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A Motivation9

1. Observations are counts, not densities. Empirical estimates of density can be obtained by dividing10

the count by the area trawled. However, when the expected number of objects in a given category11

caught in a trawl is low, chance variation in the number actually caught can have a large effect on12

the estimated density, and it is inappropriate to treat densities as continuous.13

2. Sites were selected on the basis of modelled tracer concentrations. Thus, tracer concentration is14

not a random variable. In addition, the data needed for this study were not available from every15

site because of operational constraints.16

3. It is likely that the relationship between neuston and plastic densities differs among neuston taxa.17

4. It is plausible that the relationship between neuston and plastic densities differs between areas with18

different oceanographic conditions, and these areas are also likely to differ in tracer concentrations.19

5. All studies will be subject to study-specific sampling biases that lead to consistent over- or under-20

counting of particular components. For example, it is likely that visual counts will underestimate21

the number of plastic particles, while counts from frozen samples will underestimate the numbers22

of soft-bodied neuston taxa.23
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6. The measurement process in our data involved visual counts of objects on photographs by two24

independent observers.25

B Basic model26

We will first consider the basic case with a single set of counts for each observation, and then refine the27

model to account for the measurement process. Let yi = (yi1, yi2, . . . , yi,m−1, yi,m) be the counts of m−128

neuston taxa (the first m−1 values) and plastic particles (yi,m) in the ith observation, i = 1, . . . , n). Let29

ai be the area trawled in the i observation, xi be the centered and scaled log of modelled concentration30

of the tracer at the location of the ith observation, and pi be an indicator variable taking the value 131

if the observation is inside the patch and 0 otherwise. We will model the relationship between y and x32

using a multivariate Poisson-lognormal regression [1]:33

yij ∼ Poisson(aiλij),

λij = eηij ,

ηi = β0 + β1xi + β2pi + β3xipi + εi,

εi ∼ N(0,Σ).

(A)

Here, λij is the rate (numbers L−2) for the jth variable in the ith observation, ηi is the (m+1)-dimensional34

linear predictor for the ith observation, β0 is the intercept vector, β1 is the coefficient vector for the35

effect of log tracer concentration, β2 is the coefficient vector for the effect of patch membership, β3 is36

the coefficient vector for the interaction between tracer concentration and patch membership, and εi is a37

multivariate normal observation-level random effect, with mean vector 0 and covariance matrix Σ. This38

random effect represents unpredictable effects such as small-scale spatial variability. We assume that39

the εi are identically distributed, independent of each other and of explanatory variables, and that the40

counts yij are conditionally independent, given the trawled areas ai and rates λij .41

The use of a Poisson observation model for the counts yij (with an offset ai to account for variation42

in trawled area among observations) addresses point 1. A linear predictor on the log scale is the natural43

choice for count data, to ensure that expected values are positive. We use log tracer concentration rather44

than tracer concentration as an explanatory variable, because we expect that the modelled physical45

processes determining tracer concentration are similar to those determining expected neuston and plastic46

densities, so that it makes sense to apply the same transformation to tracer concentration as to expected47

neuston and plastic densities. The observation-level random effects εi account for overdispersion, which48

is likely to be important (for example, because slicks may concentrate floating objects in some areas much49

more than others). The use of a regression model, with log tracer concentration xi as a non-random50

explanatory variable, addresses point 2. The use of a multivariate model, in which each neuston taxon51
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is distinguished, addresses point 3. The inclusion of the interaction term β3xipi allows the relationship52

between tracer concentration and densities of neuston and plastic to differ between areas. Below, we53

show how to calculate the relationships between the logs of expected neuston and plastic densities over54

an area with a given distribution of tracer concentration, addressing point 4. We also show that these55

relationships are not affected by consistent study-specific biases, addressing point 5. We will develop a56

more detailed model of the measurement process below to address point 6.57

C Measurement process58

In our data, the material from each trawl sample was photographed, and visual counts of objects on59

each photograph were done independently by two observers. Not every site was photographed, due to60

operational constraints that occurred on a haphazard basis, such as availability of crew. However, we61

believe that this is unlikely to have led to systematic biases. To check this, we compared plastic densities62

for sites that were and were not photographed, over a subset of sites for which these densities were63

available from another source [5]. For 44 sites visited during the study (those coded SJR in the original64

data file), plastic particles were picked out, preserved and later counted by hand [5]. Of these 44, 8 were65

also photographed (and thus included in our data set), while 36 were not (Figure A).66

We extracted data on total plastic densities from the supporting information of Egger et al. [5].67

There did not appear to be systematic differences in plastic density between sites that were or were not68

photographed (Figure B). The sample maximum was greater for those sites that were not photographed,69

but this is likely to be a consequence of the larger sample size of unphotographed sites.70
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Figure A: Locations of 36 sites that were not photographed (open circles), and 8 that were (filled circles).
Plastic counts for all these sites (but not for other sites in our data set), obtained by preserving and
hand counting, were included in Egger et al. [5]. Shading represents dimensionless tracer concentration
in July 2019. The data underlying this Figure can be found in S1 Data. Map created in R using
the maps package (https://cran.r-project.org/package=maps) and Natural Earth data (https:
//www.naturalearthdata.com/).
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Figure B: Relationships between total plastic count per km2 and dimensionless tracer concentration for
36 sites that were not photographed (open circles), and 8 that were (filled circles). Data from Egger
et al. [5]. The data underlying this Figure can be found in S1 Data.
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For those sites that were photographed, independent visual counts were made from the photographs71

by two observers. There did not appear to be systematic differences between the observers (Figure C),72

except that observer FC may have counted more Janthina than observer RH (Figure Cc). We assume73

that the dominant mode of error in counting is failing to record every object in a given category, rather74

than putting objects in the wrong categories. This is plausible given that the number of objects was75

sometimes large, but the appearances of the different categories were relatively distinct.76
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Figure C: Comparison of visual counts of a: Velella, b: Porpita, c: Janthina, d: Glaucus, e: Physalia
and f: plastic in each trawl sample, by two observers (RH, FC). The dashed lines correspond to equal
counts. Note the different axis scales on each panel. The data underlying this Figure can be found in S1
Data.

We model failure to record every object by assigning a detection probability κj to each category of77

object. We assume that this probability is the same for both observers, and for every object in the78

category. We first show how to determine the distribution of counts if there is only a single observer,79

and then develop the corresponding results for two observers. We then suggest that the overall sampling80

model for our data should be considered as a two-stage process, with the single-observer stage applying81

to the number of potentially visible items on a photograph, and the two-observer stage applying to counts82

from the photograph.83

For a single observer, let zij be the count for category j in observation i. The corresponding Poisson-84

distributed true count yij from Equation A is unobserved. The assumption of a constant κj leads to a85

binomial distribution for the random variable Zij representing the observed count, conditional on the86

true count. This is known as a binomial-Poisson hierarchy distribution [3, p. 163], for which the marginal87
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probability of observing count zij is:88

P(Zij = zij) =

∞∑
k=0

P(Zij = zij |Yij = k)P(Yij = k)

=

∞∑
k=zij

(
k

zij

)
κ
zij
j (1− κj)

k−zij
(aiλij)

ke−aiλij

k!

=
(aiκjλij)

zije−aiκjλij

zij !
,

(B)

which is the probability of observing zij under a Poisson distribution with parameter aiκjλij . Because89

the detection probabilities κj only appear in a product with the rates λij , only this product can be90

estimated. In other words, detection probabilities will be absorbed into the intercept β0 in Equation A,91

and cannot be estimated from a single-count study.92

When there are two independent observers, let z1,ij and z2,ij be the counts for category j in obser-93

vation i by observers 1 and 2 respectively. These counts are conditionally independent, given the true94

number of the jth category in the ith observation. Thus the marginal probability of observing counts95

(z1,ij , z2,ij) is96

P(Z1,ij = z1,ij , Z2,ij = z2,ij) =

∞∑
k=0

P(Z1,ij = z1,ij , Z2,ij = z2,ij |Yij = k)P(Yij = k)

=

∞∑
k=0

P(Z1,ij = z1,ij |Yij = k)P(Z2,ij = z2,ij |Yij = k)P(Yij = k)

=

∞∑
k=z1,ij

(
k

z1,ij

)
κ
z1,ij
j (1− κj)

k−z1,ij

(
k

z2,ij

)
κ
z2,ij
j (1− κj)

k−z2,ij
(aiλij)

ke−aiλij

k!
.

97

This is a bivariate compound Poisson distribution with the detection probability κj the same for the two98

observers, for which99

P(Z1,ij = z1,ij , Z2,ij = z2,ij) = exp
[
−aiλij(1− (1− κj)

2)
]min(z1,ij ,z2,ij)∑

k=0

(aiλijκj(1− κj)
z1,ij+z2,ij−2k(aiλijκ

2
j )

k

(z1,ij − k)!(z2,ij − k)!k!
.

(C)

[7]. Properties of this and related distributions are given in Johnson et al. [9, chapter 36, section 8]. Note100

that unlike the single-count model, the detection probabilities κj do not simply appear in a product with101

the rates λij , suggesting that it may be possible to estimate the detection probabilities from a double-102

count study.103

The overall sampling model should be interpreted as a two-stage process. The number of objects104

potentially visible on a photograph should be interpreted as being drawn from a binomial-Poisson hier-105

archy distribution (Equation B), conditional on the rate for the site, with detection probabilities that106

cannot be identified, leading to a Poisson distribution of potentially visible items on the photograph con-107

ditional on the rate. Conditional on the photograph, the distribution of the number of objects counted108
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by the observers will be bivariate compound Poisson (Equation C) with detection probabilities applying109

to detection of objects on the photograph. Thus our full model, based on Equation A but with bivariate110

compound Poisson observations, is111

(z1,ij , z2,ij) ∼ bivariate compound Poisson(κj , aiλij),

λij = eηij ,

ηi = β0 + β1xi + β2pi + β3xipi + εi,

εi ∼ N(0,Σ).

(D)

D Conditional and marginal covariance112

It is natural to work on the log scale, and study covariance of η. The conditional covariance of ηi given113

(pi, xi) is simply Σ.114

To determine the marginal covariance between the logs of expected neuston and plastic densities over115

some area Ω with a given distribution of log tracer concentration and patch membership, let µη be the116

expected value of the linear predictor over this area:117

µη = BµX , (E)

where B = [β0,β1,β2,β3] is the m × 4 matrix whose columns are the coefficient vectors, and µX =118

[1, µX , µP , µXP ]
T , where µX , µP and µXP are the means of log tracer, patch membership and the product119

of log tracer and patch membership respectively, over the area of interest and T denotes transpose.120

The deviation of any given ηi from the mean over the area is ηi − µη = B(Xi − µX) + εi, where121

Xi = [1, xi, pi, xipi]
T . The the marginal covariance matrix Ψ over this area is122

Ψ = E
[
(ηi − µη)(ηi − µη)

T
]

= E
[
(B(Xi − µX) + εi)(B(Xi − µX) + εi)

T
]

= BV(X)BT +Σ

= B−1 V(X−1)B
T
−1 +Σ,

(F)

where B−1 = [β1,β2,β3] is the coefficient vector with the intercept β0 dropped, X−1 = [xi, pi, xipi]
T

123

is the vector of explanatory variables excluding the constant element 1, and V(X−1) is the covariance124

matrix of this vector over the area of interest. Note that because the intercept effect is constant over125

the area, it has no effect on the marginal covariance. Thus study-specific biases in sampling that lead to126

consistent over- or under-counting of particular components are irrelevant.127

If we wish to aggregate neuston taxa into a vector ηA of total log neuston and log plastic, we can128
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write129

ηA = Aη,130

where A is the 2×m matrix131

A =

1 1 . . . 1 0

0 0 . . . 0 1

 .132

Then the covariance matrix ΨA of total log neuston and log plastic is133

ΨA = AΨAT

= AB−1 V(X−1)B
T
−1A

T +AΣAT ,

(G)

which again is unaffected by study-specific biases that lead to consistent over- or under-counting of134

particular components. Total log neuston is proportional to the log of the geometric mean of neuston135

densities, and is not equal to the log of total neuston (for which there will not be a similarly simple136

expression for marginal covariance with log plastic).137

E Tracer regions138

The marginal correlation calculations in section D depend on appropriate choices of region. We want to139

avoid extrapolating too far beyond the geographical area in which observations were taken, or the range140

of tracer concentrations over these observations. Here, we describe how we achieved this.141

Let R be the smallest rectangle of latitude and longitude, aligned with the longitude axis, that142

encloses the sites at which observations were made. We assume that these sites have been divided a143

priori into those inside and those outside the patch. Let Ωall = {r ∈ R : xr ≥ mall}, where mall is the144

minimum log tracer concentration over all the sites at which observations were made (Figure D, region145

bounded by dashed line). Similarly, let Ωin = {r ∈ R : xr ≥ min}, where min is the minimum log tracer146

concentration over all the sites that lie within the patch (Figure D, region bounded by solid lines). Then147

let Ωout = Ωall \ Ωin. Note that these regions are not necessarily either simply connected or connected148

(and in fact Ωin and Ωout are neither).149

The regions Ωall and Ωin contain tracer concentrations greater than those at any of our observations.150

We therefore also considered versions in which cells with tracer concentrations above the maximum at151

any of our observations were removed. However, the results from these were almost indistinguishable152

from those with the regions defined as above, so we do not report them here.153

In practice, tracer concentrations were available on a grid of cells with latitude and longitude res-154

olution 0.25◦, and therefore not of equal area. Thus, within each region, the means and variances in155

Equations E, F and G were weighted by cell area. Tracer concentrations for observations were taken as156
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those in the grid cells corresponding to the start location of each trawl.157

F Priors158

We used Bayesian methods to fit the model defined by Equation D. Here, we describe the prior distri-159

bution for each parameter.160

For the intercept β0, it is thought that Porpita can reach densities of up to 2 individuals m−2, and161

that it, along with Velella, is among the neuston taxa that can achieve the highest densities [12, p. 395].162

Thus, log densities in km−2 as high as 14.5 are plausible. However, in unsuitable conditions very low163

densities of less than one individual km−2 are also plausible. We therefore chose independent N(0, 7.5)164

priors on the elements of β0 (throughout, we parametrize univariate normal distributions by standard165

deviation rather than variance).166

For the effect β1 of log tracer concentration, it seems plausible on physical grounds that the relation-167

ship between tracer concentration and densities of plastic and neuston could be close to linear. Thus 1 is168

a plausible value for the elements of β1. Values close to 0 are also plausible, if the tracer model does not169

correctly capture the processes determining plastic and neuston densities. Values higher than 2 would170

be surprising, because there is little physical reason to expect quadratic or higher-powered polynomial171

relationships. We therefore chose independent N(0, 1) priors on the elements of β1.172

For the effect β2 of patch, we think that up to 1000-fold differences in density (approximately 6.9 on173

the natural log scale) between locations inside and outside the patch might be plausible, but no difference174

is also plausible once tracer concentration has been accounted for. We therefore chose independentN(0, 4)175

priors on the elements of β2.176

For the coefficient β3 of the interaction between tracer and patch, both 0 and 1 should be plausible,177

but values higher than 2 would be surprising, as for the tracer effect. We therefore chose independent178

N(0, 1) priors on the elements of β3.179

We have little information on the detection probabilities κi, but they can only be between 0 and 1.180

We therefore chose independent flat Beta(1, 1) priors on each κi.181

For the covariance matrix Σ of observation-level random effects, we followed a common approach to182

priors for multivariate hierarchical models [13, section 1.13]. We decomposed the prior into a diagonal183

matrix of coefficient scales and a correlation matrix. For the scales, we chose independent weakly-184

informative independent half-Cauchy(0, 2.5) priors. For the correlation matrix, we chose an LKJ prior185

with shape parameter 2, which weakly concentrates around the identity matrix [10].186
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Figure D: Dimensionless tracer concentration (shading) and locations of observations in the North Pacific.
Orange points lie outside the patch, and green points inside (as defined a priori). The dashed line encloses
the region Ωall, containing all points with tracer concentration as least as large as the minimum over all
sites at which observations were made, and within the smallest rectangle R of latitude and longitude,
parallel with the longitude axis, that just encloses the sites at which observations were made. Solid
lines enclose the region Ωin, containing all points in R with tracer concentrations at least as large as
the minimum over all sites at which observations were made within the patch. Note that Ωin is neither
simply connected nor connected. The data underlying this Figure can be found in S1 Data. Map created
in R using the maps package (https://cran.r-project.org/package=maps) and Natural Earth data
(https://www.naturalearthdata.com/).
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G Estimation187

We fitted the model defined by Equation D with priors as in Section F using the NUTS algorithm [8],188

implemented in the R package rstan version 2.21.5 [14], with data preparation and post-processing done189

in R version 4.2.1 [11]. We ran 4 chains for 2000 warmup and 2000 sampling iterations each. This took190

approximately 5 h on a 64-bit Ubuntu 20.04.4 system with 4 Intel Core i7-4600M 2.9GHz cores and191

15.3GiB RAM. We set the maximum tree depth to 20 and the adapt_delta parameter to 0.95, as these192

choices helped to avoid divergent transitions in preliminary versions of the model. Effective sample size193

was at least 3399, and the R̂ statistic was no larger than 1.0014, for all parameters. Inspection of trace194

plots did not suggest any obvious problems with convergence.195

H Visualization196

To visualize the relationship between log density and log tracer concentration, we plotted the log of197

observed density (number of objects km−2) for each category of object against the log of tracer con-198

centration for each observation. We plotted densities rather than counts to correct for differences in199

trawled area among observations. Observed densities were calculated from the mean of the two in-200

dependent counts for each observation. Where both counts were zero, we plotted the point on the201

x-axis. We added lines (with equal-tailed 95% credible bands) representing the posterior mean pre-202

dicted density, corrected for detectability, conditional on log tracer concentration and patch member-203

ship: logκ+β0+β1x+β2p+β3xp. We corrected for detectability by including logκ, because observed204

densities will be affected by detectability.205

To understand the effects of increased log tracer concentration on log density inside and outside206

the patch in more detail, we plotted the posterior distributions of β1 + β3 and β1 respectively, and207

calculated the posterior probabilities that these effects were positive. Values of particular interest are208

0 (no relationship between log density and log tracer) and 1 (density proportional to tracer, expected209

on physical grounds if the tracer model captures the processes affecting density). These values were210

indicated on the plots.211

To visualize the difference in predicted log density between inside-patch and outside-patch regions,212

we calculated expected log densities µin and µout over the inside- and outside-patch regions:213

µin = EΩin
[β0 + β2 + (β1 + β3)x],

µout = EΩout
[β0 + β1x],

214

where the expectations were weighted by cell area. Then the difference in predicted log density is215

∆ = µin − µout. For each category, we plotted the posterior distribution of this difference (as a kernel216
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density estimate), and calculated the posterior probability that the difference was positive.217

To visualize the marginal relationships between log densities of each taxon and plastic, we calculated218

the marginal covariances between log density of each taxon and log plastic density, and between total219

log neuston and log plastic, using Equations F and G respectively, and standardized to correlations ρ.220

We did these calculations for the three regions Ωall, Ωin and Ωout. We plotted the posterior distributions221

of these correlations (as kernel density estimates), and calculated the posterior probability that each222

correlation was positive.223

For differences in predicted log density between inside-patch and outside-patch regions, and marginal224

correlations, we determined how much information there was in the data by plotting the prior distri-225

butions of these statistics, and comparing them visually with the posterior distributions. We estimated226

prior distributions by taking a sample (of the same size as the posterior sample) from the priors for each227

parameter in Stan using the Fixed_param algorithm, and then applying the same calculations to this228

prior sample as to the posterior sample.229

I Checks on estimation method, model plausibility and perfor-230

mance231

We checked whether the detectability parameters κ can be estimated from these data (and thus whether232

there is absolute density information) by examining scatter plots of the bivariate posterior distributions233

of the elements of β0 against the corresponding elements of logκ. Equation C suggests that in principle234

it may be possible to estimate detectability. However, it seems likely that at least to some extent, a235

high intercept could compensate for low detectability, and vice versa. Thus, strong negative relationships236

between corresponding elements of β0 and logκ would suggest difficulties in estimating detectability. The237

Hessian of the log of the probability mass function can also given information on this [4]. If increases in238

the intercept can completely compensate for decreases in detectability, the log probability mass function239

will have a ridge of constant values along a negative relationship between log detectability and the240

intercept. If this happens, the Hessian will not be of full rank. We therefore evaluated the Hessian of the241

log of the probability mass function for counts (Equation C) with respect to κj and aiλij , at posterior242

mean estimates. If detectabilities cannot be estimated, we will not have information on absolute densities243

(but note that the statistics of interest do not depend on absolute densities).244

We checked the ability of the estimation method to recover known parameters by generating 10245

simulated data sets from Equation D, with the same values of explanatory variables as the real data,246

and each parameter set to its posterior mean. We then estimated parameters from the simulated data247

sets as above, except that we used cmdstan 2.30.1 [2] rather than rstan, for ease of automation via a248

bash script. We plotted posterior densities for each parameter from each simulated data set, with true249
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parameters and prior densities indicated on the plots. We also calculated the proportion of simulated250

data sets for which the 95% highest posterior density interval for each parameter contained the true251

value. This approach will help to rule out major errors in coding, and will give a rough idea of whether252

the estimation method is working, but cannot tell us whether the estimated posterior densities are253

exactly correct. Computation took approximately 60 h on a 64-bit Ubuntu 20.04 system with 4 Intel254

Xeon 3.2GHz cores and 16GiB RAM. Ideally, we would have used simulation-based calibration [15] to255

determine whether the entire posterior densities are correct, but this would have been too time-consuming256

given the length of time needed to estimate parameters from a single data set.257

We carried out a graphical posterior predictive check on the plausibility of the model. For each of 200258

iterations, we generated a simulated data set with the same values of explanatory variables as the real259

data, and a set of parameter values drawn from the posterior distribution. We plotted the relationship260

between log density and log tracer concentration in the same way as for the observed data. Systematic261

differences between the observed and simulated relationships will indicate ways in which the model fails.262

As an additional posterior predictive check, we examined the correlation between the counts from263

each observer for each taxon. This correlation is a key feature of the bivariate count distribution that is264

not captured by the relationship between log density and log tracer concentration. We therefore plotted265

the posterior predictive distribution of this correlation for each taxon from each of 200 iterations, and266

overlaid the observed correlation.267

We used leave-one-out cross-validation to estimate the out-of-sample predictive performance of the268

model. Let f(z1,l, z2,l) be the predictive density for the lth observation (consisting of a pair of count269

vectors z1,l and z2,l), and let θ−l be the posterior density of the full set of parameters estimated from270

all observations other than l. For each of 1000 draws from this leave-one-out density, we estimated the271

log predictive density of the new observation l, integrated over the distribution of the observation-level272

random effect εl:273 ∫
log f(z1,l, z2,l|ηl, al, xl, pl,κ)f(ηl|εl,θ−l)f(εl|θ−l) dε.274

We estimated this integral by classical Monte Carlo, with a sample size of 1 × 105. We plotted the275

distribution of these estimates of log predictive density for each observation. Observations which are276

unusual given the rest of the data are likely to have low log predictive density and may indicate ways277

in which the model is inadequate. This computation took approximately 66 h on a 64-bit Ubuntu 20.04278

system with 4 Intel Xeon 3.2GHz cores and 16GiB RAM to re-fit the model to each leave-one-out279

data set, followed by approximately 12 h on a 64-bit Ubuntu 20.04.4 system with 4 Intel Core i7-4600M280

2.9GHz cores and 15.3GiB RAM to integrate over the distribution of ε. Popular methods such as281

Pareto-smoothed importance sampling [16] would be much faster, but are not available for our model282

because of the observation-level random effects.283
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J Analysis of Egger et al. [6] data284

Egger et al. [6] report data from a similar survey in the North Pacific. They collected data from 54285

trawls, of which 9 were taken in 2015 and 45 in 2019. Here, we follow Egger et al. [6] in ignoring the286

differences among years. They classified their sites a priori into three areas A, B and C based on their287

own modelled plastic concentrations, with A having the lowest modelled plastic concentrations and C the288

highest. The contents of trawls were frozen and later counted by hand in the laboratory. We analyzed289

these data using a model based on Equation A:290

yij ∼ Poisson(aiλij),

λij = eηij ,

ηi = β0 + β1xi + βBpB,i + βCpC,i + β1,BxipB,i + β1,CxipC,i + εi,

εi ∼ N(0,Σ).

(H)

Here, pB and pC are indicator variables for being in areas B and C respectively, with associated coeffi-291

cients βB and βC , and coefficients of interactions with log tracer concentration β1,B and β1,C . Detectabil-292

ity effects such as degradation of organisms in frozen samples could be modelled as a binomial-Poisson293

hierarchy, for which the detectability parameters cannot be identified (Equation B), and thus do not294

lead to any change in model structure compared to Equation A. Locations were clustered, with sets of295

3 trawls taken close together in 2019, and sets of 1 or 2 trawls taken close together in 2015. Here, we296

ignore this clustering for simplicity, although it might be more appropriate to introduce an additional297

cluster-level random effect to account for this.298

We defined tracer regions using a similar approach to section E. We took the geographical region299

R to be the smallest rectangle of latitude and longitude, aligned with the longitude axis, that enclosed300

all the observations from both years (because the model was fitted to all these data). We selected301

the minimum tracer concentrations defining each region based on data from each year in turn, but302

did subsequent calculations using only the 2019 regions, because most of the observations were from303

2019. Let Ωall = {r ∈ R : xr,2019 ≥ mall}, where xr,2019 is the log tracer concentration in cell r in304

2019 and mall is the lowest log tracer concentration over any observation in 2019 (Figure Ea, region305

bounded by dotted line). Let ΩC = {r ∈ R : xr,2019 ≥ mC}, where mC is the minimum log tracer306

concentration over any observation in area C in 2019 (Figure Ea, region bounded by solid lines). Let307

ΩBC = {r ∈ R : xr,2019 ≥ mB}, where mB is the minimum log tracer concentration over any observation308

in areas B or C in 2019 (Figure Ea, region bounded by dashed lines).Then let ΩA = Ωall \ ΩBC and309

ΩB = ΩBC \ ΩC . We computed marginal correlations over the regions Ωall, ΩC , ΩB and ΩA for 2019.310

Similar regions were defined for 2015 (Figure Eb), but were not used in subsequent calculations (and in311

fact all observations in 2015 were from area C, so these regions coincide).312
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Figure E: Dimensionless tracer concentration (shading) and locations of observations in the North Pacific
for the Egger et al. [6] data from (a) November 2019 and (b) July 2015. Orange points are area A,
purple area B and green area C (as defined a priori). Dotted lines enclose the region Ωall for each year,
containing all points with tracer concentration as least as large as the minimum over all sites at which
observations were made in any year, and within the smallest rectangleR of latitude and longitude, parallel
with the longitude axis, that just encloses the sites at which observations were made. Dashed lines enclose
the region ΩBC , containing all points in R with tracer concentrations at least as large as the minimum
over all sites at which observations were made within areas B or C in any year. Solid lines enclose the
region ΩC , containing all points in R with tracer concentrations at least as large as the minimum over all
sites at which observations were made within area C in any year. Note that in 2015, the only observations
were in area C, so these three regions coincide. The data underlying this Figure can be found in S1
Data. Maps created in R using the maps package (https://cran.r-project.org/package=maps) and
Natural Earth data (https://www.naturalearthdata.com/).
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We used similar prior choices to those given in section F. For all the parameters also appearing in313

section F, we used the prior choices given there. For the patch effects βB and βC we used independent314

N(0, 4) priors, as for the patch effect β2 in section F. For the interaction effects β1,B and β1,C , we used315

independent N(0, 1) priors, as for the interaction effect β3 in section F.316

Estimation was as in section G, except that we ran for 4000 warmup and 4000 sampling iterations317

to get sufficient effective sample size for parameters associated with the elements of Σ. This took318

approximately 1.5 h on an Ubuntu 20.04.4 system with 4 Intel Core i7-4600M 2.9GHz cores and 15.3GiB319

RAM. Effective sample size was 887 for one of the parameters associated with Σ, but greater than 1000320

for all others. The R̂ statistic was no larger than 1.0042 for all parameters. Inspection of trace plots did321

not suggest any obvious problems with convergence.322

We visualized results using a similar approach to that taken for the Vortex Swim data. We produced323

plots of the relationship between log density and log tracer concentration as in Section H, but with three324

regions A, B and C instead of inside- and outside-patch regions. We plotted posterior distributions of325

tracer effects for these three regions: β1 in region A, β1+β1B in region B, and β1+β1C in region C. We326

plotted posterior distributions of differences in expected log density between regions C and B (∆CB),327

and between regions B and A (∆BA).328

K Results329

The relationship between log density of each category of object and log tracer concentration was generally330

positive (Figure F, slopes), and for Velella, Porpita and Janthina, there was also a clear positive effect of331

being in the patch (Figure Fa, b and c, orange vs. green). For Glaucus and Physalia, there were many332

zero counts (Figure Fd and e, vertical lines on x-axis) and the posterior mean relationship fell clearly333

below the points with non-zero counts. This does not indicate that the model fits these observations334

poorly, rather that estimates of true density are reduced by observations with zero counts. Posterior335

distributions for all parameters are summarized in Table A.336

The posterior distributions of elements of the log tracer effect outside the patch (β1) were mainly337

positive for Porpita, Janthina and plastic (Figure Gb, c, f, orange) and more likely to be positive than338

negative for Velella and Physalia (Figure Ga, e, orange). On physical grounds, we would have expected339

values between 0 (no effect) and 1 (densities proportional to tracer). Somewhat surprisingly, the posterior340

mode for plastic exceeded 1 (Figure Gf), and values greater than 1 were not unlikely for all categories.341

For Glaucus, negative and positive effects were about equally likely (Figure Gd, orange). Effects inside342

the patch (β1+β3) were somewhat less likely to be positive for all categories (Figure G, green), although343

the posterior mode for Janthina exceeded 1 (Figure Gc, green). However, as noted below, there may be344

little information about the interaction effect β3 in data sets with this structure.345
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Figure F: Relationship between natural log of density (in numbers km−2) and natural log of tracer
concentration (relative to its maximum over July 2015, July 2019 and November 2019) for (a) Velella,
(b) Porpita, (c) Janthina, (d) Glaucus, (e) Physalia and (f) plastic outside (orange) and in (green) the
patch. Points are sample means from two independent counts, with zeros plotted as vertical lines on
the x-axis (note that models were fitted to the two counts, not the mean densities). Lines are posterior
means, with 95% equal-tailed credible bands, and include the detectability parameters κi. The right-
hand y-axis has tick marks at the log densities corresponding to counts of 1, 10, 100 and 1000 objects in
the mean trawled area. The data underlying this Figure can be found in S1 Data.
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Figure G: Effect of (centered and scaled) natural log tracer concentration on expected natural log of
density (in numbers km−2) for (a) Velella, (b) Porpita, (c) Janthina, (d) Glaucus, (e) Physalia and (f)
plastic outside (orange, β1,i) and in (green, β1,i + β3,i) the patch. Kernel density estimates of posterior
distributions, with posterior probability that the effect is positive given on each panel. Vertical dashed
lines at 0 and 1, physically important values for the effect. The data underlying this Figure can be found
in S1 Data.
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Averaged over tracer concentrations, expected natural log of density was almost certainly higher in346

the inside-patch region Ωin than in the outside-patch region Ωout for Velella, Porpita, Janthina and347

plastic (Figure Ha, b, c, f). For the rarely-captured taxa Glaucus and Physalia, the difference between348

inside- and outside-patch regions was centred on zero (Figure Hd and e). However, for all taxa, the349

posterior distribution of differences was substantially more concentrated than the prior distribution, so350

there was information in the data about these differences (Figure H, solid vs. dotted lines).351

The posterior distributions of marginal correlations over the entire region Ωall between log plastic352

density and the log densities of Velella, Porpita and Janthina were almost entirely positive (Figure Ia to353

c). For the rare taxa Glaucus and Physalia, negative and positive marginal correlations with log plastic354

were about equally likely, and the posterior distribution was only slightly more concentrated than the355

prior, suggesting that there was little information in these data about correlations for these taxa (Figure356

Id and e, solid vs. dotted lines). The posterior distribution of the marginal correlation between log357

plastic density and total log neuston was almost entirely positive (Figure If). The qualitative pattern358

was the same for the inside-patch (Ωin) and outside-patch (Ωout) regions considered separately (Figures359

J and K).360
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Figure H: Difference ∆ in expected natural log of density (in numbers km−2) between the inside-patch
(Ωin) and outside-patch (Ωout) regions for (a) Velella, (b) Porpita, (c) Janthina, (d) Glaucus, (e) Physalia
and (f) plastic. Kernel density estimates of posterior distributions, with posterior probability that
the difference is positive given on each panel. Dotted lines are kernel density estimates of the prior
distribution for each difference. The data underlying this Figure can be found in S1 Data.
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Figure I: Posterior densities of marginal correlations ρ over the entire region Ωall between log plastic
density and log densities of a: Velella, b: Porpita, c: Janthina, d: Glaucus, e: Physalia and f: total
log neuston. Kernel density estimates, with vertical dashed lines at zero. Posterior probability that
each marginal correlation is positive is indicated. Dotted lines are kernel density estimates of the prior
distribution for each correlation. The data underlying this Figure can be found in S1 Data.
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Figure J: Posterior densities of marginal correlations ρ over the inside-patch region Ωin between log
plastic density and log densities of a: Velella, b: Porpita, c: Janthina, d: Glaucus, e: Physalia and f:
total log neuston. Kernel density estimates, with vertical dashed lines at zero. Posterior probability that
each marginal correlation is positive is indicated. Dotted lines are kernel density estimates of the prior
distribution for each correlation. The data underlying this Figure can be found in S1 Data.

23



−1.0 −0.5 0.0 0.5 1.0

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

ρ16

de
ns

ity

a: log Velella

P(ρ16>0)=0.93

−1.0 −0.5 0.0 0.5 1.0

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

ρ26

de
ns

ity

b: log Porpita

P(ρ26>0)=0.949

−1.0 −0.5 0.0 0.5 1.0

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

ρ36
de

ns
ity

c: log Janthina

P(ρ36>0)=0.992

−1.0 −0.5 0.0 0.5 1.0

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

ρ46

de
ns

ity

d: log Glaucus

P(ρ46>0)=0.637

−1.0 −0.5 0.0 0.5 1.0

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

ρ56

de
ns

ity

e: log Physalia

P(ρ56>0)=0.624

−1.0 −0.5 0.0 0.5 1.0

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

ρA12

de
ns

ity

f: total log neuston

P(ρA12>0)=0.986

Figure K: Posterior densities of marginal correlations ρ over the outside-patch region Ωout between log
plastic density and log densities of a: Velella, b: Porpita, c: Janthina, d: Glaucus, e: Physalia and f:
total log neuston. Kernel density estimates, with vertical dashed lines at zero. Posterior probability that
each marginal correlation is positive is indicated. Dotted lines are kernel density estimates of the prior
distribution for each correlation. The data underlying this Figure can be found in S1 Data.
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There appeared to be little information in these data on absolute densities. There were negative361

posterior relationships between the intercepts β0,j and log detectability κj for each category j, particularly362

for the most abundant categories Velella, Janthina and plastic (Figure L). Thus it may be hard to363

distinguish between high absolute density with low detectability, and low absolute density with high364

detectability. However, this did not appear to be a structural identifiability problem. For all sites and365

categories, the Hessian was of full rank, suggesting that the parameters may be identifiable [4]. Note366

that the main results of interest, including relationships with log tracer density, differences in log density367

between inside and outside the patch, and marginal correlations between log densities of neuston and368

plastic, do not require knowledge of absolute densities.369
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Figure L: Posterior relationships between intercept β0,i and log detectability κi for a: Velella, b: Porpita,
c: Janthina, d: Glaucus, e: Physalia and f: plastic. The data underlying this Figure can be found in S1
Data.
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Fitting to simulated data sets did not suggest any major errors in coding (Figures M, N). In most370

cases, posterior densities (grey lines) were concentrated around the true values (pink lines), were more371

concentrated than the priors (dashed lines), and the 95% highest posterior density regions contained372

the true values between 8 and 10 times out of 10. However, for the intercept β0, there was evidence373

of bias, with 95% highest posterior density regions containing the true values as little as 5 times out of374

10 (Figure Mc and f). In addition, posterior densities of detectabilities κ were not concentrated around375

the true values for many simulated data sets (Figure My to ad). As noted above, this is likely to be376

a consequence of the strong negative posterior relationships between elements of β0 and logκ, and will377

not affect the main results of interest. Also, prior and posterior densities were almost identical for the378

interaction parameter β3 (Figure Ms to x), suggesting that there is likely to be very little information379

on differences in the slope of the relationship between log densities and log tracer inside and outside the380

patch.381
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Figure M: Posterior densities for elements of the parameters β0, β1, β2, β3 and κ (grey lines, kernel
density estimates) from 10 simulated data sets for which the true values were the posterior means
estimated from the real data set (vertical pink lines). Dashed lines are kernel density estimates of the
priors from a sample of the same size as from the posteriors. The proportion of simulated data sets for
which the 95% highest posterior density region contained the true parameter value is indicated on each
panel. The data underlying this Figure can be found in S1 Data.
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Figure N: Posterior densities for elements of the upper triangle of the covariance matrix Σ of observation-
level random effects (grey lines, kernel density estimates) from 10 simulated data sets for which the true
values were the posterior means estimated from the real data set (vertical pink lines). Dashed lines
are kernel density estimates of the priors from a sample of the same size as from the posteriors. The
proportion of simulated data sets for which the 95% highest posterior density region contained the true
parameter value is indicated on each panel. The data underlying this Figure can be found in S1 Data.
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Graphical posterior predictive checks did not suggest any major problems with the model. For382

each category of object, simulated relationships between log density and log tracer (Figure O, open383

circles, with zero mean counts represented by vertical lines just above the x axis) did not appear to differ384

systematically from the observed relationships (Figure O, filled circles, with zero mean counts represented385

by vertical lines on the x-axis). Note that where the observed mean count was zero (represented by a386

vertical line just above the x-axis), small simulated non-zero counts are plausible but correspond to387

much higher densities, and will be represented by points far above the x-axis. Similarly, where the388

observed mean count was non-zero but small, zero simulated mean counts are plausible, and will be389

represented by vertical lines just above the x-axis. Thus, the empty horizontal band in the middle390

of each panel on Figure O is entirely expected. For each category of object, the posterior predictive391

distribution of correlations between the two counts over observations was strongly skewed towards values392

close to 1 (Figure P, histograms), and for all categories other than Glaucus and Physalia, the observed393

correlation (Figure P, vertical dashed lines) was very close to 1. For the rare taxa Glaucus and Physalia394

(Figure Pd and e), the observed correlation was positive but much weaker than for other taxa, and the395

posterior predictive distribution of correlations was less strongly skewed towards 1 than for other taxa,396

and tended to be higher than the observed correlation. This suggests the possibility of additional sources397

of observation error not captured by our model. Nevertheless, our model appears to capture the main398

features of the observations.399

Leave-one-out cross-validation estimates of log predictive density suggested that the observation400

SJR_019 was very unlikely under a model fitted to the other observations (Figure Q). This was an401

in-patch observation with high counts of Velella, Porpita, Janthina and plastic. To check that this402

observation was not having a substantial effect, we recalculated the main results with this observation403

omitted. We confirmed that the posterior estimates of the relationship between log density and log404

tracer concentration (Figure R), the differences in expected natural log density between inside-patch405

and outside-patch regions (Figure S), and the marginal correlations between log plastic density and log406

density of each taxon (Figure T), were not substantially different without SJR_019.407

We also noted that one observation coded a priori as outside the patch on geographical grounds in408

fact had a higher tracer concentration than the minimum for observations coded a priori as inside the409

patch (Figure D, orange point in top right of region bounded by solid line). We re-ran the model with410

this observation recoded as inside the patch. The main results were not substantially different (Figures411

U, V, W).412
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Figure O: Posterior predictive relationship between natural log of density (in numbers km−2) and natural
log of dimensionless tracer concentration for (a) Velella, (b) Porpita, (c) Janthina, (d) Glaucus, (e)
Physalia and (f) plastic outside (orange) and in (green) the patch. Filled points are observed sample
means from two independent counts, with zeros plotted as vertical lines on the x-axis Open points are
sample means from two independent simulated counts, for each of 200 simulated data sets, with zeros
plotted as vertical lines just above the x-axis (with jittered x-coordinates). The right-hand y-axis has
tick marks at the log densities corresponding to counts of 1, 10, 100 and 1000 objects in the mean trawled
area. The data underlying this Figure can be found in S1 Data.
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Figure P: Posterior predictive distributions of the correlation between the two counts for (a) Velella, (b)
Porpita, (c) Janthina, (d) Glaucus, (e) Physalia and (f) plastic, from 200 simulated data sets. Vertical
dashed lines: observed correlations. The data underlying this Figure can be found in S1 Data.
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Figure Q: Leave-one-out cross-validation estimates of log predictive density for each site. Points are
log predictive densities for 1000 sets of parameters drawn from the posterior density estimated without
the focal site. For each point, the log predictive density is integrated over the distribution of the
observation-level random effect ε, by classical Monte Carlo integration with a sample of size 1 × 105.
The data underlying this Figure can be found in S1 Data.
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Figure R: Relationship between natural log of density (in numbers km−2) and natural log of dimensionless
tracer concentration, with the unusual observation SJR 019 omitted, for (a) Velella, (b) Porpita, (c)
Janthina, (d) Glaucus, (e) Physalia and (f) plastic outside (orange) and in (green) the patch. Points
are sample means from two independent counts, with zeros plotted as vertical lines on the x-axis (note
that models were fitted to the two counts, not the mean densities). Lines are posterior means, with 95%
equal-tailed credible bands, and include the detectability parameters κi. The right-hand y-axis has tick
marks at the log densities corresponding to counts of 1, 10, 100 and 1000 objects in the mean trawled
area. The data underlying this Figure can be found in S1 Data.
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Figure S: Difference ∆ in expected natural log of density (in numbers km−2) between the inside-patch
(Ωin) and outside-patch (Ωout) regions, with the unusual observation SJR 019 omitted, for (a) Velella,
(b) Porpita, (c) Janthina, (d) Glaucus, (e) Physalia and (f) plastic. Kernel density estimates of posterior
distributions, with posterior probability that the difference is positive given on each panel. Dotted lines
are kernel density estimates of the prior distribution for each difference. The data underlying this Figure
can be found in S1 Data.
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Figure T: Posterior densities of marginal correlations ρ over the entire region Ωall between log plastic
density and log densities, with the unusual observation SJR 019 omitted, of a: Velella, b: Porpita, c:
Janthina, d: Glaucus, e: Physalia and f: total log neuston. Kernel density estimates, with vertical
dashed lines at zero. Posterior probability that each marginal correlation is positive is indicated. Dotted
lines are kernel density estimates of the prior distribution for each correlation. The data underlying this
Figure can be found in S1 Data.
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Figure U: Relationship between natural log of density (in numbers km−2) and natural log of dimensionless
tracer concentration, with the outside observation having higher tracer concentration than the minimum
for inside observations recoded as inside, for (a) Velella, (b) Porpita, (c) Janthina, (d) Glaucus, (e)
Physalia and (f) plastic outside (orange) and in (green) the patch. Points are sample means from two
independent counts, with zeros plotted as vertical lines on the x-axis (note that models were fitted to the
two counts, not the mean densities). Lines are posterior means, with 95% equal-tailed credible bands,
and include the detectability parameters κi. The right-hand y-axis has tick marks at the log densities
corresponding to counts of 1, 10, 100 and 1000 objects in the mean trawled area. The data underlying
this Figure can be found in S1 Data.
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Figure V: Difference ∆ in expected natural log of density (in numbers km−2) between the inside-patch
(Ωin) and outside-patch (Ωout) regions, with the outside observation having higher tracer concentration
than the minimum for inside observations recoded as inside, for (a) Velella, (b) Porpita, (c) Janthina, (d)
Glaucus, (e) Physalia and (f) plastic. Kernel density estimates of posterior distributions, with posterior
probability that the difference is positive given on each panel. Dotted lines are kernel density estimates
of the prior distribution for each difference. The data underlying this Figure can be found in S1 Data.
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Figure W: Posterior densities of marginal correlations ρ over the entire region Ωall between log plastic
density and log densities, with the outside observation having higher tracer concentration than the
minimum for inside observations recoded as inside, of a: Velella, b: Porpita, c: Janthina, d: Glaucus,
e: Physalia and f: total log neuston. Kernel density estimates, with vertical dashed lines at zero.
Posterior probability that each marginal correlation is positive is indicated. Dotted lines are kernel
density estimates of the prior distribution for each correlation. The data underlying this Figure can be
found in S1 Data.
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L Results for Egger et al. [6] data413

There were clear differences in density between areas in the Egger et al. [6] data (Figure X). In particular,414

area A appeared to have more Velella but less Porpita, Janthina and plastic than area C. However, the415

median count was zero for every taxon in these data, and it is likely that this contributes to the lack416

of information on many quantities of interest, outlined below. Note that the regression lines in Figure417

X generally lie below the points corresponding to non-zero counts because the lines are pulled down by418

zero counts, not because the model is failing.419

Tracer effects (Figure Y) appeared weaker than for the Vortex Swim data, and were centred close to420

zero for Velella (Figure Ya) and Physalia (Figure Ye), and for plastic except in area B (where they were421

centred between 0 and 1, but uncertain: Figure Yf). For other taxa, tracer effects were centred between422

0 and 1, and were uncertain, but more likely to be positive than negative.423

Averaged over tracer concentrations, area C had more Velella, Porpita and plastic than area B, and424

less Janthina, Glaucus and Physalia (Figure Z). Area B had more Janthina, Glaucus, Physalia and425

plastic than area A, and less Velella (Figure AA).426

Marginal correlations between log neuston densities and log plastic density across Ωall were clearly427

negative for Velella (Figure ABa) and positive for Janthina (Figure ABc). For other taxa and total log428

neuston, there was little information in the data on these marginal correlations (Figure ABb, d, e and f:429

posterior densities are not clearly different from priors). The within-region marginal correlations ΩC , ΩB430

and ΩA were similar for each region (Figures AC, AD and AE). These were weakly positive for Velella431

(panel a in each figure) and weakly negative for Janthina (panel c in each figure). Note that these signs432

were opposite to those across the entire region Ωall. For other taxa, there was little information in the433

data, and posterior densities were not clearly different to priors.434

Posterior distributions of all parameters summarized in Table B.435
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Figure X: Relationship between natural log of density (in numbers km−2) and natural log of dimensionless
tracer concentration in the Egger et al. [6] data for (a) Velella, (b) Porpita, (c) Janthina, (d) Glaucus, (e)
Physalia and (f) plastic in areas A (orange), B (purple) and C (green). Points are sample estimates of
density, with zeros plotted as vertical lines on the x-axis (note that models were fitted to the counts, not
the densities). Lines are posterior means, with 95% equal-tailed credible bands. The right-hand y-axis
has tick marks at the log densities corresponding to counts of 1, 10, 100 and 1000 objects in the mean
trawled area. The data underlying this Figure can be found in S1 Data.
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Figure Y: Effect of (centered and scaled) natural log tracer concentration on expected natural log of
density (in numbers km−2) for the Egger et al. [6] data for (a) Velella, (b) Porpita, (c) Janthina, (d)
Glaucus, (e) Physalia and (f) plastic in areas A (orange, β1,i), B (purple, β1,i + β1B,i) and C (green,
β1,i+β1C,i). Kernel density estimates of posterior distributions, with posterior probability that the effect
is positive given on each panel. Vertical dashed lines at 0 and 1, physically important values for the
effect. The data underlying this Figure can be found in S1 Data.
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Figure Z: Difference ∆CB in expected natural log of density (in numbers km−2) in the Egger et al. [6]
data between the C (ΩC) and B (ΩB) regions for (a) Velella, (b) Porpita, (c) Janthina, (d) Glaucus, (e)
Physalia and (f) plastic. Kernel density estimates of posterior distributions, with posterior probability
that the difference is positive given on each panel. Dotted lines are kernel density estimates of the prior
distribution for each difference. The data underlying this Figure can be found in S1 Data.

43



−15 −10 −5

0.
0

0.
2

0.
4

0.
6

0.
8

∆BA log(density km−2)

pr
ob

ab
ili

ty
 d

en
si

ty

P(∆BA>0)=0
a: Velella

−15 −10 −5 0 5 10

0.
0

0.
2

0.
4

0.
6

0.
8

∆BA log(density km−2)
pr

ob
ab

ili
ty

 d
en

si
ty

P(∆BA>0)=0.406
b: Porpita

0 5 10

0.
0

0.
2

0.
4

0.
6

0.
8

∆BA log(density km−2)

pr
ob

ab
ili

ty
 d

en
si

ty

P(∆BA>0)=1
c: Janthina

−10 −5 0 5 10 15

0.
0

0.
2

0.
4

0.
6

0.
8

∆BA log(density km−2)

pr
ob

ab
ili

ty
 d

en
si

ty

P(∆BA>0)=0.893
d: Glaucus

−10 −5 0 5 10 15

0.
0

0.
2

0.
4

0.
6

0.
8

∆BA log(density km−2)

pr
ob

ab
ili

ty
 d

en
si

ty

P(∆BA>0)=0.904
e: Physalia

1 2 3 4 5 6

0.
0

0.
2

0.
4

0.
6

0.
8

∆BA log(density km−2)

pr
ob

ab
ili

ty
 d

en
si

ty

P(∆BA>0)=1
f: plastic

Figure AA: Difference ∆BA in expected natural log of density (in numbers km−2) in the Egger et al. [6]
data between the B (ΩB) and A (ΩA) regions for (a) Velella, (b) Porpita, (c) Janthina, (d) Glaucus, (e)
Physalia and (f) plastic. Kernel density estimates of posterior distributions, with posterior probability
that the difference is positive given on each panel. Dotted lines are kernel density estimates of the prior
distribution for each difference. The data underlying this Figure can be found in S1 Data.
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Figure AB: Posterior densities of marginal correlations ρ in the Egger et al. [6] data over the entire
region Ωall between log plastic density and log densities of a: Velella, b: Porpita, c: Janthina, d:
Glaucus, e: Physalia and f: total log neuston. Kernel density estimates, with vertical dashed lines at
zero. Posterior probability that each marginal correlation is positive is indicated. Dotted lines are kernel
density estimates of the prior distribution for each correlation. Based on 2019 tracer data. The data
underlying this Figure can be found in S1 Data.

45



−1.0 −0.5 0.0 0.5 1.0

0
1

2
3

4
5

6
7

ρ16

de
ns

ity

a: log Velella

P(ρ16>0)=0.766

−1.0 −0.5 0.0 0.5 1.0

0
1

2
3

4
5

6
7

ρ26

de
ns

ity

b: log Porpita

P(ρ26>0)=0.351

−1.0 −0.5 0.0 0.5 1.0

0
1

2
3

4
5

6
7

ρ36
de

ns
ity

c: log Janthina

P(ρ36>0)=0.156

−1.0 −0.5 0.0 0.5 1.0

0
1

2
3

4
5

6
7

ρ46

de
ns

ity

d: log Glaucus

P(ρ46>0)=0.464

−1.0 −0.5 0.0 0.5 1.0

0
1

2
3

4
5

6
7

ρ56

de
ns

ity

e: log Physalia

P(ρ56>0)=0.663

−1.0 −0.5 0.0 0.5 1.0

0
1

2
3

4
5

6
7

ρA12

de
ns

ity

f: total log neuston

P(ρA12>0)=0.453

Figure AC: Posterior densities of marginal correlations ρ in the Egger et al. [6] data over the region
ΩC between log plastic density and log densities of a: Velella, b: Porpita, c: Janthina, d: Glaucus,
e: Physalia and f: total log neuston. Kernel density estimates, with vertical dashed lines at zero.
Posterior probability that each marginal correlation is positive is indicated. Dotted lines are kernel
density estimates of the prior distribution for each correlation. Based on 2019 tracer data. The data
underlying this Figure can be found in S1 Data.
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Figure AD: Posterior densities of marginal correlations ρ in the Egger et al. [6] data over the region
ΩB between log plastic density and log densities of a: Velella, b: Porpita, c: Janthina, d: Glaucus,
e: Physalia and f: total log neuston. Kernel density estimates, with vertical dashed lines at zero.
Posterior probability that each marginal correlation is positive is indicated. Dotted lines are kernel
density estimates of the prior distribution for each correlation. Based on 2019 tracer data. The data
underlying this Figure can be found in S1 Data.
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Figure AE: Posterior densities of marginal correlations ρ in the Egger et al. [6] data over the region
ΩA between log plastic density and log densities of a: Velella, b: Porpita, c: Janthina, d: Glaucus,
e: Physalia and f: total log neuston. Kernel density estimates, with vertical dashed lines at zero.
Posterior probability that each marginal correlation is positive is indicated. Dotted lines are kernel
density estimates of the prior distribution for each correlation. Based on 2019 tracer data. The data
underlying this Figure can be found in S1 Data.
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