
Supplementary Methods, Tables, and Figures

Wancen Mu1, Eric S. Davis2, Stuart Lee5, Mikhail G. Dozmorov6, Douglas H.
Phanstiel2,3, and Michael I. Love ∗1,4

1Department of Biostatistics,
2Curriculum in Bioinformatics and Computational Biology,

3Thurston Arthritis Research Center, Department of Cell Biology & Physiology,
Lineberger Comprehensive Cancer Center, Curriculum in Genetics & Molecular Biology,

and
4Department of Genetics, University of North Carolina-Chapel Hill, NC 27599

5Genentech, South San Francisco, CA, USA
6Department of Biostatistics, Department of Pathology, Virginia Commonwealth

University, Richmond, VA 23298, USA

April 10, 2023

1 Supplementary Methods

1.1 Comparison to previous methods

In order to generate background ranges for hypothesis testing of association analysis, there are two
general categories of methods. One strategy is to sample from a larger experimental pool or database.
Methods following this strategy include LOLA (Sheffield and Bock, 2016) using Fisher’s exact test,
Poly-Enrich (Lee et al., 2020a) using a likelihood ratio test based on a Negative Binomial likelihood,
and matchRanges (Davis et al., 2022) utilizing a covariate-based matching method. Another strategy
is to permute or shuffle the genomic ranges, possibly considering an exclusion list of regions where
the original region set should not be re-located. Example methods belonging to this category include
bedtools shuffleBed (Quinlan and Hall, 2010), ChIP-Enrich (Welch et al., 2014), and GenometriCorr
(Favorov et al., 2012). In addition, the method GAT allows controlling for GC content (Heger et al.,
2013), and regioneR implements a circular shift to preserve the clumping property of genomic ranges
(Gel et al., 2016). Our method falls in the second category in that we redistribute ranges along the
genome, though we use a block resampling scheme to preserve local genome structure, as proposed for
genomic region sets by Bickel et al. (2010).

1.2 Segmentation

In the following, we define genome segmentation and how it pertains to block bootstrap resampling, as
proposed by Bickel et al. (2010). The overall motivation for bootstrapping with respect to a segmented
genome is to preserve large scale genomic structure, e.g. large regions with low or high density of
genomic features such as genes. This preservation of structure through segmentation is in addition to
the preservation of local clumping property of ranges, which is accomplished by resampling blocks.

In this work, we segmented the genome based on gene density. We downloaded the Ensembl v86 genes
(Cunningham et al., 2021) and counted the number of genes per million base pairs. We then supplied
this vector of counts to various methods for segmentation. We sought to define sections of the genome
that exhibit stationarity, where in this case, stationary means similar gene density within a segment. We
additionally sought to group together segments across the genome that had similar gene density, such
that a segmentation state i ∈ [1, . . . , S] consisted of one or more non-contiguous regions of the genome
with similar gene density.

∗michaelisaiahlove@gmail.com
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For block bootstrapping with respect to genome segmentations, we considered various genome seg-
mentation methods, Circular Binary Search (CBS) (Olshen et al., 2004) and a hidden Markov model
(HMM) (Cardenas-Ovando et al., 2017), as well as pre-defined segmentations, ChromHMM applied to
Roadmap Epigenomics data (Ernst and Kellis, 2012). CBS and HMM have R package implementations,
and so we incorporated these into a utility function in nullranges, segmentDensity(). CBS, im-
plemented in the DNAcopy package, was used to recursively split chromosomes into subsegments with
similar density. In this case, the process was based on the square root of gene count per megabase to
stabilize variance and reduce the heavy right tail of the distribution. We then used k-means to clus-
ter chromosome subsegments into groups with similar gene density. We found that it was effective to
cluster genome segmentations into three states, corresponding to low, medium, and high gene density.
HMM was used to model the genes per megabase as an emission density with pre-defined number of
states. We found that three provided effective segmentation. We then used the Viterbi algorithm for
the hidden state decoding. Roadmap segmentations derived by ChromHMM (Ernst and Kellis, 2012)
were downloaded from https://egg2.wustl.edu/roadmap/web_portal/. ChromHMM is based
on a multivariate Hidden Markov Model that explicitly models the presence or absence of many chro-
matin marks. The original ChromHMM annotation generated segmentation including 15 small states.
We then summarized these into 3 general categories: low density(‘E9’,‘E13’,‘E14’,‘E15’), middle den-
sity(‘E10’,‘E11’,‘E12’), and high density(‘E1-E8’). After merging, our version of ChromHMM applied to
Roadmap data had 8,797 ranges were left and the mean width was around 0.33 Mb.

1.3 Simple region shuffling

Simple region shuffling was performed by placing ranges of interest uniformly in acceptance regions
with probability proportional to the original SNP count per chromosome. For the paper, we defined
acceptance regions as the inverse of ENCODE excluded regions (Amemiya et al., 2019), centromeres,
and telomeres from UCSC, as provided in the excluderanges Bioconductor package (Ogata et al.,
2022).

1.4 Assessment of significance via bootstrap

Suppose we are interested in computing and assessing the significance of the overlap between one set of
ranges x and another set of ranges y. We compute the overlap sobs, i.e. the total number of ranges in
x that overlapped a range in y. This statistic can vary in many ways, including computing the fraction
of basepair overlap, restricting by a minimal amount of overlap, and allowing for a gap between the
ranges, e.g. we may allow 1 kb of gap to connect local chromatin accessibility peaks to transcription
start sites (TSS). Via block bootstrap resampling, we generate R new sets of ranges yr within Rb =

R ×
∑C

c=1 ceiling(Lc/Lb) blocks, for the chromosome c length Lc. For details see Algorithm 1 and
Algorithm 2. We can perform either genome-wise, block-wise, or region-wise analysis based on the
question to be addressed. For example, if we want to test the significance of the genome-wide amount of
overlap, we would compare to the genome-wise distribution. However, if we want to test the significance
of the number of overlaps for a particular block or even a particular region, we could use a lower R as
there will be many more bootstrapped blocks and bootstrapped ranges for a block-wise or region-wise
analysis. Without loss of generality, we will consider the genome-wise case. We use the overlaps per
bootstrap sample yr to calculate the overlap statistics s1, s2, . . . , sR to derive a genome-wise empirical p-
value = 1

R

∑R
r=1 I{sr>sobs} or s1, s2, ..., sRb

for block-wise analysis. Alternatively, we could use z score to
measure the distance between sobs and the set of {sr} in terms of standard deviations (SD). Specifically,
the z score in Figure 2 is calculated by

z =
sobs − s̄

SDR
,

where s̄ = 1
R

∑R
r=1 sr is the sample mean of the overlap statistic sr over the R bootstrap samples

and SDR =
√

1
R−1

∑R
r=1[sr − s̄]2 is the sample standard deviation. Note that, if block-wise analysis

is preferred as in Bickel et al. (2010), we found out the SD of block-wise bootstrap distribution should
be approximately scaled by

√
Lb in simulation in order to make genome-wise and block-wise z score

comparative. In theory, the s̄ is approximately the same in both analyses, but the SD is different.

As SDR captures genome-wise SD, then block-wise SD is SDRb
=
√

1
Rb−1

∑Rb

r=1[sr − s̄]2 ≈
√

Lb

LG
×√

1
R

∑Rb

r=1[sr − s̄]2, for the whole genome length LG.
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1.5 Lb selection

We considered two aspects of the block bootstrap datasets to select block length Lb. First, following
Bickel et al. (2010), we tried to find Lb that provided the minimum value of a pseudo-metric,

d∗(v) =

∣∣∣∣∣
√
Lv−1

Lv
[IQR(LLv )− IQR(LLv−1)]

∣∣∣∣∣ ,
where LLv

is the distribution of the test statistic at block length Lv, v = 1, 2, . . . , V , V is the number of
candidate block lengths, and IQR(L) is the interquartile range of a distribution L. Another aspect for
block length selection is evaluating the conservation of the spatial pattern. In order to provide robust
statistical inference in terms of significance testing, the generated null models should have similar spatial
properties with the original sets, e.g. inter-range distances. Here we use “null models” interchangeably
with block bootstrapped data. We used the Earth’s Mover Distance (EMD) to quantify the similarity
of the distributions of inter-range distances between the original and null models, resulting in values
from zero (identical distributions) to one (totally disjoint distributions) (Rubner et al., 1998). The EMD
between two distributions is proportional to the minimum amount of “work” required to change one
distribution (y) into the other (y′). Here y and y′ are the histograms of original and null model inter-
range distance. We observed that EMD always decreased as Lb increased, because more neighboring
ranges’ distances were preserved in the block bootstrap with larger blocks (block boundaries break
original distances). However, Lb cannot be too large and close to Ls. Otherwise, the randomization
of blocks would not be effective: the blocks will not sufficiently shuffle ranges across segments within
a particular segmentation state. Hence, we decided an optimal Lb falls in the range where EMD was
around elbow of the line plot for this aspect.

1.6 Block bootstrapping algorithm in bootRanges

We first introduce a few choices regarding bootstrapping algorithms implemented in bootRanges, and
provide recommendations. Proportional length blocks were introduced by Bickel et al. (2010) to estimate
the null distribution of base-pair overlap test statistics across a segmented genome. It is theoretically
motivated to have the blocks scale with the overall extent of the segment state. However, in practice,
if the genome segmentation states are very heterogeneous in size (e.g. orders of magnitude differences),
then the blocks constructed via the proportional length method for the smaller segmentation states can
be too short to effectively capture inter-range distances. We therefore recommend proportional length
blocks unless some segmentation states have a much smaller extent than others, in which case fixed
length blocks can be used. When considering the use of segmentation or not, segmentation is generally
preferred given the heterogeneity of structure across the entire genome. Bickel et al. (2010) demonstrated
the advantages of using segmentation via simulation. If the purpose is block bootstrapping ranges within
a smaller set of sequences, such as motif or domain locations within RNA transcript sequence, then the
unsegmented algorithm would be sufficient. Finally, for the unsegmented bootstrap, the block bootstrap
will be preferred over block permutation, as the former captures additional variance with respect to e.g.
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the total number and repetition of individual input ranges per iteration.

Algorithm 1: Un-segmented block bootstrap / permutation

Data: Ranges (y), Block length (Lb), Length of chromosome c (Lc), Total number of
chromosomes (C), Bootstrap iterations (R), Type (permute or bootstrap), Excluded
regions (e)

Result: BootRanges object, with the bootstrapped region sets from each iteration,
concatenated across R total iterations. Iteration and Lb recorded as metadata

1 r ← 1
2 while r ≤ R do
3 rearranged blocks ← Generate consecutive tiling blocks with width Lb (except last tile

per chromosome which is cut to fit Lc for chromosome c)
4 if permutation then
5 random blocks ← Sample blocks without replacement from rearranged blocks
6 else if bootstrap then

7 nb ←
∑C

c=1 ceiling(Lc/Lb)
8 random blocks ← Sample nb blocks with replacement from the genome, where

sampling probability per chromosome is proportional to Lc

9 bootstrap[r] ← Shift ranges in y that fall in the random blocks to their respective
positions in the rearranged blocks, trimming applied to any ranges that extend past
chromosome end or into excluded regions e

10 Concatenate bootstrap ranges across iterations r

Algorithm 2: Segmented block bootstrap with fixed or proportional block length

Data: Ranges (y), Maximal block length (Lb), Length of genome (LG), Bootstrap iterations
(R), Type (fixed or proportional), Segmentation states S, Segmentation regions As (the
set of all ranges belonging to state s), and with Ls

a representing the width of region a in
state s, Excluded regions (e)

Result: BootRanges object
11 r ← 1
12 while r ≤ R do
13 foreach segmentation state s ∈ S do
14 Ls ←

∑
a∈As

Ls
a . . . thus LG =

∑
s∈S Ls

15 if fixed then
16 nsb ←

∑
a∈As

ceiling(Ls
a/Lb)

17 else if proportional then
18 Ls

b ← Lb · Ls/LG . . . thus Ls
b ≤ Lb and equal iff S ≡ {s}

19 nsb ←
∑

a∈As
ceiling(Ls

a/L
s
b)

20 rearranged blocks[s] ← Generate nsb consecutive tiling blocks over As

21 random blocks[s] ← Sample nsb blocks with replacement from As, where number of
blocks per a is proportional to Ls

a

22 Concatenate rearranged blocks and random blocks across s
23 bootstrap[r] ← Shift ranges in y as in Algorithm 1

24 Concatenate bootstrap ranges across iterations r

2 Supplementary Results

2.1 Simulation

In order to demonstrate how block bootstrapping can more effectively capture the variance of the null
distribution of a test statistic, a 20 Mb window of human chromosome 4 was chosen, clustered ranges
generated in this window, and various comparisons made by overlapping with genes in this window (from
the Bioconductor package TxDb.Hsapiens.UCSC.hg38.knownGene v3.16). The genes in this window
represented the range set x, and the simulated, clustered ranges represented the range set y. To simulate
clustered ranges, 60 central positions were chosen uniformly from the entire 20 Mb window, and for each
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position, nranges ranges were generated, with nranges ∼ Pois(5). For each position, the ranges were
uniformly placed within 20 kb from the central position. Further, the ranges were generated with a
metadata column “score”, such that ranges within a cluster had similar score (simulated as Normal,
with a common mean). Therefore, we would expect there is no association between x and y, but that,
by chance sometime the overlap of these two sets would be large, given the clustered nature of y. The
same simulation parameters were used to draw 50 iterations of range sets y for assessing the shape of
the null distribution.

In order to compare the accuracy of shuffling and block bootstrapping, we shuffled and block boot-
strapped a single simulation iteration (e.g. y1). 50 iterations of shuffling and block bootstrapping were
performed of y1. One realization of shuffling and block bootstrapping each are shown in the top two
tracks of Figure S1A. Two types of test statistics were considered. First, we considered the total number
of overlaps with genes x. Second, based upon the metadata column “score”, we considered the sum of
“score” for overlapping ranges in y per range in x. We computed those two types of statistics between x
and the simulated, shuffled, and bootstrapped ranges across 50 iterations (Figure S1B-C). For both types
of test statistic, the distribution of statistics using the block bootstrap was similar in shape compared
to the distribution of the original, simulated dataset. However, simple shuffling generated distributions
with similar mean but smaller variance. Again, this was because the shuffled data did not exhibit the
clustering property of the original data, so small and large numbers of overlaps with x as would be seen
in the original data y were not observed with shuffled data.

To quantitatively access accuracy, we considered the right 5% tail of the test statistic distribution
from shuffling, and observed that 24% of the simulation distribution fell to the right of this threshold,
for the total number of overlaps statistic, and 16% for the sum of “score” statistic. This can be taken
as an estimate of the false positive rate (FPR), as the simulation reflected the null distribution of
no association, and values exceeding the upper tail of the shuffled distribution would be considered
statistically significant under this paradigm. When we considered the right 5% tail of the test statistic
distribution from block bootstrapping, the estimated FPRs were around 4% and 6% for two statistics,
respectively, close to the desired α = 5%. Therefore, we concluded from this simulation that shuffling
would overestimate significance of these two types of overlap statistics.

2.2 Overlap analysis of liver ATAC-seq peaks with GWAS SNPs

1,872 SNPs were download from the NHGRI-EBI GWAS catalog (Buniello et al., 2018) on September
22, 2021. We only extracted single nucleotide variants associated with “total cholesterol”. Liver ATAC-
seq peaks (Currin et al., 2021) aggregated from 20 samples were downloaded from the GEO accession:
GSE164870. All the peaks here were filtered by FDR adjusted p-value ≤ 0.05. Then, genomic coordinates
of consensus peaks were converted from hg19 to hg38 using liftOver to obtain 221,606 peaks.

Based on the Lb selection criteria, we found that d∗ had smaller values in most cases when Lb ∈
[300kb, 800kb] (Figure S2A). When quantify the similarity of the distributions of inter-range distances be-
tween the original and null models using EMD, we derived the histograms of original and null model inter-
range distance with bin size = 0.3 under various Lb and Ls settings. For this aspect, Lb ∈ [200kb, 600kb]
was shown to be a good range by visualization of density plot (Figure S2B) and according to the elbow
of the EMD statistic (Figure S2C). Combining two aspects, we concluded that [300kb, 600kb] was a good
range for block length.

2.3 Enrichment analysis of macrophage ATAC-seq and gene expression

We used the differential results for RNA-seq and ATAC-seq as described in the fluentGenomics work-
flow (Lee et al., 2020b), with the original data from a human macrophage experiment by Alasoo et al.
(2018). The contrast of interest was interferon gamma (IFNg) treatment. Since the transcriptomic re-
sponse to IFNg stimulation may involve increased transcription factor binding to cis-regulatory elements
near genes, and as ATAC-seq captures the accessibility and activity at these regions, Lee et al. (2020b)
hypothesized and demonstrated an enrichment of differentially accessible (DA) ATAC-seq peaks near dif-
ferentially expressed (DE) genes. While Lee et al. (2020b) assessed significance by randomly sub-setting
the non-DE genes and re-computing overlap with DA peaks, here we considered the block bootstrap for
statistical significance.

When performing block bootstrap on the number of overlaps, using Lb = 500kb and R = 100, we
obtained empirical p-value = 0 and z = −108.1. We therefore rejected the null hypothesis and concluded
that there was significant enrichment of DA peaks near DE genes.
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For fitting the generalized penalized splines, we used the gam function in the mgcv package (Wood,
2011) to fit the model, based on a penalized likelihood maximization. Generalized cross-validation was
used to choose the optimal value for the smoothing parameter, λ. Then, the tidymv package was used
to predict and extract the fitted value. For each generated null set, we found all the predicted overlap
counts for genes with logFC falling in the range (-8,10) with 1 as the increment. Then, conditional
density plots can be plotted across all null sets. Additionally, we used a z score to measure the distance
of predicted overlap counts between observed sets and the null sets in terms of SD of the conditional null
set (conditioning on logFC bin).

The following code shows how the analysis of Fig 2C is performed as the downstream task following
bootRanges. Suppose x contains the DE genes and bootRanges contains the bootstrapped DA peaks. For
each gene within each iteration, we extract the total number of peaks that overlap with that gene and
that gene’s logFC (below, max is used to reduce a set of repeated, identical values to a single numeric).
Then, after fitting splines, we predict overlap counts for a 2,000 point grid spanning the original logFC
range. These spline-predicted values are those used to define the conditional density.

1 boot_stats <- x %>% plyranges::join_overlap_inner(bootRanges) %>%
2 plyranges::group_by(id.x, iter) %>%
3 plyranges::summarize(count = plyranges::n(), logFC = max(x_logFC)) %>%
4 as.data.frame() %>%
5 tidyr::complete(id.x, iter, fill=list(count = 0)) %>%
6 dplyr::select(iter, count, logFC) %>%
7 tidyr::nest(-iter) %>%
8 dplyr::mutate(
9 fit= map(data, ˜gam(count ˜ s(logFC), data = ., family=poisson)),

10 pred = map(fit, ˜predict_gam(model = ., length_out = 2000)),
11 fitted = map(pred, ˜find_fit(data=., logFC = seq(-8,10,1))))

2.4 Correlation analysis of Single Cell ATAC + Gene Expression

We were interested in demonstrating bootRanges on data from single cell experiments, in particular
looking at correlations at pseudo-bulk resolution in single cell multi-omics datasets. For this purpose,
data were downloaded from Ricard Argelaguet and Marioni (2020), including RNA-seq for genes and
ATAC-seq for peaks in 10,032 cells. Cell type annotations had already bee performed by the 10x Genomics
R&D team. Information on genes and peaks from chromosomes 1-22 were selected. First, we aggregated
data from cells within same cell type, to form pseudo-bulks data with n = 14 cell types according to the
metadata. The pseudo-bulk data provided smoother correlation statistics without loss of the information
of interest (correlation of cell-type-specific expression and accessibility). Next, we removed all the ranges
with 0 standard deviation in either assay. Finally, log counts per million (CPM) were computed from
edgeR (Robinson et al., 2010) to account for different library sizes in both assays.

Our expectation was that the two modalities would have significantly high correlation for peaks
close to genes (le1kb). For the whole gene set, the mean correlation of gene RNA-seq and peak ATAC-
seq read counts was 0.33, while the bootstrap sampling correlation distribution in Figure S4A had a
mean correlation of 0.007 for R = 1, 000. Therefore, as expected, RNA and ATAC measured at nearby
peaks had similar cell-type-specificity. Additionally, the average gene-peaks correlation per gene can
be computed and compared to a bootstrap distribution to identify 5,644 gene-promoter pairs that were
significantly correlated across cell types. Among these, 5,591 genes had only one paired promoter, while
25 genes had 2 nearby promoters (peaks of accessibility within 1kb of the body of a gene). Two examples
of the most significant gene-peak pairs are shown in Figure S4B-C.

The following code is an example of how such an analysis can be performed with bootRanges and
plyranges. Here x refers to RNA-seq and y refers to ATAC-seq.

1 # split count matrix into NumericList metadata and sort
2 x <- x_Granges %>%
3 mutate(counts_X = NumericList(asplit(x.cpm, 1))) %>% sort()
4 y <- y_Granges %>%
5 mutate(counts_y = NumericList(asplit(y.cpm, 1))) %>% sort()
6

7 # standardize read counts for fast correlation computation
8 x$counts_x <- NumericList(lapply(x$counts_X, function(z) (z-mean(z))/sd(z)))
9 y$counts_y <- NumericList(lapply(y$counts_y, function(z) (z-mean(z))/sd(z)))

10

11 # generate block bootstrap ranges for ’y’
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12 boots <- bootRanges(y, blockLength = 5e5, R = 100)
13

14 # for standardized x and y:
15 correlation <- function(x,y) 1/(length(x)-1) * sum(x*y)
16

17 # extract bootstrap summary statistics
18 boot_stats <- x %>% plyranges::join_overlap_inner(boots, maxgap=1000) %>%
19 plyranges::mutate(rho = correlation(counts_x, counts_y)) %>%
20 plyranges::group_by(iter) %>%
21 plyranges::summarise(meanCor = mean(rho))
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3 Supplementary Figures

Figure S1: Comparison of shuffling and block bootstrapping in simulation. A) Visualization of one
iteration of the simulation. The bottom set of genes is x, “original” is a simulated range set y, which
is generated independently of x, and which demonstrates local clustering. Each range in “original” is
associated with a metadata value “score”, here shown by color (blue = low, red = high). Shuffling does
not preserve clumping properties of the original set, while block bootstrapping does preserve this property.
B) Density plots of total number of overlaps, between x and simulated y, shuffled, and bootstrapped
samples across 50 iterations. Shuffled and bootstrapped ranges were repeatedly sampled from a single
simulation of y. C) Density plots of summed scores for overlapping ranges, between x and simulated y,
shuffled, and bootstrapped samples across 50 iterations.

Figure S2: Lb selection assessment. A) A pseudo-metric d∗ (Bickel et al., 2010) over Lb , B) log2(inter-
range distance+1) density plots over various Lb and segmentation settings. Red curve represents the
observed ranges’ log2(inter-range distance+1) density. The more a particular null set’s density plot
overlapped with observed ranges, the better we conserved the spatial distribution of the original set via
block bootstrapping. Median EMD shown as text in each panel. C) Median EMD over Lb where EMD
quantified the similarity of inter-range distance distributions between nulls sets and observed sets.
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Figure S3: z scores against thresholds for liver ATAC-seq and macrophage experiments. A) z score
against SNPs -log10 (p-value) in the liver dataset. The penalized splines was fitted on the top 1800 SNPs
and was used to predict the overlap rate for the -log10 (p-value) falling into the range (5,20) with 1 as
increment for both observed and null sets data. Then, z scores, indicating the distance of the predicted
overlap rate between the observed set and null sets(R = 1, 000) in terms of SD, was derived. B) z score
against gene expression logFC of the macrophage dataset. The penalized splines was fitted on all DE
genes and was used to predict the overlap count for the logFC falling into the range (-8,10) with 1 as
increment for both observed and null sets data. Then, z scores, indicating the distance of the predicted
overlap count between the observed set and null sets(R = 1, 000) in terms of SD, was derived.

Figure S4: Correlation analysis of Chromium Single Cell Multiome ATAC + Gene Expression dataset.
A) The distribution of mean correlation of gene expression with bootstrapped ATAC-seq peaks and
their read counts (R = 100). B) TET3 read counts (“rna value”) over peak chr2:74000098-74003475
read counts (“peak value”), colored by cell type. TET3 had the most negative observed correlation
ρ = −0.963. C) CD83 read counts over peak chr6:14116971-14139988 read counts, colored by cell type.
The correlation of this gene-promoter pair was 0.992 and was the highest among all the pairs.
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