: n=99, PC: 83) when duration-dependence is 334 
augmented (MF: 𝛥AIC=-23.60 ± 3.03, PC: -3.41 ± 0.48). Therefore, we confirmed that the model captured the 335 
true kinematic parameter-dependent trial-to-trial firing rate variability, not the data noise. 336 

We also tested whether the models can predict the average firing rate profile. To do so, we split each data set 337 
into two, the training and test data. Then, we first constructed the rate models based on the training data sets. 338 
All the trials in the test data are split based on PV bins whose centers were 500°/s, 520°/s, …, 660°/s and widths 339 
were 50°/s. We computed the PV-dependent average firing rate time series based on the estimated firing rates 340 
from the spike times of all the trials belonging to the PV bins. For each trial, we also computed the rate prediction 341 
from the training data and computed the prediction of the average firing rate in the same way as the test data 342 
(Supplementary fig. 3d,f). To test their agreement, we evaluated the peak firing rate and burst offset time as 343 
test measures for the average firing rates from the test data and model prediction (Supplementary fig. 3e,g). 344 
This procedure was carried out for two different types of models; first, those parametrized only by PV (i.e., 345 
z=[PV]) and the others with PV and duration (i.e., z=[PV, AV=15°/(duration)]). We observed only an insignificant 346 
increase in the model performance by including duration as a parameter: With the PV-only model, 𝑅2 for the 347 
peak firing rate versus PV were 0.929 ± 0.005 and 0.892 ± 0.023 for MFs and PCs, respectively. For the burst 348 
offset versus PV, 𝑅2=0.887 ± 0.026 for MFs and 0.619 ± 0.095. With the PV-and-duration model, 𝑅2 for the 349 
peak firing rate versus PV were 0.929 ± 0.005 for MFs and 0.791 ± 0.017 for PCs. For the burst offset versus PV, 350 
𝑅2=0.892 ± 0.021 for MFs and 0.702 ± 0.05 for PCs. 351 



Dimensionality Reduction by Principal Component Analysis with Perturbation 352 

We developed a simple variant of principal component analysis (PCA) to perform dimensionality reduction of 353 
the population firing rate model. We first assume that, with any specific kinematic parameters (in the range of 354 
experimental observations), we can find a good dimensionally reduced representation by performing PCA on 355 
the population firing. Then, we find an approximation of the population firing and its change with kinematic 356 
parameters by another dynamical process with lower dimensionality. Our goal is that if we perform PCA on this 357 
approximated population firing, the result will be sufficiently close to that of the original population firing for 358 
any kinematic parameters. In our experimental data, the trial-to-trial variabilities of kinematic parameters and 359 
firing rate are relatively small. In this case, we can use the matrix perturbation theory to find such an 360 
approximation of the population firing. 361 

Our result can be summarized by Equation 2 in Methods: Given the kinematic parameter z, if the time-362 
dependent population firing 𝐑(𝑡, 𝐳) of N neurons is described by a linear model in Equation 1, it can be 363 
approximated by the K-dimensional vectors 𝐏𝐾  and ∂𝑧𝐏𝐾  (K<N) as 364 

 
𝐑(𝑡, 𝐳) ≈ 𝐖(𝐏𝐾 + ∑ 𝛿𝑧 𝑧  ∂𝑧𝐏𝐾) + 𝐑⊥,

∂𝑧𝐏𝐾 = 𝐖†(∂𝑧𝐑) + (∂𝑧𝐖)†(𝐑0 −𝐖𝐏𝐾).
 (S1) 365 

where 𝐖 and ∂𝑧𝐖 are the weight matrices, as long as 𝐑0 admits 𝐑0 ≈ 𝐖𝐏𝐾  (Supplementary figure 5a,b and 366 
e,f) and ∂𝑧𝐑 is sufficiently small. Furthermore, when we perform PCA on 𝐑, the result is dominated by the first 367 
term since 𝐑⊥ makes a negligible contribution (see below). Therefore, we performed most of our manifold 368 
analysis in terms of 𝐏𝐾 + ∑ 𝛿𝑧 𝑧  ∂𝑧𝐏𝐾  (Supplementary figure 5c,d and g,h), without considering 𝐑⊥. An 369 
exception is the dimensionally reduced MF firings given to the linear feed-forward network as inputs (Figure 6). 370 
Here we use the full Eq. S1 for the approximate firing rates of individual neurons. 371 

Estimation of the model components 372 

In the first step, we performed PCA on the kinematic-independent component, 𝐑0 (Supplementary figure 5a,b 373 
and e,f). To do so, we computed the covariance matrix, 𝐂 = Cov[𝐑0(𝑡)]𝑡 and its eigenvalues {𝜆𝑛} (𝜆𝑖 ≥ 𝜆𝑗  for 374 
𝑖 > 𝑗) with the corresponding eigenvectors 𝐄 = [𝐄1, 𝐄2, … , 𝐄𝑁]. If the first K<N eigenvalues are dominant (see 375 
below for the determination of K), a dimensionally reduced approximation of 𝐑0 can be obtained by the 376 
projection of the population activity to a K-dimensional subspace of 𝐄 as 377 

𝐑0 ≈ 𝐖𝐏𝐾 , 𝐏𝐾 = 𝐖†𝐑0, 𝐖 = [𝐄1, … , 𝐄𝐾]. 378 

Then, in the second step, we approximated the full covariance matrix of 𝐑(𝑡, 𝐳) as 379 

�̂� = Cov[𝐑(𝑡, 𝐳)]𝑡 ≈ 𝐂 +∑𝛿

𝑧

𝑧  ∂𝑧𝐂, ∂𝑧𝐂 = Cov[𝐑0 , ∂𝑧𝐑]𝑡 + Cov[∂𝑧𝐑,𝐑0]𝑡 , 380 

assuming that the kinematics-dependent part is sufficiently small. When the second 𝛿𝑧-dependent terms are 381 
small, they can be considered as small perturbations. In that case, the Rayleigh–Schrödinger perturbation theory 382 
tells that eigenvalues {�̂�𝑛} and eigenvectors �̂� = [�̂�1, … , �̂�𝑁] of �̂� are approximately2,3, 383 

 
�̂�𝑛 ≈ 𝜆𝑛 + ∑ 𝛿𝑧 𝑧  ∂𝑧𝜆𝑛 ,  ∂𝑧𝜆𝑛 = 𝐄𝑛

†(∂𝑧𝐂)𝐄𝑛 ,

�̂�𝑛 ≈ 𝐄𝑛 +∑ 𝛿𝑧 𝑧  ∂𝑧𝐄𝑛 ,  ∂𝑧𝐄𝑛 = ∑
∂𝑧𝜆𝑛

𝜆𝑛−𝜆𝑘
𝑘≠𝑛 𝐄𝑘 .

 (S2) 384 

Supplementary figure 5i shows an example of the PC data. The change in the eigenvalues of the covariance 385 
matrix is well approximated by Eq. S2. Supplementary figure 5j shows how much contribution each ∂𝑧𝐄𝑖  gets 386 
from 𝐄𝑗. We can see that ∂𝑧𝐄3 and ∂𝑧𝐄4 especially get significant contributions not only from the first four 𝐄𝑗’s 387 
but also from the higher (K>4) dimensional components. 388 



Finally, by using the eigenvector perturbation in Eq. S2, we determined the rest of the components in Eq. S1, 389 

 
∂𝑧𝐖 = [∂𝑧𝐄1, ∂𝑧𝐄2, … , ∂𝑧𝐄𝐾],

𝐑⊥ = −∑ 𝛿𝑧 𝑧 𝐄⊥(∂𝑧𝐄⊥)
†𝐖𝐏𝐾 ,

 (S3) 390 

where 𝐄⊥ = [𝐄𝐾+1, … , 𝐄𝑁], and ∂𝑧𝐄⊥ = [∂𝑧𝐄𝐾+1, ∂𝑧𝐄𝐾+2, … , ∂𝑧𝐄𝑁]. We give the detailed derivation in the next 391 
section. Therefore, ∂𝑧𝐖 represents a contribution from the eigenvector perturbation, and we will call it an 392 
indirect projection, while we will call 𝐖†(∂𝑧𝐑) a direct projection term. On the other hand, 𝐑⊥ represents the 393 
K-dimensional approximation of 𝐑0 rotating out of the K-subspace by perturbation and makes a negligible 394 
contribution when we perform PCA. Supplementary figure 5k,l show that we can well predict the PCA results of 395 
the population firing given the changes in a kinematic parameter, PV, without 𝐑⊥, while the indirect projection 396 
part can make a substantial contribution. 397 

Determination of 𝑲 398 

As a final note, we explain how we determined K in the first step: we first found K components that explained 399 
more than 85% of the total variance in 𝐑0. This criterion gave us K = 2 and 4 for MFs and PCs, respectively. We 400 
also computed the participation ratio4,5, (∑ 𝜆𝑛𝑛 )2/∑ 𝜆𝑛

2
𝑛 , which estimated K=2 (MFs) and 3 (PCs), from 𝐑0. 401 

However, K=4 for PCs was more robust when we varied kinematic parameters or hyperparameters such as the 402 
smoothing time scale for rate estimation. Finally, the cross-validation analysis for PCA6 of 𝐑0 also confirmed K=2 403 
and 4: We first randomly selected 70% of elements in 𝐑0 matrix (“test data”) and replaced them by Gaussian 404 
random numbers, leaving the other 30% of the “training data” untouched. Using the data with random 405 
replacements, we repeatedly performed PCA until we got the stable prediction of the test data. Then, we 406 
computed the cross-validation error by the squared sum of the differences between the predicted and real test 407 
data. This procedure was repeated 200 times for each K from 2 to 20. We found that the cross-validation error, 408 
averaged over the repetitions, was minimal at K=2 and 4 for the MF and PC data, respectively. 409 

Derivation of Eq. S1 and S3 410 

Given the perturbed eigenvectors in Eq. S2, the projection of the population activity to them, �̂�, is 411 

�̂� = �̂�†𝐑 ≈ 𝐏 +∑𝛿

𝑧

𝑧{𝐄†(∂𝑧𝐑) + (∂𝑧𝐄)
†𝐑0} 412 

where 𝐄 = [𝐄1, … , 𝐄𝑁] and ∂𝑧𝐄 = [∂𝑧𝐄1, … , ∂𝑧𝐄𝑁]. If the left inverse of �̂�† is �̂� = 𝐔 + ∑ 𝛿𝑧 𝑧  ∂𝑧𝐔 + 𝑂(𝛿𝑧2), 413 
we get 𝐔 = 𝐄 and ∂𝑧𝐔 = −𝐄(∂𝑧𝐄)

†𝐄, from the condition �̂��̂�† = 𝟏. 414 

Now we find the low dimensional representation �̂�𝐾  by keeping only the first K components of �̂�, i.e. �̂�𝐾 = (�̂�)
𝐾

 415 

where (⋅)𝐾 denotes selecting only the first K rows in a matrix. With �̂� = [�̂�1, �̂�2, … , �̂�𝐾] and again 𝐖 =416 
[𝐄1, 𝐄2, … , 𝐄𝐾], 417 

𝐑 ≈ �̂��̂�𝐾 = 𝐖𝐏𝐾 +∑𝛿

𝑧

𝑧{𝐖(∂𝑧𝐏)𝐾 + (∂𝑧𝐔∥)𝐏𝐾} + 𝑂(𝛿𝑧2) 418 

where ∂𝑧𝐔∥ = [∂𝑧𝐔1, ∂𝑧𝐔1, … , ∂𝑧𝐔𝐾]. 419 

Through a little algebra, this equation can be rewritten as 420 

𝐑 ≈ 𝐖𝐏𝐾 + ∑𝛿

𝑧

𝑧 𝐖𝐖†(∂𝑧𝐑) +∑𝛿

𝑧

𝑧 𝐖(∂𝑧𝐖)†(𝐑0 −𝐖𝐏𝐾)

−∑𝛿

𝑧

𝑧 𝐄⊥(∂𝑧𝐄⊥)
†𝐖𝐏𝐾

 421 



where ∂𝑧𝐖 = [∂𝑧𝐄1, ∂𝑧𝐄2, … , ∂𝑧𝐄𝐾]. 𝐄⊥ and ∂𝑧𝐄⊥ are both orthogonal to the 𝐾-subspace as 𝐄⊥ =422 
[𝐄𝐾+1, … , 𝐄𝑁], and ∂𝑧𝐄⊥ = [∂𝑧𝐄𝐾+1, ∂𝑧𝐄𝐾+2, … , ∂𝑧𝐄𝑁]. Defining 𝐑⊥ = −∑ 𝛿𝑧 𝑧 𝐄⊥(∂𝑧𝐄⊥)

†𝐖𝐏𝐾, we reach Eq. 423 
S1 and S3. 424 

 425 

Alignment of Two Manifolds by Canonical Correlation Analysis 426 

In the main text, we compared manifolds obtained from two or more different data sets, such as firings recorded 427 
with the left-directed saccades and those with the right-directed ones. We used canonical correlation analysis 428 
(CCA) to verify if a pair of manifolds can be related by a linear transformation7-9. We first used the CCA for the 429 
kinematics-independent components of two data sets to find the best linear alignment transformation between 430 
them. Then, we transformed the kinematics-dependent parts by the alignment transform and checked how well 431 
they match with each other. 432 

If there are two data called A and B, we denote the kinematics-independent components (𝐏𝐾  in Eq. S1) of their 433 
manifolds, 𝐏𝐴 and 𝐏𝐵, respectively. Also, we discretize time and consider them as 𝑁 × 𝑇 matrices instead of 434 
time-dependent vectors, where T is the length of trials. 435 

First, we perform the QR decomposition, 436 

𝐏𝑋
† = 𝐐𝑋𝐕𝑋, 𝑋 = 𝐴, 𝐵. 437 

From the singular value decomposition of the comparison matrix 𝐐𝐴
†𝐐𝐵 = 𝐔𝐴𝐒𝐔𝐵

† , we obtain the transformation 438 
matrices to the best aligned manifolds, �̃�𝐴 and �̃�𝐵, as 439 

�̃�𝑋
† = 𝐏𝑋

†𝐌𝑋 , 𝐌𝐴 = 𝐕𝑋
−1𝐔𝑋, 𝑋 = 𝐴, 𝐵. 440 

The diagonal elements of 𝐒 are correlations between �̃�𝐴 and �̃�𝐵. We obtain a representation of 𝐏𝐵  aligned to A 441 

𝐏𝐵→𝐴
† = 𝐏𝐵

†𝐓𝐵→𝐴, 𝐓𝐵→𝐴 = 𝐌𝐵𝐌𝐴
−1/𝑁, 442 

where 𝑁 is a norm of 𝐌𝐵𝐌𝐴
−1 to maintain the size difference between two manifolds. Then, Eq. S1 becomes 443 

�̂�𝐵 ≈ 𝐖𝐵 (𝐏𝐵 +∑𝛿

𝑧

𝑧  ∂𝑧𝐏𝐵) + 𝐑⊥

= 𝐖𝐵𝐓𝐴→𝐵
† 𝐏𝐵→𝐴 +∑𝛿

𝑧

𝑧 𝐖𝐵𝐓𝐴→𝐵
† 𝐓𝐵→𝐴

† ∂𝑧𝐏𝐵 + 𝐑⊥

= 𝐖𝐵→𝐴 {𝐏𝐵→𝐴 +∑𝛿

𝑧

𝑧  ∂𝑧𝐏𝐵→𝐴} + 𝐑⊥,

 444 

where 𝐖𝐵→𝐴 = 𝐖𝐵𝐓𝐴→𝐵
†  is a new weight matrix for 𝐏𝐵→𝐴 and ∂𝑧𝐏𝐵→𝐴 = 𝐓𝐵→𝐴

† (∂𝑧𝐏𝐵) is the aligned manifold 445 
perturbation. 446 

 447 

Linear Feed-forward Network (LFFN) Models 448 

In the main text, we considered three different types of LFFN. They commonly had the movement kinematics-449 
independent and dependent components for output variables (𝐘, ∂𝐳𝐘) and input (𝐗, ∂𝐳𝐗). Then, we compute 450 
the expectation value of the least-square error given the distribution of z, p(z), 451 



𝐸(𝐓) = ∫ 𝑑𝐳 𝑝(𝐳)
∥
∥
∥
∥
𝐘 +∑𝛿

𝑧

𝑧  ∂𝑧𝐘 − 𝐓(𝐗 +∑𝛿

𝑧

𝑧  ∂𝑧𝐗)
∥
∥
∥
∥
2

= ∫ 𝑑𝐳 𝑝(𝐳)∥𝐘 − 𝐓𝐗∥2 + ∫ 𝑑𝐳 𝑝(𝐳)∑𝛿𝑧 (∂𝑧𝐘) ⋅ 𝐓𝐗

𝑧

+ (𝐗 ↔ 𝐘)

  +∫ 𝑑𝐳 𝑝(𝐳)∑ ∑𝛿𝑧𝛿𝑧′(∂𝑧𝐘 − 𝐓∂𝑧𝐗) ⋅ (∂𝑧′𝐘 − 𝐓∂𝑧′𝐗)

𝑧′𝑧

.

 452 

We assume that p(z) is approximately the Gaussian distribution with zero mean. Then, we get the error function 453 
in Equation 3 in Methods, 454 

𝐸(𝐓) = ∥𝐘 − 𝐓𝐗∥2 +∑ ∑ Cov[𝑧, 𝑧′](∂𝑧𝐘 − 𝐓∂𝑧𝐗) ⋅ (∂𝑧′𝐘 − 𝐓∂𝑧′𝐗)

𝑧′𝑧

. 455 

In evaluating the performance, we measured the total variability by replacing the prediction (𝐓𝐗, 𝐓∂𝑧𝐗) in 456 
Equation 3 by the mean ⟨𝐘⟩ and ⟨∂𝑧𝐘⟩ and compared it to 𝐸(𝐓) to evaluate the goodness of fit, 𝑅2. To prevent 457 
overfitting, we used the LASSO scheme10 to minimize 𝐸(𝐓) +∑ 𝜆𝑖|𝑇𝑖,𝑗|𝑖,𝑗 . We used the MATLAB package glmnet11 458 
and chose optimal 𝜆𝑖  for each Yi by finding where AIC minimizes.  459 

The communication subspace model (Supplementary fig. 8d-e) was obtained by the rank-reduced regression12 460 
with the error function 𝐸(𝐓). We first performed the unconstrained optimization of 𝐸(𝐓) to find the optimal 461 
least-square solution 𝐓OLS. Then, we computed the 𝑑 principal components of the predictor, 𝐕, and obtained the 462 
reduced-rank solution 𝐓RRR = 𝐕𝐕†𝐓OLS. 463 

 464 

Supplementary references 465 
1 Schwartz, A. B. Motor cortical activity during drawing movements: population representation during 466 

sinusoid tracing. J Neurophysiol 70, 28-36 (1993). https://doi.org:10.1152/jn.1993.70.1.28 467 
2 Sakurai, J. J. & Napolitano, J. Modern quantum mechanics. Pearson new international, second edition. 468 

edn,  (Pearson, 2014). 469 
3 Greenbaum, A., Li, R.-c. & Overton, M. L. First-order perturbation theory for eigenvalues and 470 

eigenvectors. SIAM review 62, 463--482 (2020).  471 
4 Mazzucato, L., Fontanini, A. & La Camera, G. Stimuli Reduce the Dimensionality of Cortical Activity. 472 

Front Syst Neurosci 10, 11 (2016). https://doi.org:10.3389/fnsys.2016.00011 473 
5 Litwin-Kumar, A., Harris, K. D., Axel, R., Sompolinsky, H. & Abbott, L. F. Optimal Degrees of Synaptic 474 

Connectivity. Neuron 93, 1153-1164.e1157 (2017). https://doi.org:10.1016/j.neuron.2017.01.030 475 
6 Bro, R., Kjeldahl, K., Smilde, A. K. & Kiers, H. A. L. Cross-validation of component models: a critical look 476 

at current methods. Anal Bioanal Chem 390, 1241-1251 (2008). https://doi.org:10.1007/s00216-007-477 
1790-1 478 

7 Sussillo, D., Churchland, M. M., Kaufman, M. T. & Shenoy, K. V. A neural network that finds a 479 
naturalistic solution for the production of muscle activity. Nat Neurosci 18, 1025-1033 (2015). 480 
https://doi.org:10.1038/nn.4042 481 

8 Gallego, J. A. et al. Cortical population activity within a preserved neural manifold underlies multiple 482 
motor behaviors. Nat Commun 9, 4233 (2018). https://doi.org:10.1038/s41467-018-06560-z 483 

9 Gallego, J. A., Perich, M. G., Chowdhury, R. H., Solla, S. A. & Miller, L. E. Long-term stability of cortical 484 
population dynamics underlying consistent behavior. Nat Neurosci 23, 260-270 (2020). 485 
https://doi.org:10.1038/s41593-019-0555-4 486 

10 Hastie, T., Tibshirani, R. & Friedman, J. H. The elements of statistical learning : data mining, inference, 487 
and prediction. 2nd edn,  (Springer, 2009). 488 

11 Friedman, J., Hastie, T. & Tibshirani, R. Regularization Paths for Generalized Linear Models via 489 
Coordinate Descent. J Stat Softw 33, 1-22 (2010).  490 

12 Semedo, J. D., Zandvakili, A., Machens, C. K., Byron, M. Y. & Kohn, A. Cortical areas interact through a 491 
communication subspace. Neuron 102, 249-259. e244 (2019).  492 

https://doi.org:10.1152/jn.1993.70.1.28
https://doi.org:10.3389/fnsys.2016.00011
https://doi.org:10.1016/j.neuron.2017.01.030
https://doi.org:10.1007/s00216-007-1790-1
https://doi.org:10.1007/s00216-007-1790-1
https://doi.org:10.1038/nn.4042
https://doi.org:10.1038/s41467-018-06560-z
https://doi.org:10.1038/s41593-019-0555-4

